mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
WIP: Add BPE training code.
This commit is contained in:
parent
bd69e4be32
commit
acc63a9172
602
egs/librispeech/ASR/conformer_ctc/train.py
Executable file
602
egs/librispeech/ASR/conformer_ctc/train.py
Executable file
@ -0,0 +1,602 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
# This is just at the very beginning ...
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from conformer import Conformer
|
||||||
|
from transformer import Noam
|
||||||
|
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.nn.utils import clip_grad_value_
|
||||||
|
from torch.optim.lr_scheduler import StepLR
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
encode_supervisions,
|
||||||
|
setup_logger,
|
||||||
|
str2bool,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO: add extra arguments and support DDP training.
|
||||||
|
# Currently, only single GPU training is implemented. Will add
|
||||||
|
# DDP training once single GPU training is finished.
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
is saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- exp_dir: It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
|
||||||
|
- lang_dir: It contains language related input files such as
|
||||||
|
"lexicon.txt"
|
||||||
|
|
||||||
|
- lr: It specifies the initial learning rate
|
||||||
|
|
||||||
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- weight_decay: The weight_decay for the optimizer.
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
||||||
|
and continue training from that checkpoint.
|
||||||
|
|
||||||
|
- num_epochs: Number of epochs to train.
|
||||||
|
|
||||||
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
|
the model that has the lowest training loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_valid_loss: Best validation loss so far. It is used to select
|
||||||
|
the model that has the lowest validation loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_train_epoch: It is the epoch that has the best training loss.
|
||||||
|
|
||||||
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||||
|
|
||||||
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||||
|
contains number of batches trained so far across
|
||||||
|
epochs.
|
||||||
|
|
||||||
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||||
|
|
||||||
|
- beam_size: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- reduction: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- use_double_scores: It is used in k2.ctc_loss
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"exp_dir": Path("conformer_ctc/exp"),
|
||||||
|
"lang_dir": Path("data/lang/bpe"),
|
||||||
|
"feature_dim": 80,
|
||||||
|
"weight_decay": 0.0,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"start_epoch": 0,
|
||||||
|
"num_epochs": 10,
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 10,
|
||||||
|
"valid_interval": 1000,
|
||||||
|
"beam_size": 10,
|
||||||
|
"reduction": "sum",
|
||||||
|
"use_double_scores": True,
|
||||||
|
#
|
||||||
|
"accum_grad": 1,
|
||||||
|
"att_rate": 0.7,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"nhead": 8,
|
||||||
|
"num_decoder_layers": 6,
|
||||||
|
"is_espnet_structure": True,
|
||||||
|
"mmi_loss": False,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
|
"lr_factor": 5.0,
|
||||||
|
"warm_step": 80000,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_epoch is positive, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||||
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer that we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler we are using.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if params.start_epoch <= 0:
|
||||||
|
return
|
||||||
|
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
saved_params = load_checkpoint(
|
||||||
|
filename, model=model, optimizer=optimizer, scheduler=scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Save model, optimizer, scheduler and training stats to file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
"""
|
||||||
|
if rank != 0:
|
||||||
|
return
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=filename,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||||
|
is_training: bool,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Compute CTC loss given the model and its inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training. It is an instance of Conformer in our case.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to build a decoding graph from a ctc topo and training
|
||||||
|
transcript. The training transcript is contained in the given `batch`,
|
||||||
|
while the ctc topo is built when this compiler is instantiated.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation. When it is True, this
|
||||||
|
function enables autograd during computation; when it is False, it
|
||||||
|
disables autograd.
|
||||||
|
"""
|
||||||
|
device = graph_compiler.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
# at entry, feature is [N, T, C]
|
||||||
|
feature = feature.permute(0, 2, 1) # now feature is [N, C, T]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||||
|
# nnet_output is [N, C, T]
|
||||||
|
nnet_output = nnet_output.permute(0, 2, 1) # [N, C, T] -> [N, T, C]
|
||||||
|
|
||||||
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||||
|
# different duration in decreasing order, required by
|
||||||
|
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||||
|
supervision_segments, texts = encode_supervisions(
|
||||||
|
supervisions, subsampling_factor=params.subsampling_factor
|
||||||
|
)
|
||||||
|
|
||||||
|
token_ids = graph_compiler.texts_to_ids(texts)
|
||||||
|
|
||||||
|
decoding_graph = graph_compiler.compile(token_ids)
|
||||||
|
|
||||||
|
dense_fsa_vec = k2.DenseFsaVec(
|
||||||
|
nnet_output,
|
||||||
|
supervision_segments,
|
||||||
|
allow_truncate=params.subsampling_factor - 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
ctc_loss = k2.ctc_loss(
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
dense_fsa_vec=dense_fsa_vec,
|
||||||
|
output_beam=params.beam_size,
|
||||||
|
reduction=params.reduction,
|
||||||
|
use_double_scores=params.use_double_scores,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.att_rate != 0.0:
|
||||||
|
att_loss = model.decoder_forward(
|
||||||
|
encoder_memory,
|
||||||
|
memory_mask,
|
||||||
|
token_ids=token_ids,
|
||||||
|
sos_id=graph_compiler.sos_id,
|
||||||
|
eos_id=graph_compiler.eos_id,
|
||||||
|
)
|
||||||
|
loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
|
||||||
|
else:
|
||||||
|
loss = ctc_loss
|
||||||
|
|
||||||
|
# train_frames and valid_frames are used for printing.
|
||||||
|
if is_training:
|
||||||
|
params.train_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
else:
|
||||||
|
params.valid_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Run the validation process. The validation loss
|
||||||
|
is saved in `params.valid_loss`.
|
||||||
|
"""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = 0.0
|
||||||
|
tot_frames = 0.0
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
tot_frames += params.valid_frames
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
s = torch.tensor([tot_loss, tot_frames], device=loss.device)
|
||||||
|
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||||
|
s = s.cpu().tolist()
|
||||||
|
tot_loss = s[0]
|
||||||
|
tot_frames = s[1]
|
||||||
|
|
||||||
|
params.valid_loss = tot_loss / tot_frames
|
||||||
|
|
||||||
|
if params.valid_loss < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = params.valid_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to convert transcripts to FSAs.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
tot_loss = 0.0 # sum of losses over all batches
|
||||||
|
tot_frames = 0.0 # sum of frames over all batches
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_value_(model.parameters(), 5.0)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
|
||||||
|
tot_frames += params.train_frames
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
tot_avg_loss = tot_loss / tot_frames
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||||
|
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||||
|
f"batch size: {batch_size}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
|
compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, valid loss {params.valid_loss:.4f},"
|
||||||
|
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||||
|
f"best valid epoch: {params.best_valid_epoch}"
|
||||||
|
)
|
||||||
|
|
||||||
|
params.train_loss = tot_loss / tot_frames
|
||||||
|
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(42)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
num_classes = max_token_id + 1 # +1 for the blank
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
|
||||||
|
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||||
|
params.lang_dir,
|
||||||
|
device=device,
|
||||||
|
sos_token="<sos/eos>",
|
||||||
|
eos_token="<sos/eos>",
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
num_classes=num_classes,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
|
vgg_frontend=False,
|
||||||
|
is_espnet_structure=params.is_espnet_structure,
|
||||||
|
mmi_loss=params.mmi_loss,
|
||||||
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if world_size > 1:
|
||||||
|
model = DDP(model, device_ids=[rank])
|
||||||
|
|
||||||
|
optimizer = Noam(
|
||||||
|
model.parameters(),
|
||||||
|
model_size=params.attention_dim,
|
||||||
|
factor=params.lr_factor,
|
||||||
|
warm_step=params.warm_step,
|
||||||
|
weight_decay=params.weight_decay,
|
||||||
|
)
|
||||||
|
|
||||||
|
if checkpoints:
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
train_dl = librispeech.train_dataloaders()
|
||||||
|
valid_dl = librispeech.valid_dataloaders()
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs):
|
||||||
|
train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
cur_lr = optimizer._rate
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params, model=model, optimizer=optimizer, rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -189,6 +189,8 @@ class Transformer(nn.Module):
|
|||||||
supervision: Supervisions = None,
|
supervision: Supervisions = None,
|
||||||
graph_compiler: object = None,
|
graph_compiler: object = None,
|
||||||
token_ids: List[int] = None,
|
token_ids: List[int] = None,
|
||||||
|
sos_id: Optional[int] = None,
|
||||||
|
eos_id: Optional[int] = None,
|
||||||
) -> Tensor:
|
) -> Tensor:
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
@ -197,6 +199,8 @@ class Transformer(nn.Module):
|
|||||||
supervision: Supervison in lhotse format, get from batch['supervisions']
|
supervision: Supervison in lhotse format, get from batch['supervisions']
|
||||||
graph_compiler: use graph_compiler.L_inv (Its labels are words, while its aux_labels are phones)
|
graph_compiler: use graph_compiler.L_inv (Its labels are words, while its aux_labels are phones)
|
||||||
, graph_compiler.words and graph_compiler.oov
|
, graph_compiler.words and graph_compiler.oov
|
||||||
|
sos_id: sos token id
|
||||||
|
eos_id: eos token id
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Tensor: Decoder loss.
|
Tensor: Decoder loss.
