Merge remote-tracking branch 'dan/master' into jit

This commit is contained in:
Fangjun Kuang 2021-10-12 11:05:39 +08:00
commit 26d0df55de
14 changed files with 256 additions and 79 deletions

1
.gitignore vendored
View File

@ -1,3 +1,4 @@
icefall.egg-info/
data
__pycache__
path.sh

View File

@ -292,16 +292,25 @@ The commonly used options are:
- ``--method``
This specifies the decoding method.
This specifies the decoding method. This script supports 7 decoding methods.
As for ctc decoding, it uses a sentence piece model to convert word pieces to words.
And it needs neither a lexicon nor an n-gram LM.
For example, the following command uses CTC topology for decoding:
.. code-block::
The following command uses attention decoder for rescoring:
$ cd egs/librispeech/ASR
$ ./conformer_ctc/decode.py --method ctc-decoding --max-duration 300
And the following command uses attention decoder for rescoring:
.. code-block::
$ cd egs/librispeech/ASR
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --lattice-score-scale 0.5
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --nbest-scale 0.5
- ``--lattice-score-scale``
- ``--nbest-scale``
It is used to scale down lattice scores so that there are more unique
paths for rescoring.
@ -311,6 +320,61 @@ The commonly used options are:
It has the same meaning as the one during training. A larger
value may cause OOM.
Here are some results for CTC decoding with a vocab size of 500:
Usage:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./conformer_ctc/decode.py \
--epoch 25 \
--avg 1 \
--max-duration 300 \
--exp-dir conformer_ctc/exp \
--lang-dir data/lang_bpe_500 \
--method ctc-decoding
The output is given below:
.. code-block:: bash
2021-09-26 12:44:31,033 INFO [decode.py:537] Decoding started
2021-09-26 12:44:31,033 INFO [decode.py:538]
{'lm_dir': PosixPath('data/lm'), 'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True,
'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_beam': 8,
'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True,
'epoch': 25, 'avg': 1, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5,
'export': False, 'exp_dir': PosixPath('conformer_ctc/exp'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'full_libri': False,
'feature_dir': PosixPath('data/fbank'), 'max_duration': 100, 'bucketing_sampler': False, 'num_buckets': 30,
'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False,
'shuffle': True, 'return_cuts': True, 'num_workers': 2}
2021-09-26 12:44:31,406 INFO [lexicon.py:113] Loading pre-compiled data/lang_bpe_500/Linv.pt
2021-09-26 12:44:31,464 INFO [decode.py:548] device: cuda:0
2021-09-26 12:44:36,171 INFO [checkpoint.py:92] Loading checkpoint from conformer_ctc/exp/epoch-25.pt
2021-09-26 12:44:36,776 INFO [decode.py:652] Number of model parameters: 109226120
2021-09-26 12:44:37,714 INFO [decode.py:473] batch 0/206, cuts processed until now is 12
2021-09-26 12:45:15,944 INFO [decode.py:473] batch 100/206, cuts processed until now is 1328
2021-09-26 12:45:54,443 INFO [decode.py:473] batch 200/206, cuts processed until now is 2563
2021-09-26 12:45:56,411 INFO [decode.py:494] The transcripts are stored in conformer_ctc/exp/recogs-test-clean-ctc-decoding.txt
2021-09-26 12:45:56,592 INFO [utils.py:331] [test-clean-ctc-decoding] %WER 3.26% [1715 / 52576, 163 ins, 128 del, 1424 sub ]
2021-09-26 12:45:56,807 INFO [decode.py:506] Wrote detailed error stats to conformer_ctc/exp/errs-test-clean-ctc-decoding.txt
2021-09-26 12:45:56,808 INFO [decode.py:522]
For test-clean, WER of different settings are:
ctc-decoding 3.26 best for test-clean
2021-09-26 12:45:57,362 INFO [decode.py:473] batch 0/203, cuts processed until now is 15
2021-09-26 12:46:35,565 INFO [decode.py:473] batch 100/203, cuts processed until now is 1477
2021-09-26 12:47:15,106 INFO [decode.py:473] batch 200/203, cuts processed until now is 2922
2021-09-26 12:47:16,131 INFO [decode.py:494] The transcripts are stored in conformer_ctc/exp/recogs-test-other-ctc-decoding.txt
2021-09-26 12:47:16,208 INFO [utils.py:331] [test-other-ctc-decoding] %WER 8.21% [4295 / 52343, 396 ins, 315 del, 3584 sub ]
2021-09-26 12:47:16,432 INFO [decode.py:506] Wrote detailed error stats to conformer_ctc/exp/errs-test-other-ctc-decoding.txt
2021-09-26 12:47:16,432 INFO [decode.py:522]
For test-other, WER of different settings are:
ctc-decoding 8.21 best for test-other
2021-09-26 12:47:16,433 INFO [decode.py:680] Done!
Pre-trained Model
-----------------
@ -577,7 +641,7 @@ The command to run HLG decoding + LM rescoring + attention decoder rescoring is:
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
--ngram-lm-scale 1.3 \
--attention-decoder-scale 1.2 \
--lattice-score-scale 0.5 \
--nbest-scale 0.5 \
--num-paths 100 \
--sos-id 1 \
--eos-id 1 \

