Add documentation about how to deploy a trained model.

This commit is contained in:
Fangjun Kuang 2021-10-12 14:42:28 +08:00
parent 26d0df55de
commit 9d3775f721
3 changed files with 146 additions and 13 deletions

View File

@ -55,7 +55,22 @@ The WER for this model is:
We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing)
## Deployment with C++
Once you have trained a model in icefall, you may want to deploy it with C++,
without Python dependencies.
Please refer to the documentation
<https://icefall.readthedocs.io/en/latest/recipes/librispeech/conformer_ctc.html#deployment-with-c>
for how to do this.
We also provide a Colab notebook, showing you how to run a torch scripted model in [k2][k2] with C++.
Please see: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1BIGLWzS36isskMXHKcqC9ysN6pspYXs_?usp=sharing)
[LibriSpeech_tdnn_lstm_ctc]: egs/librispeech/ASR/tdnn_lstm_ctc
[LibriSpeech_conformer_ctc]: egs/librispeech/ASR/conformer_ctc
[yesno]: egs/yesno/ASR
[librispeech]: egs/librispeech/ASR
[k2]: https://github.com/k2-fsa/k2

View File

@ -20,6 +20,7 @@ In this tutorial, you will learn:
- (2) How to start the training, either with a single GPU or multiple GPUs
- (3) How to do decoding after training, with n-gram LM rescoring and attention decoder rescoring
- (4) How to use a pre-trained model, provided by us
- (5) How to deploy your trained model in C++, without Python dependencies
Data preparation
----------------
@ -292,12 +293,12 @@ The commonly used options are:
- ``--method``
This specifies the decoding method. This script supports 7 decoding methods.
As for ctc decoding, it uses a sentence piece model to convert word pieces to words.
This specifies the decoding method. This script supports 7 decoding methods.
As for ctc decoding, it uses a sentence piece model to convert word pieces to words.
And it needs neither a lexicon nor an n-gram LM.
For example, the following command uses CTC topology for decoding:
.. code-block::
$ cd egs/librispeech/ASR
@ -334,20 +335,20 @@ Usage:
--exp-dir conformer_ctc/exp \
--lang-dir data/lang_bpe_500 \
--method ctc-decoding
The output is given below:
.. code-block:: bash
2021-09-26 12:44:31,033 INFO [decode.py:537] Decoding started
2021-09-26 12:44:31,033 INFO [decode.py:538]
{'lm_dir': PosixPath('data/lm'), 'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True,
2021-09-26 12:44:31,033 INFO [decode.py:538]
{'lm_dir': PosixPath('data/lm'), 'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True,
'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_beam': 8,
'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True,
'epoch': 25, 'avg': 1, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5,
'export': False, 'exp_dir': PosixPath('conformer_ctc/exp'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'full_libri': False,
'feature_dir': PosixPath('data/fbank'), 'max_duration': 100, 'bucketing_sampler': False, 'num_buckets': 30,
'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False,
'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True,
'epoch': 25, 'avg': 1, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5,
'export': False, 'exp_dir': PosixPath('conformer_ctc/exp'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'full_libri': False,
'feature_dir': PosixPath('data/fbank'), 'max_duration': 100, 'bucketing_sampler': False, 'num_buckets': 30,
'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False,
'shuffle': True, 'return_cuts': True, 'num_workers': 2}
2021-09-26 12:44:31,406 INFO [lexicon.py:113] Loading pre-compiled data/lang_bpe_500/Linv.pt
2021-09-26 12:44:31,464 INFO [decode.py:548] device: cuda:0
@ -373,7 +374,7 @@ The output is given below:
For test-other, WER of different settings are:
ctc-decoding 8.21 best for test-other
2021-09-26 12:47:16,433 INFO [decode.py:680] Done!
2021-09-26 12:47:16,433 INFO [decode.py:680] Done!
Pre-trained Model
-----------------
@ -693,3 +694,119 @@ We do provide a colab notebook for this recipe showing how to use a pre-trained
**Congratulations!** You have finished the librispeech ASR recipe with
conformer CTC models in ``icefall``.
If you want to deploy your trained model in C++, please read the following section.
Deployment with C++
-------------------
This section describes how to deploy your trained model in C++, without
Python dependencies.
We assume you have run ``./prepare.sh`` and have the following directories available:
.. code-block:: bash
data
|-- lang_bpe
Also, we assume your checkpoints are saved in ``conformer_ctc/exp``.
If you know that averaging 20 checkpoints starting from ``epoch-30.pt`` yields the
lowest WER, you can run the following commands
.. code-block::
$ cd egs/librispeech/ASR
$ ./conformer_ctc/export.py \
--epoch 30 \
--avg 20 \
--jit 1 \
--lang-dir data/lang_bpe \
--exp-dir conformer_ctc/exp
to get a torch scripted model saved in ``conformer_ctc/exp/cpu_jit.pt``.
Now you have all needed files ready. Let us compile k2 from source:
.. code-block:: bash
$ cd $HOME
$ git clone https://github.com/k2-fsa/k2
$ cd k2
$ git checkout v2.0-pre
.. CAUTION::
You have to switch to the branch ``v2.0-pre``!
.. code-block:: bash
$ mkdir build-release
$ cd build-release
$ cmake -DCMAKE_BUILD_TYPE=Release ..
$ make -j decode
# You will find an executable: `./bin/decode`
Now you are ready to go!
To view the usage of ``./bin/decode``, run:
.. code-block::
$ ./bin/decode
It will show you the following message:
.. code-block::
Please provide --jit_pt
(1) CTC decoding
./bin/decode \
--use_ctc_decoding true \
--jit_pt <path to exported torch script pt file> \
--bpe_model <path to pretrained BPE model> \
/path/to/foo.wav \
/path/to/bar.wav \
<more wave files if any>
(2) HLG decoding
./bin/decode \
--use_ctc_decoding false \
--jit_pt <path to exported torch script pt file> \
--hlg <path to HLG.pt> \
--word-table <path to words.txt> \
/path/to/foo.wav \
/path/to/bar.wav \
<more wave files if any>
--use_gpu false to use CPU
--use_gpu true to use GPU
``./bin/decode`` supports two types of decoding at present: CTC decoding and HLG decoding.
CTC decoding
^^^^^^^^^^^^
You need to provide:
- ``--jit_pt``, this is the file generated by ``conformer_ctc/export.py``. You can find it
in ``conformer_ctc/exp/cpu_jit.pt``.
- ``--bpe_model``, this is a sentence piece model generated by ``prepare.sh``. You can find
it in ``data/lang_bpe/bpe.model``.
HLG decoding
^^^^^^^^^^^^
You need to provide:
- ``--jit_pt``, this is the same file as in CTC decoding.
- ``--hlg``, this file is generated by ``prepare.sh``. You can find it in ``data/lang_bpe/HLG.pt``.
- ``--word-table``, this file is generated by ``prepare.sh``. You can find it in ``data/lang_bpe/words.txt``.
We do provide a Colab notebook, showing you how to run a torch scripted model in C++.
Please see |librispeech asr conformer ctc torch script colab notebook|
.. |librispeech asr conformer ctc torch script colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
:target: https://colab.research.google.com/drive/1BIGLWzS36isskMXHKcqC9ysN6pspYXs_?usp=sharing

View File

@ -41,6 +41,7 @@ dl_dir=$PWD/download
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
5000
500
)
# All files generated by this script are saved in "data".