|
||||||
@ -206,18 +210,9 @@ class Transformer(nn.Module):
|
|||||||
supervision, graph_compiler.lexicon.words, graph_compiler.oov
|
supervision, graph_compiler.lexicon.words, graph_compiler.oov
|
||||||
)
|
)
|
||||||
ys_in_pad, ys_out_pad = add_sos_eos(
|
ys_in_pad, ys_out_pad = add_sos_eos(
|
||||||
batch_text,
|
batch_text, graph_compiler.L_inv, sos_id, eos_id,
|
||||||
graph_compiler.L_inv,
|
|
||||||
self.decoder_num_class - 1,
|
|
||||||
self.decoder_num_class - 1,
|
|
||||||
)
|
)
|
||||||
elif token_ids is not None:
|
elif token_ids is not None:
|
||||||
# speical token ids:
|
|
||||||
# <blank> 0
|
|
||||||
# <UNK> 1
|
|
||||||
# <sos/eos> self.decoder_num_class - 1
|
|
||||||
sos_id = self.decoder_num_class - 1
|
|
||||||
eos_id = self.decoder_num_class - 1
|
|
||||||
_sos = torch.tensor([sos_id])
|
_sos = torch.tensor([sos_id])
|
||||||
_eos = torch.tensor([eos_id])
|
_eos = torch.tensor([eos_id])
|
||||||
ys_in = [
|
ys_in = [
|
||||||
@ -259,7 +254,12 @@ class Transformer(nn.Module):
|
|||||||
return decoder_loss
|
return decoder_loss
|
||||||
|
|
||||||
def decoder_nll(
|
def decoder_nll(
|
||||||
self, x: Tensor, encoder_mask: Tensor, token_ids: List[List[int]] = None
|
self,
|
||||||
|
x: Tensor,
|
||||||
|
encoder_mask: Tensor,
|
||||||
|
token_ids: List[List[int]],
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
) -> Tensor:
|
) -> Tensor:
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
@ -273,12 +273,6 @@ class Transformer(nn.Module):
|
|||||||
# The common part between this fuction and decoder_forward could be
|
# The common part between this fuction and decoder_forward could be
|
||||||
# extracted as a seperated function.
|
# extracted as a seperated function.
|
||||||
if token_ids is not None:
|
if token_ids is not None:
|
||||||
# speical token ids:
|
|
||||||
# <blank> 0
|
|
||||||
# <UNK> 1
|
|
||||||
# <sos/eos> self.decoder_num_class - 1
|
|
||||||
sos_id = self.decoder_num_class - 1
|
|
||||||
eos_id = self.decoder_num_class - 1
|
|
||||||
_sos = torch.tensor([sos_id])
|
_sos = torch.tensor([sos_id])
|
||||||
_eos = torch.tensor([eos_id])
|
_eos = torch.tensor([eos_id])
|
||||||
ys_in = [
|
ys_in = [
|
||||||
@ -866,7 +860,8 @@ class LabelSmoothingLoss(nn.Module):
|
|||||||
target = target.masked_fill(ignore, 0) # avoid -1 index
|
target = target.masked_fill(ignore, 0) # avoid -1 index
|
||||||
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
||||||
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
||||||
denom = total if self.normalize_length else batch_size
|
# denom = total if self.normalize_length else batch_size
|
||||||
|
denom = total if self.normalize_length else 1
|
||||||
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
||||||
|
|
||||||
|
|
||||||
@ -983,8 +978,8 @@ def generate_square_subsequent_mask(sz: int) -> Tensor:
|
|||||||
def add_sos_eos(
|
def add_sos_eos(
|
||||||
ys: List[List[int]],
|
ys: List[List[int]],
|
||||||
lexicon: k2.Fsa,
|
lexicon: k2.Fsa,
|
||||||
sos: int,
|
sos_id: int,
|
||||||
eos: int,
|
eos_id: int,
|
||||||
ignore_id: int = -1,
|
ignore_id: int = -1,
|
||||||
) -> Tuple[Tensor, Tensor]:
|
) -> Tuple[Tensor, Tensor]:
|
||||||
"""Add <sos> and <eos> labels.
|
"""Add <sos> and <eos> labels.
|
||||||
@ -992,8 +987,8 @@ def add_sos_eos(
|
|||||||
Args:
|
Args:
|
||||||
ys: batch of unpadded target sequences
|
ys: batch of unpadded target sequences
|
||||||
lexicon: Its labels are words, while its aux_labels are phones.
|
lexicon: Its labels are words, while its aux_labels are phones.
|
||||||
sos: index of <sos>
|
sos_id: index of <sos>
|
||||||
eos: index of <eos>
|
eos_id: index of <eos>
|
||||||
ignore_id: index of padding
|
ignore_id: index of padding
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -1001,8 +996,8 @@ def add_sos_eos(
|
|||||||
Tensor: Output of transformer decoder. padded tensor of dimention (batch_size, max_length).
|
Tensor: Output of transformer decoder. padded tensor of dimention (batch_size, max_length).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
_sos = torch.tensor([sos])
|
_sos = torch.tensor([sos_id])
|
||||||
_eos = torch.tensor([eos])
|
_eos = torch.tensor([eos_id])
|
||||||
ys = get_hierarchical_targets(ys, lexicon)
|
ys = get_hierarchical_targets(ys, lexicon)
|
||||||
ys_in = [torch.cat([_sos, y], dim=0) for y in ys]
|
ys_in = [torch.cat([_sos, y], dim=0) for y in ys]
|
||||||
ys_out = [torch.cat([y, _eos], dim=0) for y in ys]
|
ys_out = [torch.cat([y, _eos], dim=0) for y in ys]
|
||||||
|
@ -3,7 +3,7 @@
|
|||||||
"""
|
"""
|
||||||
This script compiles HLG from
|
This script compiles HLG from
|
||||||
|
|
||||||
- H, the ctc topology, built from phones contained in lexicon.txt
|
- H, the ctc topology, built from tokens contained in lexicon.txt
|
||||||
- L, the lexicon, built from L_disambig.pt
|
- L, the lexicon, built from L_disambig.pt
|
||||||
|
|
||||||
Caution: We use a lexicon that contains disambiguation symbols
|
Caution: We use a lexicon that contains disambiguation symbols
|
||||||
@ -13,6 +13,7 @@ This script compiles HLG from
|
|||||||
The generated HLG is saved in data/lm/HLG.pt (phone based)
|
The generated HLG is saved in data/lm/HLG.pt (phone based)
|
||||||
or data/lm/HLG_bpe.pt (BPE based)
|
or data/lm/HLG_bpe.pt (BPE based)
|
||||||
"""
|
"""
|
||||||
|
import logging
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import k2
|
import k2
|
||||||
@ -32,44 +33,44 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
|
|||||||
"""
|
"""
|
||||||
lexicon = Lexicon(lang_dir)
|
lexicon = Lexicon(lang_dir)
|
||||||
max_token_id = max(lexicon.tokens)
|
max_token_id = max(lexicon.tokens)
|
||||||
print(f"Building ctc_topo. max_token_id: {max_token_id}")
|
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
|
||||||
H = k2.ctc_topo(max_token_id)
|
H = k2.ctc_topo(max_token_id)
|
||||||
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
||||||
|
|
||||||
if Path("data/lm/G_3_gram.pt").is_file():
|
if Path("data/lm/G_3_gram.pt").is_file():
|
||||||
print("Loading pre-compiled G_3_gram")
|
logging.info("Loading pre-compiled G_3_gram")
|
||||||
d = torch.load("data/lm/G_3_gram.pt")
|
d = torch.load("data/lm/G_3_gram.pt")
|
||||||
G = k2.Fsa.from_dict(d)
|
G = k2.Fsa.from_dict(d)
|
||||||
else:
|
else:
|
||||||
print("Loading G_3_gram.fst.txt")
|
logging.info("Loading G_3_gram.fst.txt")
|
||||||
with open("data/lm/G_3_gram.fst.txt") as f:
|
with open("data/lm/G_3_gram.fst.txt") as f:
|
||||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||||
torch.save(G.as_dict(), "G_3_gram.pt")
|
torch.save(G.as_dict(), "G_3_gram.pt")
|
||||||
|
|
||||||
first_token_disambig_id = lexicon.phones["#0"]
|
first_token_disambig_id = lexicon.token_table["#0"]
|
||||||
first_word_disambig_id = lexicon.words["#0"]
|
first_word_disambig_id = lexicon.word_table["#0"]
|
||||||
|
|
||||||
L = k2.arc_sort(L)
|
L = k2.arc_sort(L)
|
||||||
G = k2.arc_sort(G)
|
G = k2.arc_sort(G)
|
||||||
|
|
||||||
print("Intersecting L and G")
|
logging.info("Intersecting L and G")
|
||||||
LG = k2.compose(L, G)
|
LG = k2.compose(L, G)
|
||||||
print(f"LG shape: {LG.shape}")
|
logging.info(f"LG shape: {LG.shape}")
|
||||||
|
|
||||||
print("Connecting LG")
|
logging.info("Connecting LG")
|
||||||
LG = k2.connect(LG)
|
LG = k2.connect(LG)
|
||||||
print(f"LG shape after k2.connect: {LG.shape}")
|
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
||||||
|
|
||||||
print(type(LG.aux_labels))
|
logging.info(type(LG.aux_labels))
|
||||||
print("Determinizing LG")
|
logging.info("Determinizing LG")
|
||||||
|
|
||||||
LG = k2.determinize(LG)
|
LG = k2.determinize(LG)
|
||||||
print(type(LG.aux_labels))
|
logging.info(type(LG.aux_labels))
|
||||||
|
|
||||||
print("Connecting LG after k2.determinize")
|
logging.info("Connecting LG after k2.determinize")
|
||||||
LG = k2.connect(LG)
|
LG = k2.connect(LG)
|
||||||
|
|
||||||
print("Removing disambiguation symbols on LG")
|
logging.info("Removing disambiguation symbols on LG")
|
||||||
|
|
||||||
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||||
|
|
||||||
@ -77,27 +78,27 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
|
|||||||
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
|
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
|
||||||
|
|
||||||
LG = k2.remove_epsilon(LG)
|
LG = k2.remove_epsilon(LG)
|
||||||
print(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||||
|
|
||||||
LG = k2.connect(LG)
|
LG = k2.connect(LG)
|
||||||
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
|
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
|
||||||
|
|
||||||
print("Arc sorting LG")
|
logging.info("Arc sorting LG")
|
||||||
LG = k2.arc_sort(LG)
|
LG = k2.arc_sort(LG)
|
||||||
|
|
||||||
print("Composing H and LG")
|
logging.info("Composing H and LG")