View File

@ -40,7 +40,7 @@ python conformer_ctc/train.py --bucketing-sampler True \
--full-libri True \
--world-size 4
python conformer_ctc/decode.py --lattice-score-scale 0.5 \
python conformer_ctc/decode.py --nbest-scale 0.5 \
--epoch 34 \
--avg 20 \
--method attention-decoder \

View File

@ -23,6 +23,7 @@ from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
@ -77,6 +78,9 @@ def get_parser():
default="attention-decoder",
help="""Decoding method.
Supported values are:
- (0) ctc-decoding. Use CTC decoding. It uses a sentence piece
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
It needs neither a lexicon nor an n-gram LM.
- (1) 1best. Extract the best path from the decoding lattice as the
decoding result.
- (2) nbest. Extract n paths from the decoding lattice; the path
@ -106,7 +110,7 @@ def get_parser():
)
parser.add_argument(
"--lattice-score-scale",
"--nbest-scale",
type=float,
default=0.5,
help="""The scale to be applied to `lattice.scores`.
@ -128,14 +132,26 @@ def get_parser():
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="conformer_ctc/exp",
help="The experiment dir",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_bpe",
help="The lang dir",
)
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
"exp_dir": Path("conformer_ctc/exp"),
"lang_dir": Path("data/lang_bpe"),
"lm_dir": Path("data/lm"),
# parameters for conformer
"subsampling_factor": 4,
@ -159,13 +175,15 @@ def get_params() -> AttributeDict:
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
HLG: k2.Fsa,
HLG: Optional[k2.Fsa],
H: Optional[k2.Fsa],
bpe_model: Optional[spm.SentencePieceProcessor],
batch: dict,
word_table: k2.SymbolTable,
sos_id: int,
eos_id: int,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[int]]]:
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
@ -190,7 +208,11 @@ def decode_one_batch(
model:
The neural model.
HLG:
The decoding graph.
The decoding graph. Used only when params.method is NOT ctc-decoding.
H:
The ctc topo. Used only when params.method is ctc-decoding.
bpe_model:
The BPE model. Used only when params.method is ctc-decoding.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
@ -209,7 +231,10 @@ def decode_one_batch(
Return the decoding result. See above description for the format of
the returned dict.
"""
device = HLG.device
if HLG is not None:
device = HLG.device
else:
device = H.device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
@ -229,9 +254,17 @@ def decode_one_batch(
1,
).to(torch.int32)
if H is None:
assert HLG is not None
decoding_graph = HLG
else:
assert HLG is None
assert bpe_model is not None
decoding_graph = H
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=decoding_graph,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
@ -240,6 +273,24 @@ def decode_one_batch(
subsampling_factor=params.subsampling_factor,
)
if params.method == "ctc-decoding":
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
# Note: `best_path.aux_labels` contains token IDs, not word IDs
# since we are using H, not HLG here.
#
# token_ids is a lit-of-list of IDs
token_ids = get_texts(best_path)
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
hyps = bpe_model.decode(token_ids)
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
hyps = [s.split() for s in hyps]
key = "ctc-decoding"