|
||||||
# CAUTION: The name of the inner_labels is fixed
|
# CAUTION: The name of the inner_labels is fixed
|
||||||
# to `tokens`. If you want to change it, please
|
# to `tokens`. If you want to change it, please
|
||||||
# also change other places in icefall that are using
|
# also change other places in icefall that are using
|
||||||
# it.
|
# it.
|
||||||
HLG = k2.compose(H, LG, inner_labels="tokens")
|
HLG = k2.compose(H, LG, inner_labels="tokens")
|
||||||
|
|
||||||
print("Connecting LG")
|
logging.info("Connecting LG")
|
||||||
HLG = k2.connect(HLG)
|
HLG = k2.connect(HLG)
|
||||||
|
|
||||||
print("Arc sorting LG")
|
logging.info("Arc sorting LG")
|
||||||
HLG = k2.arc_sort(HLG)
|
HLG = k2.arc_sort(HLG)
|
||||||
print(f"HLG.shape: {HLG.shape}")
|
logging.info(f"HLG.shape: {HLG.shape}")
|
||||||
|
|
||||||
return HLG
|
return HLG
|
||||||
|
|
||||||
@ -106,10 +107,10 @@ def phone_based_HLG():
|
|||||||
if Path("data/lm/HLG.pt").is_file():
|
if Path("data/lm/HLG.pt").is_file():
|
||||||
return
|
return
|
||||||
|
|
||||||
print("Compiling phone based HLG")
|
logging.info("Compiling phone based HLG")
|
||||||
HLG = compile_HLG("data/lang")
|
HLG = compile_HLG("data/lang")
|
||||||
|
|
||||||
print("Saving HLG.pt to data/lm")
|
logging.info("Saving HLG.pt to data/lm")
|
||||||
torch.save(HLG.as_dict(), "data/lm/HLG.pt")
|
torch.save(HLG.as_dict(), "data/lm/HLG.pt")
|
||||||
|
|
||||||
|
|
||||||
@ -117,9 +118,9 @@ def bpe_based_HLG():
|
|||||||
if Path("data/lm/HLG_bpe.pt").is_file():
|
if Path("data/lm/HLG_bpe.pt").is_file():
|
||||||
return
|
return
|
||||||
|
|
||||||
print("Compiling BPE based HLG")
|
logging.info("Compiling BPE based HLG")
|
||||||
HLG = compile_HLG("data/lang/bpe")
|
HLG = compile_HLG("data/lang/bpe")
|
||||||
print("Saving HLG_bpe.pt to data/lm")
|
logging.info("Saving HLG_bpe.pt to data/lm")
|
||||||
torch.save(HLG.as_dict(), "data/lm/HLG_bpe.pt")
|
torch.save(HLG.as_dict(), "data/lm/HLG_bpe.pt")
|
||||||
|
|
||||||
|
|
||||||
@ -129,4 +130,10 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
main()
|
main()
|
||||||
|
@ -4,13 +4,13 @@
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
This script takes as input a lexicon file "data/lang/lexicon.txt"
|
This script takes as input a lexicon file "data/lang/lexicon.txt"
|
||||||
consisting of words and phones and does the following:
|
consisting of words and tokens (i.e., phones) and does the following:
|
||||||
|
|
||||||
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
|
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
|
||||||
|
|
||||||
2. Generate phones.txt, the phones table mapping a phone to a unique integer.
|
2. Generate tokens.txt, the token table mapping a token to a unique integer.
|
||||||
|
|
||||||
3. Generate words.txt, the words table mapping a word to a unique integer.
|
3. Generate words.txt, the word table mapping a word to a unique integer.
|
||||||
|
|
||||||
4. Generate L.pt, in k2 format. It can be loaded by
|
4. Generate L.pt, in k2 format. It can be loaded by
|
||||||
|
|
||||||
@ -29,62 +29,11 @@ from typing import Any, Dict, List, Tuple
|
|||||||
import k2
|
import k2
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
from icefall.lexicon import read_lexicon, write_lexicon
|
||||||
|
|
||||||
Lexicon = List[Tuple[str, List[str]]]
|
Lexicon = List[Tuple[str, List[str]]]
|
||||||
|
|
||||||
|
|
||||||
def read_lexicon(filename: str) -> Lexicon:
|
|
||||||
"""Read a lexicon.txt in `filename`.
|
|
||||||
|
|
||||||
Each line in the lexicon contains "word p1 p2 p3 ...".
|
|
||||||
That is, the first field is a word and the remaining
|
|
||||||
fields are phones. Fields are separated by space(s).
|
|
||||||
|
|
||||||
Args:
|
|
||||||
filename:
|
|
||||||
Path to the lexicon.txt
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
A list of tuples., e.g., [('w', ['p1', 'p2']), ('w1', ['p3, 'p4'])]
|
|
||||||
"""
|
|
||||||
ans = []
|
|
||||||
|
|
||||||
with open(filename, "r", encoding="utf-8") as f:
|
|
||||||
whitespace = re.compile("[ \t]+")
|
|
||||||
for line in f:
|
|
||||||
a = whitespace.split(line.strip(" \t\r\n"))
|
|
||||||
if len(a) == 0:
|
|
||||||
continue
|
|
||||||
|
|
||||||
if len(a) < 2:
|
|
||||||
print(f"Found bad line {line} in lexicon file {filename}")
|
|
||||||
print("Every line is expected to contain at least 2 fields")
|
|
||||||
sys.exit(1)
|
|
||||||
word = a[0]
|
|
||||||
if word == "<eps>":
|
|
||||||
print(f"Found bad line {line} in lexicon file {filename}")
|
|
||||||
print("<eps> should not be a valid word")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
prons = a[1:]
|
|
||||||
ans.append((word, prons))
|
|
||||||
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
def write_lexicon(filename: str, lexicon: Lexicon) -> None:
|
|
||||||
"""Write a lexicon to a file.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
filename:
|
|
||||||
Path to the lexicon file to be generated.
|
|
||||||
lexicon:
|
|
||||||
It can be the return value of :func:`read_lexicon`.
|
|
||||||
"""
|
|
||||||
with open(filename, "w", encoding="utf-8") as f:
|
|
||||||
for word, prons in lexicon:
|
|
||||||
f.write(f"{word} {' '.join(prons)}\n")
|
|
||||||
|
|
||||||
|
|
||||||
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
||||||
"""Write a symbol to ID mapping to a file.
|
"""Write a symbol to ID mapping to a file.
|
||||||
|
|
||||||
@ -105,18 +54,18 @@ def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
|||||||
f.write(f"{sym} {i}\n")
|
f.write(f"{sym} {i}\n")
|
||||||
|
|
||||||
|
|
||||||
def get_phones(lexicon: Lexicon) -> List[str]:
|
def get_tokens(lexicon: Lexicon) -> List[str]:
|
||||||
"""Get phones from a lexicon.
|
"""Get tokens from a lexicon.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
lexicon:
|
lexicon:
|
||||||
It is the return value of :func:`read_lexicon`.
|
It is the return value of :func:`read_lexicon`.
|
||||||
Returns:
|
Returns:
|
||||||
Return a list of unique phones.
|
Return a list of unique tokens.
|
||||||
"""
|
"""
|
||||||
ans = set()
|
ans = set()
|
||||||
for _, prons in lexicon:
|
for _, tokens in lexicon:
|
||||||
ans.update(prons)
|
ans.update(tokens)
|
||||||
sorted_ans = sorted(list(ans))
|
sorted_ans = sorted(list(ans))
|
||||||
return sorted_ans
|
return sorted_ans
|
||||||
|
|
||||||
@ -138,8 +87,8 @@ def get_words(lexicon: Lexicon) -> List[str]:
|
|||||||
|
|
||||||
|
|
||||||
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
||||||
"""It adds pseudo-phone disambiguation symbols #1, #2 and so on
|
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
|
||||||
at the ends of phones to ensure that all pronunciations are different,
|
at the ends of tokens to ensure that all pronunciations are different,
|
||||||
and that none is a prefix of another.
|
and that none is a prefix of another.
|
||||||
|
|
||||||
See also add_lex_disambig.pl from kaldi.
|
See also add_lex_disambig.pl from kaldi.
|
||||||
@ -151,30 +100,30 @@ def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
|||||||
Return a tuple with two elements:
|
Return a tuple with two elements:
|
||||||
|
|
||||||
- The output lexicon with disambiguation symbols
|
- The output lexicon with disambiguation symbols
|
||||||
- The ID of the max disambiguation symbols that appears
|
- The ID of the max disambiguation symbol that appears
|
||||||
in the lexicon
|
in the lexicon
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# (1) Work out the count of each phone-sequence in the
|
# (1) Work out the count of each token-sequence in the
|
||||||
# lexicon.
|
# lexicon.
|
||||||
count = defaultdict(int)
|
count = defaultdict(int)
|
||||||
for _, prons in lexicon:
|
for _, tokens in lexicon:
|
||||||
count[" ".join(prons)] += 1
|
count[" ".join(tokens)] += 1
|
||||||
|
|
||||||
# (2) For each left sub-sequence of each phone-sequence, note down
|
# (2) For each left sub-sequence of each token-sequence, note down
|
||||||
# that it exists (for identifying prefixes of longer strings).
|
# that it exists (for identifying prefixes of longer strings).
|
||||||
issubseq = defaultdict(int)
|
issubseq = defaultdict(int)
|
||||||
for _, prons in lexicon:
|
for _, tokens in lexicon:
|
||||||
prons = prons.copy()
|
tokens = tokens.copy()
|
||||||
prons.pop()
|
tokens.pop()
|
||||||
while prons:
|
while tokens:
|
||||||
issubseq[" ".join(prons)] = 1
|
issubseq[" ".join(tokens)] = 1
|
||||||
prons.pop()
|
tokens.pop()
|
||||||
|
|
||||||
# (3) For each entry in the lexicon:
|
# (3) For each entry in the lexicon:
|
||||||
# if the phone sequence is unique and is not a
|
# if the token sequence is unique and is not a
|
||||||
# prefix of another word, no disambig symbol.
|
# prefix of another word, no disambig symbol.
|
||||||
# Else output #1, or #2, #3, ... if the same phone-seq
|
# Else output #1, or #2, #3, ... if the same token-seq
|
||||||
# has already been assigned a disambig symbol.
|
# has already been assigned a disambig symbol.
|
||||||
ans = []
|
ans = []
|
||||||
|
|
||||||
@ -183,14 +132,14 @@ def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
|||||||
max_disambig = first_allowed_disambig - 1
|
max_disambig = first_allowed_disambig - 1
|
||||||
last_used_disambig_symbol_of = defaultdict(int)
|
last_used_disambig_symbol_of = defaultdict(int)
|
||||||
|
|
||||||
for word, prons in lexicon:
|
for word, tokens in lexicon:
|
||||||
phnseq = " ".join(prons)
|
tokenseq = " ".join(tokens)
|
||||||
assert phnseq != ""
|
assert tokenseq != ""
|
||||||
if issubseq[phnseq] == 0 and count[phnseq] == 1:
|
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
|
||||||
ans.append((word, prons))
|
ans.append((word, tokens))
|
||||||
continue
|
continue
|
||||||
|
|
||||||
cur_disambig = last_used_disambig_symbol_of[phnseq]
|
cur_disambig = last_used_disambig_symbol_of[tokenseq]
|
||||||
if cur_disambig == 0:
|
if cur_disambig == 0:
|
||||||
cur_disambig = first_allowed_disambig
|
cur_disambig = first_allowed_disambig
|
||||||
else:
|
else:
|
||||||
@ -198,9 +147,9 @@ def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
|||||||
|
|
||||||
if cur_disambig > max_disambig:
|
if cur_disambig > max_disambig:
|
||||||
max_disambig = cur_disambig
|
max_disambig = cur_disambig
|
||||||
last_used_disambig_symbol_of[phnseq] = cur_disambig
|
last_used_disambig_symbol_of[tokenseq] = cur_disambig
|
||||||
phnseq += f" #{cur_disambig}"
|
tokenseq += f" #{cur_disambig}"
|
||||||
ans.append((word, phnseq.split()))
|
ans.append((word, tokenseq.split()))
|
||||||
return ans, max_disambig
|
return ans, max_disambig
|
||||||
|
|
||||||
|
|
||||||
@ -217,7 +166,7 @@ def generate_id_map(symbols: List[str]) -> Dict[str, int]:
|
|||||||
|
|
||||||
|
|
||||||
def add_self_loops(
|
def add_self_loops(
|
||||||
arcs: List[List[Any]], disambig_phone: int, disambig_word: int
|
arcs: List[List[Any]], disambig_token: int, disambig_word: int
|
||||||
) -> List[List[Any]]:
|
) -> List[List[Any]]:
|
||||||
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
||||||
through it. They are added on each state with non-epsilon output symbols
|
through it. They are added on each state with non-epsilon output symbols
|
||||||
@ -228,12 +177,15 @@ def add_self_loops(
|
|||||||
This function uses k2 style FSTs and it does not need to add self-loops
|
This function uses k2 style FSTs and it does not need to add self-loops
|
||||||
to the final state.
|
to the final state.
|
||||||
|
|
||||||
|
The input label of a self-loop is `disambig_token`, while the output
|
||||||
|
label is `disambig_word`.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
arcs:
|
arcs:
|
||||||
A list-of-list. The sublist contains
|
A list-of-list. The sublist contains
|
||||||
`[src_state, dest_state, label, aux_label, score]`
|
`[src_state, dest_state, label, aux_label, score]`
|
||||||
disambig_phone:
|
disambig_token:
|
||||||
It is the phone ID of the symbol `#0`.
|
It is the token ID of the symbol `#0`.
|
||||||
disambig_word:
|
disambig_word:
|
||||||
It is the word ID of the symbol `#0`.
|
It is the word ID of the symbol `#0`.
|
||||||
|
|
||||||
@ -248,37 +200,38 @@ def add_self_loops(
|
|||||||
|
|
||||||
ans = []
|
ans = []
|
||||||
for s in states_needs_self_loops:
|
for s in states_needs_self_loops:
|
||||||
ans.append([s, s, disambig_phone, disambig_word, 0])
|
ans.append([s, s, disambig_token, disambig_word, 0])
|
||||||
|
|
||||||
return arcs + ans
|
return arcs + ans
|
||||||
|
|
||||||
|
|
||||||
def lexicon_to_fst(
|
def lexicon_to_fst(
|
||||||
lexicon: Lexicon,
|
lexicon: Lexicon,
|
||||||
phone2id: Dict[str, int],
|
token2id: Dict[str, int],
|
||||||
word2id: Dict[str, int],
|
word2id: Dict[str, int],
|
||||||
sil_phone: str = "SIL",
|
sil_token: str = "SIL",
|
||||||
sil_prob: float = 0.5,
|
sil_prob: float = 0.5,
|
||||||
need_self_loops: bool = False,
|
need_self_loops: bool = False,
|
||||||
) -> k2.Fsa:
|
) -> k2.Fsa:
|
||||||
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
||||||
the beginning and end of the word.
|
the beginning and end of each word.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
lexicon:
|
lexicon:
|
||||||
The input lexicon. See also :func:`read_lexicon`
|
The input lexicon. See also :func:`read_lexicon`
|
||||||
phone2id:
|
token2id:
|
||||||
A dict mapping phones to IDs.
|
A dict mapping tokens to IDs.
|
||||||
word2id:
|
word2id:
|
||||||
A dict mapping words to IDs.
|
A dict mapping words to IDs.
|
||||||
sil_phone:
|
sil_token:
|
||||||
The silence phone.
|
The silence token.
|
||||||
sil_prob:
|
sil_prob:
|
||||||
The probability for adding a silence at the beginning and end
|
The probability for adding a silence at the beginning and end
|
||||||
of the word.
|
of the word.
|
||||||
need_self_loops:
|
need_self_loops:
|
||||||
If True, add self-loop to states with non-epsilon output symbols
|
If True, add self-loop to states with non-epsilon output symbols
|
||||||
on at least one arc out of the state.
|
on at least one arc out of the state. The input label for this
|
||||||
|
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||||
Returns:
|
Returns:
|
||||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||||
"""
|
"""
|
||||||
@ -294,48 +247,44 @@ def lexicon_to_fst(
|
|||||||
next_state = 3 # the next un-allocated state, will be incremented as we go.
|
next_state = 3 # the next un-allocated state, will be incremented as we go.
|
||||||
arcs = []
|
arcs = []
|
||||||
|
|
||||||
assert phone2id["<eps>"] == 0
|
assert token2id["<eps>"] == 0
|
||||||
assert word2id["<eps>"] == 0
|
assert word2id["<eps>"] == 0
|
||||||
|
|
||||||
eps = 0
|
eps = 0
|
||||||
|
|
||||||
sil_phone = phone2id[sil_phone]
|
sil_token = token2id[sil_token]
|
||||||
|
|
||||||
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
|
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
|
||||||
arcs.append([start_state, sil_state, eps, eps, sil_score])
|
arcs.append([start_state, sil_state, eps, eps, sil_score])
|
||||||
arcs.append([sil_state, loop_state, sil_phone, eps, 0])
|
arcs.append([sil_state, loop_state, sil_token, eps, 0])
|
||||||
|
|
||||||
for word, prons in lexicon:
|
for word, tokens in lexicon:
|
||||||
assert len(prons) > 0, f"{word} has no pronunciations"
|
assert len(tokens) > 0, f"{word} has no pronunciations"
|
||||||
cur_state = loop_state
|
cur_state = loop_state
|
||||||
|
|
||||||
word = word2id[word]
|
word = word2id[word]
|
||||||
prons = [phone2id[i] for i in prons]
|
tokens = [token2id[i] for i in tokens]
|
||||||
|
|
||||||
for i in range(len(prons) - 1):
|
for i in range(len(tokens) - 1):
|
||||||
if i == 0:
|
w = word if i == 0 else eps
|
||||||
arcs.append([cur_state, next_state, prons[i], word, 0])
|
arcs.append([cur_state, next_state, tokens[i], w, 0])
|
||||||
else:
|
|
||||||
arcs.append([cur_state, next_state, prons[i], eps, 0])
|
|
||||||
|
|
||||||
cur_state = next_state
|
cur_state = next_state
|
||||||
next_state += 1
|
next_state += 1
|
||||||
|
|
||||||
# now for the last phone of this word
|
# now for the last token of this word
|
||||||
# It has two out-going arcs, one to the loop state,
|
# It has two out-going arcs, one to the loop state,
|
||||||
# the other one to the sil_state.
|
# the other one to the sil_state.
|
||||||
i = len(prons) - 1
|
i = len(tokens) - 1
|
||||||
w = word if i == 0 else eps
|
w = word if i == 0 else eps
|
||||||
arcs.append([cur_state, loop_state, prons[i], w, no_sil_score])
|
arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score])
|
||||||
arcs.append([cur_state, sil_state, prons[i], w, sil_score])
|
arcs.append([cur_state, sil_state, tokens[i], w, sil_score])
|
||||||
|
|
||||||
if need_self_loops:
|
if need_self_loops:
|
||||||
disambig_phone = phone2id["#0"]
|
disambig_token = token2id["#0"]
|
||||||
disambig_word = word2id["#0"]
|
disambig_word = word2id["#0"]
|
||||||
arcs = add_self_loops(
|
arcs = add_self_loops(
|
||||||
arcs,
|
arcs, disambig_token=disambig_token, disambig_word=disambig_word,
|
||||||
disambig_phone=disambig_phone,
|
|
||||||
disambig_word=disambig_word,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
final_state = next_state
|
final_state = next_state
|
||||||
@ -354,22 +303,22 @@ def lexicon_to_fst(
|
|||||||
def main():
|
def main():
|
||||||
out_dir = Path("data/lang")
|
out_dir = Path("data/lang")
|
||||||
lexicon_filename = out_dir / "lexicon.txt"
|
lexicon_filename = out_dir / "lexicon.txt"
|
||||||
sil_phone = "SIL"
|
sil_token = "SIL"
|
||||||
sil_prob = 0.5
|
sil_prob = 0.5
|
||||||
|
|
||||||
lexicon = read_lexicon(lexicon_filename)
|
lexicon = read_lexicon(lexicon_filename)
|
||||||
phones = get_phones(lexicon)
|
tokens = get_tokens(lexicon)
|
||||||
words = get_words(lexicon)
|
words = get_words(lexicon)
|
||||||
|
|
||||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||||
|
|
||||||
for i in range(max_disambig + 1):
|
for i in range(max_disambig + 1):
|
||||||
disambig = f"#{i}"
|
disambig = f"#{i}"
|
||||||
assert disambig not in phones
|
assert disambig not in tokens
|
||||||
phones.append(f"#{i}")
|
tokens.append(f"#{i}")
|
||||||
|
|
||||||
assert "<eps>" not in phones
|
assert "<eps>" not in tokens
|
||||||
phones = ["<eps>"] + phones
|
tokens = ["<eps>"] + tokens
|
||||||
|
|
||||||
assert "<eps>" not in words
|
assert "<eps>" not in words
|
||||||
assert "#0" not in words
|
assert "#0" not in words
|
||||||
@ -378,26 +327,26 @@ def main():
|
|||||||
|
|
||||||
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
|
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
|
||||||
|
|
||||||
phone2id = generate_id_map(phones)
|
token2id = generate_id_map(tokens)
|
||||||
word2id = generate_id_map(words)
|
word2id = generate_id_map(words)
|
||||||
|
|
||||||
write_mapping(out_dir / "phones.txt", phone2id)
|
write_mapping(out_dir / "tokens.txt", token2id)
|
||||||
write_mapping(out_dir / "words.txt", word2id)
|
write_mapping(out_dir / "words.txt", word2id)
|
||||||
write_lexicon(out_dir / "lexicon_disambig.txt", lexicon_disambig)
|
write_lexicon(out_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||||
|
|
||||||
L = lexicon_to_fst(
|
L = lexicon_to_fst(
|
||||||
lexicon,
|
lexicon,
|
||||||
phone2id=phone2id,
|
token2id=token2id,
|
||||||
word2id=word2id,
|
word2id=word2id,
|
||||||
sil_phone=sil_phone,
|
sil_token=sil_token,
|
||||||
sil_prob=sil_prob,
|
sil_prob=sil_prob,
|
||||||
)
|
)
|
||||||
|
|
||||||
L_disambig = lexicon_to_fst(
|
L_disambig = lexicon_to_fst(
|
||||||
lexicon_disambig,
|
lexicon_disambig,
|
||||||
phone2id=phone2id,
|
token2id=token2id,
|
||||||
word2id=word2id,
|
word2id=word2id,
|
||||||
sil_phone=sil_phone,
|
sil_token=sil_token,
|
||||||
sil_prob=sil_prob,
|
sil_prob=sil_prob,
|
||||||
need_self_loops=True,
|
need_self_loops=True,
|
||||||
)
|
)
|
||||||
@ -406,7 +355,7 @@ def main():
|
|||||||
|
|
||||||
if False:
|
if False:
|
||||||
# Just for debugging, will remove it
|
# Just for debugging, will remove it
|
||||||
L.labels_sym = k2.SymbolTable.from_file(out_dir / "phones.txt")
|
L.labels_sym = k2.SymbolTable.from_file(out_dir / "tokens.txt")
|
||||||
L.aux_labels_sym = k2.SymbolTable.from_file(out_dir / "words.txt")
|
L.aux_labels_sym = k2.SymbolTable.from_file(out_dir / "words.txt")
|
||||||
L_disambig.labels_sym = L.labels_sym
|
L_disambig.labels_sym = L.labels_sym
|
||||||
L_disambig.aux_labels_sym = L.aux_labels_sym
|
L_disambig.aux_labels_sym = L.aux_labels_sym
|
||||||
|
@ -3,9 +3,9 @@
|
|||||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
This script takes as inputs the following files:
|
This script takes as inputs the following two files:
|
||||||
|
|
||||||
- data/lang/bpe/bpe.model,
|
- data/lang/bpe/bpe.model,
|
||||||
- data/lang/bpe/tokens.txt (will remove it),
|
|
||||||
- data/lang/bpe/words.txt
|
- data/lang/bpe/words.txt
|
||||||
|
|
||||||
and generates the following files in the directory data/lang/bpe:
|
and generates the following files in the directory data/lang/bpe:
|
||||||
@ -14,11 +14,11 @@ and generates the following files in the directory data/lang/bpe:
|
|||||||
- lexicon_disambig.txt
|
- lexicon_disambig.txt
|
||||||
- L.pt
|
- L.pt
|
||||||
- L_disambig.pt
|
- L_disambig.pt
|
||||||
- phones.txt
|
- tokens.txt
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, List
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
import k2
|
import k2
|
||||||
import sentencepiece as spm
|
import sentencepiece as spm
|
||||||
@ -28,6 +28,7 @@ from prepare_lang import (
|
|||||||
add_disambig_symbols,
|
add_disambig_symbols,
|
||||||
add_self_loops,
|
add_self_loops,
|
||||||
write_lexicon,
|
write_lexicon,
|
||||||
|
write_mapping,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -48,48 +49,46 @@ def lexicon_to_fst_no_sil(
|
|||||||
A dict mapping words to IDs.