return {key: hyps}
if params.method == "nbest-oracle":
# Note: You can also pass rescored lattices to it.
# We choose the HLG decoded lattice for speed reasons
@ -250,12 +301,12 @@ def decode_one_batch(
num_paths=params.num_paths,
ref_texts=supervisions["text"],
word_table=word_table,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
oov="<UNK>",
)
hyps = get_texts(best_path)
hyps = [[word_table[i] for i in ids] for ids in hyps]
key = f"oracle_{params.num_paths}_lattice_score_scale_{params.lattice_score_scale}" # noqa
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
return {key: hyps}
if params.method in ["1best", "nbest"]:
@ -269,9 +320,9 @@ def decode_one_batch(
lattice=lattice,
num_paths=params.num_paths,
use_double_scores=params.use_double_scores,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
)
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
hyps = get_texts(best_path)
hyps = [[word_table[i] for i in ids] for ids in hyps]
@ -293,7 +344,7 @@ def decode_one_batch(
G=G,
num_paths=params.num_paths,
lm_scale_list=lm_scale_list,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
)
elif params.method == "whole-lattice-rescoring":
best_path_dict = rescore_with_whole_lattice(
@ -319,7 +370,7 @@ def decode_one_batch(
memory_key_padding_mask=memory_key_padding_mask,
sos_id=sos_id,
eos_id=eos_id,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
)
else:
assert False, f"Unsupported decoding method: {params.method}"
@ -340,12 +391,14 @@ def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
HLG: k2.Fsa,
HLG: Optional[k2.Fsa],
H: Optional[k2.Fsa],
bpe_model: Optional[spm.SentencePieceProcessor],
word_table: k2.SymbolTable,
sos_id: int,
eos_id: int,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
@ -356,7 +409,11 @@ def decode_dataset(
model:
The neural model.
HLG:
The decoding graph.
The decoding graph. Used only when params.method is NOT ctc-decoding.
H:
The ctc topo. Used only when params.method is ctc-decoding.
bpe_model:
The BPE model. Used only when params.method is ctc-decoding.
word_table:
It is the word symbol table.
sos_id:
@ -391,6 +448,8 @@ def decode_dataset(
params=params,
model=model,
HLG=HLG,
H=H,
bpe_model=bpe_model,
batch=batch,
word_table=word_table,
G=G,
@ -469,6 +528,8 @@ def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
args.lang_dir = Path(args.lang_dir)
params = get_params()
params.update(vars(args))
@ -496,14 +557,26 @@ def main():
sos_id = graph_compiler.sos_id
eos_id = graph_compiler.eos_id
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
)
HLG = HLG.to(device)
assert HLG.requires_grad is False
if params.method == "ctc-decoding":
HLG = None
H = k2.ctc_topo(
max_token=max_token_id,
modified=False,
device=device,
)
bpe_model = spm.SentencePieceProcessor()
bpe_model.load(str(params.lang_dir / "bpe.model"))
else:
H = None
bpe_model = None
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
)
HLG = HLG.to(device)
assert HLG.requires_grad is False
if not hasattr(HLG, "lm_scores"):
HLG.lm_scores = HLG.scores.clone()
if not hasattr(HLG, "lm_scores"):
HLG.lm_scores = HLG.scores.clone()
if params.method in (
"nbest-rescoring",
@ -593,6 +666,8 @@ def main():
params=params,
model=model,
HLG=HLG,
H=H,
bpe_model=bpe_model,
word_table=lexicon.word_table,
G=G,
sos_id=sos_id,