|
A dict mapping words to IDs.
|
||||||
need_self_loops:
|
need_self_loops:
|
||||||
If True, add self-loop to states with non-epsilon output symbols
|
If True, add self-loop to states with non-epsilon output symbols
|
||||||
on at least one arc out of the state.
|
on at least one arc out of the state. The input label for this
|
||||||
|
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||||
Returns:
|
Returns:
|
||||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||||
"""
|
"""
|
||||||
loop_state = 0 # words enter and leave from here
|
loop_state = 0 # words enter and leave from here
|
||||||
next_state = 1 # the next un-allocated state, will be incremented as we go.
|
next_state = 1 # the next un-allocated state, will be incremented as we go
|
||||||
|
|
||||||
arcs = []
|
arcs = []
|
||||||
|
|
||||||
assert token2id["<blank>"] == 0
|
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
||||||
|
assert token2id["<blk>"] == 0
|
||||||
assert word2id["<eps>"] == 0
|
assert word2id["<eps>"] == 0
|
||||||
|
|
||||||
eps = 0
|
eps = 0
|
||||||
|
|
||||||
for word, prons in lexicon:
|
for word, pieces in lexicon:
|
||||||
assert len(prons) > 0, f"{word} has no pronunciations"
|
assert len(pieces) > 0, f"{word} has no pronunciations"
|
||||||
cur_state = loop_state
|
cur_state = loop_state
|
||||||
|
|
||||||
word = word2id[word]
|
word = word2id[word]
|
||||||
prons = [token2id[i] for i in prons]
|
pieces = [token2id[i] for i in pieces]
|
||||||
|
|
||||||
for i in range(len(prons) - 1):
|
for i in range(len(pieces) - 1):
|
||||||
if i == 0:
|
w = word if i == 0 else eps
|
||||||
arcs.append([cur_state, next_state, prons[i], word, 0])
|
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
||||||
else:
|
|
||||||
arcs.append([cur_state, next_state, prons[i], eps, 0])
|
|
||||||
|
|
||||||
cur_state = next_state
|
cur_state = next_state
|
||||||
next_state += 1
|
next_state += 1
|
||||||
|
|
||||||
# now for the last phone of this word
|
# now for the last piece of this word
|
||||||
i = len(prons) - 1
|
i = len(pieces) - 1
|
||||||
w = word if i == 0 else eps
|
w = word if i == 0 else eps
|
||||||
arcs.append([cur_state, loop_state, prons[i], w, 0])
|
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
||||||
|
|
||||||
if need_self_loops:
|
if need_self_loops:
|
||||||
disambig_phone = token2id["#0"]
|
disambig_token = token2id["#0"]
|
||||||
disambig_word = word2id["#0"]
|
disambig_word = word2id["#0"]
|
||||||
arcs = add_self_loops(
|
arcs = add_self_loops(
|
||||||
arcs,
|
arcs, disambig_token=disambig_token, disambig_word=disambig_word,
|
||||||
disambig_phone=disambig_phone,
|
|
||||||
disambig_word=disambig_word,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
final_state = next_state
|
final_state = next_state
|
||||||
@ -105,7 +104,9 @@ def lexicon_to_fst_no_sil(
|
|||||||
return fsa
|
return fsa
|
||||||
|
|
||||||
|
|
||||||
def generate_lexicon(model_file: str, words: List[str]) -> Lexicon:
|
def generate_lexicon(
|
||||||
|
model_file: str, words: List[str]
|
||||||
|
) -> Tuple[Lexicon, Dict[str, int]]:
|
||||||
"""Generate a lexicon from a BPE model.
|
"""Generate a lexicon from a BPE model.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@ -114,8 +115,10 @@ def generate_lexicon(model_file: str, words: List[str]) -> Lexicon:
|
|||||||
words:
|
words:
|
||||||
A list of strings representing words.
|
A list of strings representing words.
|
||||||
Returns:
|
Returns:
|
||||||
Return a dict whose keys are words and values are the corresponding
|
Return a tuple with two elements:
|
||||||
word pieces.
|
- A dict whose keys are words and values are the corresponding
|
||||||
|
word pieces.
|
||||||
|
- A dict representing the token symbol, mapping from tokens to IDs.
|
||||||
"""
|
"""
|
||||||
sp = spm.SentencePieceProcessor()
|
sp = spm.SentencePieceProcessor()
|
||||||
sp.load(str(model_file))
|
sp.load(str(model_file))
|
||||||
@ -126,8 +129,14 @@ def generate_lexicon(model_file: str, words: List[str]) -> Lexicon:
|
|||||||
for word, pieces in zip(words, words_pieces):
|
for word, pieces in zip(words, words_pieces):
|
||||||
lexicon.append((word, pieces))
|
lexicon.append((word, pieces))
|
||||||
|
|
||||||
lexicon.append(("<UNK>", ["<UNK>"]))
|
# The OOV word is <UNK>
|
||||||
return lexicon
|
lexicon.append(("<UNK>", [sp.id_to_piece(sp.unk_id())]))
|
||||||
|
|
||||||
|
token2id: Dict[str, int] = dict()
|
||||||
|
for i in range(sp.vocab_size()):
|
||||||
|
token2id[sp.id_to_piece(i)] = i
|
||||||
|
|
||||||
|
return lexicon, token2id
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
@ -143,34 +152,28 @@ def main():
|
|||||||
if w in words:
|
if w in words:
|
||||||
words.remove(w)
|
words.remove(w)
|
||||||
|
|
||||||
lexicon = generate_lexicon(model_file, words)
|
lexicon, token_sym_table = generate_lexicon(model_file, words)
|
||||||
|
|
||||||
# TODO(fangjun): Remove tokens.txt and generate it from the model directly.
|
|
||||||
#
|
|
||||||
# We are using it since the IDs we are using in tokens.txt is
|
|
||||||
# different from the one contained in the model
|
|
||||||
token_sym_table = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
|
||||||
|
|
||||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||||
|
|
||||||
|
next_token_id = max(token_sym_table.values()) + 1
|
||||||
for i in range(max_disambig + 1):
|
for i in range(max_disambig + 1):
|
||||||
disambig = f"#{i}"
|
disambig = f"#{i}"
|
||||||
assert disambig not in token_sym_table
|
assert disambig not in token_sym_table
|
||||||
token_sym_table.add(f"#{i}")
|
token_sym_table[disambig] = next_token_id
|
||||||
|
next_token_id += 1
|
||||||
|
|
||||||
word_sym_table.add("#0")
|
word_sym_table.add("#0")
|
||||||
word_sym_table.add("<s>")
|
word_sym_table.add("<s>")
|
||||||
word_sym_table.add("</s>")
|
word_sym_table.add("</s>")
|
||||||
|
|
||||||
token_sym_table.to_file(lang_dir / "phones.txt")
|
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
||||||
|
|
||||||
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
||||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||||
|
|
||||||
L = lexicon_to_fst_no_sil(
|
L = lexicon_to_fst_no_sil(
|
||||||
lexicon,
|
lexicon, token2id=token_sym_table, word2id=word_sym_table,
|
||||||
token2id=token_sym_table,
|
|
||||||
word2id=word_sym_table,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
L_disambig = lexicon_to_fst_no_sil(
|
L_disambig = lexicon_to_fst_no_sil(
|
||||||
@ -184,7 +187,7 @@ def main():
|
|||||||
|
|
||||||
if False:
|
if False:
|
||||||
# Just for debugging, will remove it
|
# Just for debugging, will remove it
|
||||||
L.labels_sym = k2.SymbolTable.from_file(lang_dir / "phones.txt")
|
L.labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||||
L.aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
L.aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||||
L_disambig.labels_sym = L.labels_sym
|
L_disambig.labels_sym = L.labels_sym
|
||||||
L_disambig.aux_labels_sym = L.aux_labels_sym
|
L_disambig.aux_labels_sym = L.aux_labels_sym
|
||||||
|
60
egs/librispeech/ASR/local/train_bpe_model.py
Executable file
60
egs/librispeech/ASR/local/train_bpe_model.py
Executable file
@ -0,0 +1,60 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes as input "data/lang/bpe/train.txt"
|
||||||
|
and generates "data/lang/bpe/bep.model".
|
||||||
|
"""
|
||||||
|
|
||||||
|
# You can install sentencepiece via:
|
||||||
|
#
|
||||||
|
# pip install sentencepiece
|
||||||
|
#
|
||||||
|
# Due to an issue reported in
|
||||||
|
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
||||||
|
#
|
||||||
|
# Please install a version >=0.1.96
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
model_type = "unigram"
|
||||||
|
vocab_size = 5000
|
||||||
|
model_prefix = f"data/lang/bpe/{model_type}_{vocab_size}"
|
||||||
|
train_text = "data/lang/bpe/train.txt"
|
||||||
|
character_coverage = 1.0
|
||||||
|
input_sentence_size = 100000000
|
||||||
|
|
||||||
|
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
||||||
|
unk_id = len(user_defined_symbols)
|
||||||
|
# Note: unk_id is fixed to 2.
|
||||||
|
# If you change it, you should also change other
|
||||||
|
# places that are using it.
|
||||||
|
|
||||||
|
model_file = Path(model_prefix + ".model")
|
||||||
|
if not model_file.is_file():
|
||||||
|
spm.SentencePieceTrainer.train(
|
||||||
|
input=train_text,
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
model_type=model_type,
|
||||||
|
model_prefix=model_prefix,
|
||||||
|
input_sentence_size=input_sentence_size,
|
||||||
|
character_coverage=character_coverage,
|
||||||
|
user_defined_symbols=user_defined_symbols,
|
||||||
|
unk_id=unk_id,
|
||||||
|
bos_id=-1,
|
||||||
|
eos_id=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor(model_file=str(model_file))
|
||||||
|
vocab_size = sp.vocab_size()
|
||||||
|
|
||||||
|
shutil.copyfile(model_file, "data/lang/bpe/bpe.model")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -10,14 +10,20 @@ stop_stage=100
|
|||||||
|
|
||||||
mkdir -p data
|
mkdir -p data
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||||
echo "stage -1: Download LM"
|
log "stage -1: Download LM"
|
||||||
mkdir -p data/lm
|
mkdir -p data/lm
|
||||||
./local/download_lm.py
|
./local/download_lm.py
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
echo "stage 0: Download data"
|
log "stage 0: Download data"
|
||||||
|
|
||||||
# If you have pre-downloaded it to /path/to/LibriSpeech,
|
# If you have pre-downloaded it to /path/to/LibriSpeech,
|
||||||
# you can create a symlink
|
# you can create a symlink
|
||||||
@ -49,7 +55,7 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
echo "Stage 1: Prepare librispeech manifest"
|
log "Stage 1: Prepare librispeech manifest"
|
||||||
# We assume that you have downloaded the librispeech corpus
|
# We assume that you have downloaded the librispeech corpus
|
||||||
# to data/LibriSpeech
|
# to data/LibriSpeech
|
||||||
mkdir -p data/manifests
|
mkdir -p data/manifests
|
||||||
@ -57,7 +63,7 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
echo "Stage 2: Prepare musan manifest"
|
log "Stage 2: Prepare musan manifest"
|
||||||
# We assume that you have downloaded the musan corpus
|
# We assume that you have downloaded the musan corpus
|
||||||
# to data/musan
|
# to data/musan
|
||||||
mkdir -p data/manifests
|
mkdir -p data/manifests
|
||||||
@ -65,19 +71,19 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
echo "Stage 3: Compute fbank for librispeech"
|
log "Stage 3: Compute fbank for librispeech"
|
||||||
mkdir -p data/fbank
|
mkdir -p data/fbank
|
||||||
./local/compute_fbank_librispeech.py
|
./local/compute_fbank_librispeech.py
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
echo "Stage 4: Compute fbank for musan"
|
log "Stage 4: Compute fbank for musan"
|
||||||
mkdir -p data/fbank
|
mkdir -p data/fbank
|
||||||
./local/compute_fbank_musan.py
|
./local/compute_fbank_musan.py
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
echo "Stage 5: Prepare phone based lang"
|
log "Stage 5: Prepare phone based lang"
|
||||||
# TODO: add BPE based lang
|
# TODO: add BPE based lang
|
||||||
mkdir -p data/lang
|
mkdir -p data/lang
|
||||||
|
|
||||||
@ -85,21 +91,37 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|||||||
cat - data/lm/librispeech-lexicon.txt |
|
cat - data/lm/librispeech-lexicon.txt |
|
||||||
sort | uniq > data/lang/lexicon.txt
|
sort | uniq > data/lang/lexicon.txt
|
||||||
|
|
||||||
./local/prepare_lang.py
|
if [ ! -f data/lang/L_disambig.pt ]; then
|
||||||
|
./local/prepare_lang.py
|
||||||
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||||
echo "State 6: Prepare BPE based lang"
|
log "State 6: Prepare BPE based lang"
|
||||||
mkdir -p data/lang/bpe
|
mkdir -p data/lang/bpe
|
||||||
cp data/lang/words.txt data/lang/bpe/
|
cp data/lang/words.txt data/lang/bpe/
|
||||||
|
|
||||||
|
if [ ! -f data/lang/bpe/train.txt ]; then
|
||||||
|
log "Generate data for BPE training"
|
||||||
|
files=$(
|
||||||
|
find "data/LibriSpeech/train-clean-100" -name "*.trans.txt"
|
||||||
|
find "data/LibriSpeech/train-clean-360" -name "*.trans.txt"
|
||||||
|
find "data/LibriSpeech/train-other-500" -name "*.trans.txt"
|
||||||
|
)
|
||||||
|
for f in ${files[@]}; do
|
||||||
|
cat $f | cut -d " " -f 2-
|
||||||
|
done > data/lang/bpe/train.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
python3 ./local/train_bpe_model.py
|
||||||
|
|
||||||
if [ ! -f data/lang/bpe/L_disambig.pt ]; then
|
if [ ! -f data/lang/bpe/L_disambig.pt ]; then
|
||||||
./local/prepare_lang_bpe.py
|
./local/prepare_lang_bpe.py
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||||
echo "Stage 7: Prepare G"
|
log "Stage 7: Prepare G"
|
||||||
# We assume you have install kaldilm, if not, please install
|
# We assume you have install kaldilm, if not, please install
|
||||||
# it using: pip install kaldilm
|
# it using: pip install kaldilm
|
||||||
|
|
||||||
@ -123,6 +145,6 @@ if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||||
echo "Stage 8: Compile HLG"
|
log "Stage 8: Compile HLG"
|
||||||
python3 ./local/compile_hlg.py
|
python3 ./local/compile_hlg.py
|
||||||
fi
|
fi
|
||||||
|
@ -72,7 +72,7 @@ def get_params() -> AttributeDict:
|
|||||||
# - nbest
|
# - nbest
|
||||||
# - nbest-rescoring
|
# - nbest-rescoring
|
||||||
# - whole-lattice-rescoring
|
# - whole-lattice-rescoring
|
||||||
"method": "whole-lattice-rescoring",
|
"method": "1best",
|
||||||
# num_paths is used when method is "nbest" and "nbest-rescoring"
|
# num_paths is used when method is "nbest" and "nbest-rescoring"
|
||||||
"num_paths": 30,
|
"num_paths": 30,
|
||||||
}
|
}
|
||||||
@ -173,7 +173,7 @@ def decode_one_batch(
|
|||||||
)
|
)
|
||||||
key = f"no_rescore-{params.num_paths}"
|
key = f"no_rescore-{params.num_paths}"
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
hyps = [[lexicon.words[i] for i in ids] for ids in hyps]
|
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||||
return {key: hyps}
|
return {key: hyps}
|
||||||
|
|
||||||
assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"]
|
assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"]
|
||||||
@ -196,7 +196,7 @@ def decode_one_batch(
|
|||||||
ans = dict()
|
ans = dict()
|
||||||
for lm_scale_str, best_path in best_path_dict.items():
|
for lm_scale_str, best_path in best_path_dict.items():
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
hyps = [[lexicon.words[i] for i in ids] for ids in hyps]
|
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||||
ans[lm_scale_str] = hyps
|
ans[lm_scale_str] = hyps
|
||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
74
icefall/bpe_graph_compiler.py
Normal file
74
icefall/bpe_graph_compiler.py
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Union
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class BpeCtcTrainingGraphCompiler(object):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
lang_dir: Path,
|
||||||
|
device: Union[str, torch.device] = "cpu",
|
||||||
|
sos_token: str = "<sos/eos>",
|
||||||
|
eos_token: str = "<sos/eos>",
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lang_dir:
|
||||||
|
This directory is expected to contain the following files:
|
||||||
|
|
||||||
|
- bpe.model
|
||||||
|
- words.txt
|
||||||
|
device:
|
||||||
|
It indicates CPU or CUDA.
|
||||||
|
sos_token:
|
||||||
|
The word piece that represents sos.
|
||||||
|
eos_token:
|
||||||
|
The word piece that represents eos.
|
||||||
|
"""
|
||||||
|
lang_dir = Path(lang_dir)
|
||||||
|
model_file = lang_dir / "bpe.model"
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(str(model_file))
|
||||||
|
self.sp = sp
|
||||||
|
self.word_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
self.sos_id = self.sp.piece_to_id(sos_token)
|
||||||
|
self.eos_id = self.sp.piece_to_id(eos_token)
|
||||||
|
|
||||||
|
assert self.sos_id != self.sp.unk_id()
|
||||||
|
assert self.eos_id != self.sp.unk_id()
|
||||||
|
|
||||||
|
def texts_to_ids(self, texts: List[str]) -> List[List[int]]:
|
||||||
|
"""Convert a list of texts to a list-of-list of piece IDs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts:
|
||||||
|
It is a list of strings. Each string consists of space(s)
|
||||||
|
separated words. An example containing two strings is given below:
|
||||||
|
|
||||||
|
['HELLO ICEFALL', 'HELLO k2']
|
||||||
|
Returns:
|
||||||
|
Return a list-of-list of piece IDs.
|
||||||
|
"""
|
||||||
|
return self.sp.encode(texts, out_type=int)
|
||||||
|
|
||||||
|
def compile(
|
||||||
|
self, piece_ids: List[List[int]], modified: bool = False,
|
||||||
|
) -> k2.Fsa:
|
||||||
|
"""Build a ctc graph from a list-of-list piece IDs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
piece_ids:
|
||||||
|
It is a list-of-list integer IDs.
|
||||||
|
modified:
|
||||||
|
See :func:`k2.ctc_graph` for its meaning.
|
||||||
|
Return:
|
||||||
|
Return an FsaVec, which is the result of composing a
|
||||||
|
CTC topology with linear FSAs constructed from the given
|
||||||
|
piece IDs.
|
||||||
|
"""
|
||||||
|
return k2.ctc_graph(piece_ids, modified=modified, device=self.device)
|
@ -8,10 +8,7 @@ from icefall.lexicon import Lexicon
|
|||||||
|
|
||||||
class CtcTrainingGraphCompiler(object):
|
class CtcTrainingGraphCompiler(object):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self, lexicon: Lexicon, device: torch.device, oov: str = "<UNK>",
|
||||||
lexicon: Lexicon,
|
|
||||||
device: torch.device,
|
|
||||||
oov: str = "<UNK>",
|
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
@ -26,11 +23,11 @@ class CtcTrainingGraphCompiler(object):
|
|||||||
L_inv = lexicon.L_inv.to(device)
|
L_inv = lexicon.L_inv.to(device)
|
||||||
assert L_inv.requires_grad is False
|
assert L_inv.requires_grad is False
|
||||||
|
|
||||||
assert oov in lexicon.words
|
assert oov in lexicon.word_table
|
||||||
|
|
||||||
self.L_inv = k2.arc_sort(L_inv)
|
self.L_inv = k2.arc_sort(L_inv)
|
||||||
self.oov_id = lexicon.words[oov]
|
self.oov_id = lexicon.word_table[oov]
|
||||||
self.words = lexicon.words
|
self.word_table = lexicon.word_table
|
||||||
|
|
||||||
max_token_id = max(lexicon.tokens)
|
max_token_id = max(lexicon.tokens)
|
||||||
ctc_topo = k2.ctc_topo(max_token_id, modified=False)
|
ctc_topo = k2.ctc_topo(max_token_id, modified=False)
|
||||||
@ -90,8 +87,8 @@ class CtcTrainingGraphCompiler(object):
|
|||||||
for text in texts:
|
for text in texts:
|
||||||
word_ids = []
|
word_ids = []
|
||||||
for word in text.split(" "):
|
for word in text.split(" "):
|
||||||
if word in self.words:
|
if word in self.word_table:
|
||||||
word_ids.append(self.words[word])
|
word_ids.append(self.word_table[word])
|
||||||
else:
|
else:
|
||||||
word_ids.append(self.oov_id)
|
word_ids.append(self.oov_id)
|
||||||
word_ids_list.append(word_ids)
|
word_ids_list.append(word_ids)
|
||||||
|
@ -1,12 +1,65 @@
|
|||||||
import logging
|
import logging
|
||||||
import re
|
import re
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import List
|
from typing import List, Tuple, Union
|
||||||
|
|
||||||
import k2
|
import k2
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def read_lexicon(filename: str) -> List[Tuple[str, List[str]]]:
|
||||||
|
"""Read a lexicon from `filename`.
|
||||||
|
|
||||||
|
Each line in the lexicon contains "word p1 p2 p3 ...".
|
||||||
|
That is, the first field is a word and the remaining
|
||||||
|
fields are tokens. Fields are separated by space(s).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filename:
|
||||||
|
Path to the lexicon.txt
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A list of tuples., e.g., [('w', ['p1', 'p2']), ('w1', ['p3, 'p4'])]
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
|
||||||
|
with open(filename, "r", encoding="utf-8") as f:
|
||||||
|
whitespace = re.compile("[ \t]+")
|
||||||
|
for line in f:
|
||||||
|
a = whitespace.split(line.strip(" \t\r\n"))
|
||||||
|
if len(a) == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if len(a) < 2:
|
||||||
|
print(f"Found bad line {line} in lexicon file {filename}")
|
||||||
|
print("Every line is expected to contain at least 2 fields")
|
||||||
|
sys.exit(1)
|
||||||
|
word = a[0]
|
||||||
|
if word == "<eps>":
|
||||||
|
print(f"Found bad line {line} in lexicon file {filename}")
|
||||||
|
print("<eps> should not be a valid word")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
tokens = a[1:]
|
||||||
|
ans.append((word, tokens))
|
||||||
|
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def write_lexicon(filename: str, lexicon: List[Tuple[str, List[str]]]) -> None:
|
||||||
|
"""Write a lexicon to a file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filename:
|
||||||
|
Path to the lexicon file to be generated.
|
||||||
|
lexicon:
|
||||||
|
It can be the return value of :func:`read_lexicon`.
|
||||||
|
"""
|
||||||
|
with open(filename, "w", encoding="utf-8") as f:
|
||||||
|
for word, tokens in lexicon:
|
||||||
|
f.write(f"{word} {' '.join(tokens)}\n")
|
||||||
|
|
||||||
|
|
||||||
class Lexicon(object):
|
class Lexicon(object):
|
||||||
"""Phone based lexicon.
|
"""Phone based lexicon.
|
||||||
|
|
||||||
@ -14,14 +67,14 @@ class Lexicon(object):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self, lang_dir: Path, disambig_pattern: str = re.compile(r"^#\d+$")
|
self, lang_dir: Path, disambig_pattern: str = re.compile(r"^#\d+$"),
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
lang_dir:
|
lang_dir:
|
||||||
Path to the lang director. It is expected to contain the following
|
Path to the lang director. It is expected to contain the following
|
||||||
files:
|
files:
|
||||||
- phones.txt
|
- tokens.txt
|
||||||
- words.txt
|
- words.txt
|
||||||
- L.pt
|
- L.pt
|
||||||
The above files are produced by the script `prepare.sh`. You
|
The above files are produced by the script `prepare.sh`. You
|
||||||
@ -30,11 +83,11 @@ class Lexicon(object):
|
|||||||
It contains the pattern for disambiguation symbols.
|
It contains the pattern for disambiguation symbols.
|
||||||
"""
|
"""
|
||||||
lang_dir = Path(lang_dir)
|
lang_dir = Path(lang_dir)
|
||||||
self.phones = k2.SymbolTable.from_file(lang_dir / "phones.txt")
|
self.token_table = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||||
self.words = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
self.word_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||||
|
|
||||||
if (lang_dir / "Linv.pt").exists():
|
if (lang_dir / "Linv.pt").exists():
|
||||||
logging.info("Loading pre-compiled Linv.pt")
|
logging.info(f"Loading pre-compiled {lang_dir}/Linv.pt")
|
||||||
L_inv = k2.Fsa.from_dict(torch.load(lang_dir / "Linv.pt"))
|
L_inv = k2.Fsa.from_dict(torch.load(lang_dir / "Linv.pt"))
|
||||||
else:
|
else:
|
||||||
logging.info("Converting L.pt to Linv.pt")
|
logging.info("Converting L.pt to Linv.pt")
|
||||||
@ -49,18 +102,92 @@ class Lexicon(object):
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def tokens(self) -> List[int]:
|
def tokens(self) -> List[int]:
|
||||||
"""Return a list of phone IDs excluding those from
|
"""Return a list of token IDs excluding those from
|
||||||
disambiguation symbols.
|
disambiguation symbols.
|
||||||
|
|
||||||
Caution:
|
Caution:
|
||||||
0 is not a phone ID so it is excluded from the return value.
|
0 is not a token ID so it is excluded from the return value.
|
||||||
"""
|
"""
|
||||||
symbols = self.phones.symbols
|
symbols = self.token_table.symbols
|
||||||
ans = []
|
ans = []
|
||||||
for s in symbols:
|
for s in symbols:
|
||||||
if not self.disambig_pattern.match(s):
|
if not self.disambig_pattern.match(s):
|
||||||
ans.append(self.phones[s])
|
ans.append(self.token_table[s])
|
||||||
if 0 in ans:
|
if 0 in ans:
|
||||||
ans.remove(0)
|
ans.remove(0)
|
||||||
ans.sort()
|
ans.sort()
|
||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
class BpeLexicon(Lexicon):
|
||||||
|
def __init__(
|
||||||
|
self, lang_dir: Path, disambig_pattern: str = re.compile(r"^#\d+$"),
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Refer to the help information in Lexicon.__init__.
|
||||||
|
"""
|
||||||
|
super().__init__(lang_dir=lang_dir, disambig_pattern=disambig_pattern)
|
||||||
|
|
||||||
|
self.ragged_lexicon = self.convert_lexicon_to_ragged(
|
||||||
|
lang_dir / "lexicon.txt"
|
||||||
|
)
|
||||||
|
|
||||||
|
def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedInt:
|
||||||
|
"""Read a BPE lexicon from file and convert it to a
|
||||||
|
k2 ragged tensor.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filename:
|
||||||
|
Filename of the BPE lexicon, e.g., data/lang/bpe/lexicon.txt
|
||||||
|
Returns:
|
||||||
|
A k2 ragged tensor with two axes [word_id]
|
||||||
|
"""
|
||||||
|
disambig_id = self.word_table["#0"]
|
||||||
|
# We reuse the same words.txt from the phone based lexicon
|
||||||
|
# so that we can share the same G.fst. Here, we have to
|
||||||
|
# exclude some words present only in the phone based lexicon.
|
||||||
|
excluded_words = ["<eps>", "!SIL", "<SPOKEN_NOISE>"]
|
||||||
|
|
||||||
|
# epsilon is not a word, but it occupies on position
|
||||||
|
#
|
||||||
|
row_splits = [0]
|
||||||
|
token_ids = []
|
||||||
|
|
||||||
|
lexicon = read_lexicon(filename)
|
||||||
|
lexicon = dict(lexicon)
|
||||||
|
|
||||||
|
for i in range(disambig_id):
|
||||||
|
w = self.word_table[i]
|
||||||
|
if w in excluded_words:
|
||||||
|
row_splits.append(row_splits[-1])
|
||||||
|
continue
|
||||||
|
pieces = lexicon[w]
|
||||||
|
piece_ids = [self.token_table[k] for k in pieces]
|
||||||
|
|
||||||
|
row_splits.append(row_splits[-1] + len(piece_ids))
|
||||||
|
token_ids.extend(piece_ids)
|
||||||
|
|
||||||
|
cached_tot_size = row_splits[-1]
|
||||||
|
row_splits = torch.tensor(row_splits, dtype=torch.int32)
|
||||||
|
|
||||||
|
shape = k2.ragged.create_ragged_shape2(
|
||||||
|
row_splits=row_splits, cached_tot_size=cached_tot_size
|
||||||
|
)
|
||||||
|
values = torch.tensor(token_ids, dtype=torch.int32)
|
||||||
|
|
||||||
|
return k2.RaggedInt(shape, values)
|
||||||
|
|
||||||
|
def words_to_piece_ids(self, words: List[str]) -> k2.RaggedInt:
|
||||||
|
"""Convert a list of words to a ragged tensor contained
|
||||||
|
word piece IDs.
|
||||||
|
"""
|
||||||
|
word_ids = [self.word_table[w] for w in words]
|
||||||
|
word_ids = torch.tensor(word_ids, dtype=torch.int32)
|
||||||
|
|
||||||
|
ragged, _ = k2.ragged.index(
|
||||||
|
self.ragged_lexicon,
|
||||||
|
indexes=word_ids,
|
||||||
|
need_value_indexes=False,
|
||||||
|
axis=0,
|
||||||
|
)
|
||||||
|
return ragged
|
||||||
|
25
test/test_bpe_graph_compiler.py
Executable file
25
test/test_bpe_graph_compiler.py
Executable file
@ -0,0 +1,25 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||||
|
|
||||||
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||||
|
from icefall.lexicon import BpeLexicon
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
|
||||||
|
def test():
|
||||||
|
lang_dir = Path("data/lang/bpe")
|
||||||
|
if not lang_dir.is_dir():
|
||||||
|
return
|
||||||
|
# TODO: generate data for testing
|
||||||
|
|
||||||
|
compiler = BpeCtcTrainingGraphCompiler(lang_dir)
|
||||||
|
ids = compiler.texts_to_ids(["HELLO", "WORLD ZZZ"])
|
||||||
|
fsa = compiler.compile(ids)
|
||||||
|
|
||||||
|
lexicon = BpeLexicon(lang_dir)
|
||||||
|
ids0 = lexicon.words_to_piece_ids(["HELLO"])
|
||||||
|
assert ids[0] == ids0.values().tolist()
|
||||||
|
|
||||||
|
ids1 = lexicon.words_to_piece_ids(["WORLD", "ZZZ"])
|
||||||
|
assert ids[1] == ids1.values().tolist()
|
@ -41,7 +41,8 @@ def test_load_checkpoints(checkpoints1):
|
|||||||
m.p2 = nn.Parameter(torch.Tensor([0, 0]))
|
m.p2 = nn.Parameter(torch.Tensor([0, 0]))
|
||||||
params = load_checkpoint(checkpoints1, m)
|
params = load_checkpoint(checkpoints1, m)
|
||||||
assert torch.allclose(m.p1, torch.Tensor([10.0, 20]))
|
assert torch.allclose(m.p1, torch.Tensor([10.0, 20]))
|
||||||
assert params == {"a": 10, "b": 20}
|
assert params["a"] == 10
|
||||||
|
assert params["b"] == 20
|
||||||
|
|
||||||
|
|
||||||
def test_average_checkpoints(checkpoints1, checkpoints2):
|
def test_average_checkpoints(checkpoints1, checkpoints2):
|
||||||
|
@ -81,8 +81,8 @@ def lexicon():
|
|||||||
"""
|
"""
|
||||||
)
|
)
|
||||||
ans = Lexicon.__new__(Lexicon)
|
ans = Lexicon.__new__(Lexicon)
|
||||||
ans.phones = L.labels_sym
|
ans.token_table = L.labels_sym
|
||||||
ans.words = L.aux_labels_sym
|
ans.word_table = L.aux_labels_sym
|
||||||
ans.L_inv = k2.arc_sort(L.invert_())
|
ans.L_inv = k2.arc_sort(L.invert_())
|
||||||
ans.disambig_pattern = re.compile(r"^#\d+$")
|
ans.disambig_pattern = re.compile(r"^#\d+$")
|
||||||
|
|
||||||
@ -107,11 +107,11 @@ class TestCtcTrainingGraphCompiler(object):
|
|||||||
aux_labels1 = fsa[1].aux_labels[:-1]
|
aux_labels1 = fsa[1].aux_labels[:-1]
|
||||||
aux_labels1 = aux_labels1[aux_labels1 != 0].tolist()
|
aux_labels1 = aux_labels1[aux_labels1 != 0].tolist()
|
||||||
|
|
||||||
labels0 = [lexicon.phones[i] for i in labels0]
|
labels0 = [lexicon.token_table[i] for i in labels0]
|
||||||
labels1 = [lexicon.phones[i] for i in labels1]
|
labels1 = [lexicon.token_table[i] for i in labels1]
|
||||||
|
|
||||||
aux_labels0 = [lexicon.words[i] for i in aux_labels0]
|
aux_labels0 = [lexicon.word_table[i] for i in aux_labels0]
|
||||||
aux_labels1 = [lexicon.words[i] for i in aux_labels1]
|
aux_labels1 = [lexicon.word_table[i] for i in aux_labels1]
|
||||||
|
|
||||||
assert labels0 == ["b", "a", "r", "f", "o", "o"]
|
assert labels0 == ["b", "a", "r", "f", "o", "o"]
|
||||||
assert aux_labels0 == ["bar", "foo"]
|
assert aux_labels0 == ["bar", "foo"]
|
||||||
@ -129,11 +129,11 @@ class TestCtcTrainingGraphCompiler(object):
|
|||||||
input2 = ["b", "b", "a", "a", "a", "<blk>", "<blk>", "z", "z"]
|
input2 = ["b", "b", "a", "a", "a", "<blk>", "<blk>", "z", "z"]
|
||||||
input2 += ["<blk>", "<blk>", "SPN", "SPN", "<blk>", "<blk>"]
|
input2 += ["<blk>", "<blk>", "SPN", "SPN", "<blk>", "<blk>"]
|
||||||
|
|
||||||
lexicon.phones._id2sym[0] == "<blk>"
|
lexicon.token_table._id2sym[0] == "<blk>"
|
||||||
lexicon.phones._sym2id["<blk>"] = 0
|
lexicon.token_table._sym2id["<blk>"] = 0
|
||||||
|
|
||||||
input1 = [lexicon.phones[i] for i in input1]
|
input1 = [lexicon.token_table[i] for i in input1]
|
||||||
input2 = [lexicon.phones[i] for i in input2]
|
input2 = [lexicon.token_table[i] for i in input2]
|
||||||
|
|
||||||
fsa1 = k2.linear_fsa(input1)
|
fsa1 = k2.linear_fsa(input1)
|
||||||
fsa2 = k2.linear_fsa(input2)
|
fsa2 = k2.linear_fsa(input2)
|
||||||
@ -147,14 +147,14 @@ class TestCtcTrainingGraphCompiler(object):
|
|||||||
|
|
||||||
aux_labels0 = lattice[0].aux_labels[:-1]
|
aux_labels0 = lattice[0].aux_labels[:-1]
|
||||||
aux_labels0 = aux_labels0[aux_labels0 != 0].tolist()
|
aux_labels0 = aux_labels0[aux_labels0 != 0].tolist()
|
||||||
aux_labels0 = [lexicon.words[i] for i in aux_labels0]
|
aux_labels0 = [lexicon.word_table[i] for i in aux_labels0]
|
||||||
assert aux_labels0 == ["bar", "foo"]
|
assert aux_labels0 == ["bar", "foo"]
|
||||||
|
|
||||||
aux_labels1 = lattice[1].aux_labels[:-1]
|
aux_labels1 = lattice[1].aux_labels[:-1]
|
||||||
aux_labels1 = aux_labels1[aux_labels1 != 0].tolist()
|
aux_labels1 = aux_labels1[aux_labels1 != 0].tolist()
|
||||||
aux_labels1 = [lexicon.words[i] for i in aux_labels1]
|
aux_labels1 = [lexicon.word_table[i] for i in aux_labels1]
|
||||||
assert aux_labels1 == ["baz", "<UNK>"]
|
assert aux_labels1 == ["baz", "<UNK>"]
|
||||||
|
|
||||||
texts = get_texts(lattice)
|
texts = get_texts(lattice)
|
||||||
texts = [[lexicon.words[i] for i in words] for words in texts]
|
texts = [[lexicon.word_table[i] for i in words] for words in texts]
|
||||||
assert texts == [["bar", "foo"], ["baz", "<UNK>"]]
|
assert texts == [["bar", "foo"], ["baz", "<UNK>"]]
|
||||||
|
@ -1,10 +1,12 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
import k2
|
import k2
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import BpeLexicon, Lexicon
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
@ -47,7 +49,7 @@ def lang_dir(tmp_path):
|
|||||||
num_aux_labels=1,
|
num_aux_labels=1,
|
||||||
)
|
)
|
||||||
|
|
||||||
with open(tmp_path / "phones.txt", "w") as f:
|
with open(tmp_path / "tokens.txt", "w") as f:
|
||||||
f.write(phone2id)
|
f.write(phone2id)
|
||||||
with open(tmp_path / "words.txt", "w") as f:
|
with open(tmp_path / "words.txt", "w") as f:
|
||||||
f.write(word2id)
|
f.write(word2id)
|
||||||
@ -60,3 +62,16 @@ def lang_dir(tmp_path):
|
|||||||
def test_lexicon(lang_dir):
|
def test_lexicon(lang_dir):
|
||||||
lexicon = Lexicon(lang_dir)
|
lexicon = Lexicon(lang_dir)
|
||||||
assert lexicon.tokens == list(range(1, 8))
|
assert lexicon.tokens == list(range(1, 8))
|
||||||
|
|
||||||
|
|
||||||
|
def test_bpe_lexicon():
|
||||||
|
lang_dir = Path("data/lang/bpe")
|
||||||
|
if not lang_dir.is_dir():
|
||||||
|
return
|
||||||
|
# TODO: Generate test data for BpeLexicon
|
||||||
|
|
||||||
|
lexicon = BpeLexicon(lang_dir)
|
||||||
|
words = ["<UNK>", "HELLO", "ZZZZ", "WORLD"]
|
||||||
|
ids = lexicon.words_to_piece_ids(words)
|
||||||
|
print(ids)
|
||||||
|
print([lexicon.token_table[i] for i in ids.values().tolist()])
|
||||||
|
Loading…
x
Reference in New Issue
Block a user