View File

@ -125,7 +125,7 @@ def get_parser():
)
parser.add_argument(
"--lattice-score-scale",
"--nbest-scale",
type=float,
default=0.5,
help="""
@ -301,7 +301,7 @@ def main():
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
@ -336,7 +336,7 @@ def main():
memory_key_padding_mask=memory_key_padding_mask,
sos_id=params.sos_id,
eos_id=params.eos_id,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
ngram_lm_scale=params.ngram_lm_scale,
attention_scale=params.attention_decoder_scale,
)

View File

@ -21,6 +21,10 @@ from functools import lru_cache
from pathlib import Path
from typing import List, Union
from torch.utils.data import DataLoader
from icefall.dataset.datamodule import DataModule
from icefall.utils import str2bool
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
from lhotse.dataset import (
BucketingSampler,
@ -32,10 +36,6 @@ from lhotse.dataset import (
SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
from torch.utils.data import DataLoader
from icefall.dataset.datamodule import DataModule
from icefall.utils import str2bool
class LibriSpeechAsrDataModule(DataModule):
@ -267,7 +267,7 @@ class LibriSpeechAsrDataModule(DataModule):
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
)
valid_sampler = SingleCutSampler(
valid_sampler = BucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
@ -300,12 +300,15 @@ class LibriSpeechAsrDataModule(DataModule):
else PrecomputedFeatures(),
return_cuts=self.args.return_cuts,
)
sampler = SingleCutSampler(
cuts_test, max_duration=self.args.max_duration
sampler = BucketingSampler(
cuts_test, max_duration=self.args.max_duration, shuffle=False
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test, batch_size=None, sampler=sampler, num_workers=1
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
test_loaders.append(test_dl)

View File

@ -97,7 +97,7 @@ def get_parser():
)
parser.add_argument(
"--lattice-score-scale",
"--nbest-scale",
type=float,
default=0.5,
help="""The scale to be applied to `lattice.scores`.
@ -146,7 +146,7 @@ def decode_one_batch(
batch: dict,
lexicon: Lexicon,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[int]]]:
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
@ -210,7 +210,7 @@ def decode_one_batch(
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
@ -229,7 +229,7 @@ def decode_one_batch(
lattice=lattice,
num_paths=params.num_paths,
use_double_scores=params.use_double_scores,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
)
key = f"no_rescore-{params.num_paths}"
hyps = get_texts(best_path)
@ -248,7 +248,7 @@ def decode_one_batch(
G=G,
num_paths=params.num_paths,
lm_scale_list=lm_scale_list,
lattice_score_scale=params.lattice_score_scale,
nbest_scale=params.nbest_scale,
)
else:
best_path_dict = rescore_with_whole_lattice(
@ -272,7 +272,7 @@ def decode_dataset(
HLG: k2.Fsa,
lexicon: Lexicon,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:

View File

@ -232,7 +232,7 @@ def main():
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,

View File

@ -20,19 +20,18 @@ from functools import lru_cache
from pathlib import Path
from typing import List
from torch.utils.data import DataLoader
from icefall.dataset.datamodule import DataModule
from icefall.utils import str2bool
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
from lhotse.dataset import (
BucketingSampler,
CutConcatenate,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
from torch.utils.data import DataLoader
from icefall.dataset.datamodule import DataModule
from icefall.utils import str2bool
class YesNoAsrDataModule(DataModule):
@ -198,7 +197,7 @@ class YesNoAsrDataModule(DataModule):
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
train_sampler = BucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
@ -226,12 +225,15 @@ class YesNoAsrDataModule(DataModule):
else PrecomputedFeatures(),
return_cuts=self.args.return_cuts,
)
sampler = SingleCutSampler(
cuts_test, max_duration=self.args.max_duration
sampler = BucketingSampler(
cuts_test, max_duration=self.args.max_duration, shuffle=False
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test, batch_size=None, sampler=sampler, num_workers=1
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
return test_dl

View File

@ -124,7 +124,7 @@ def decode_one_batch(
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,

View File

@ -175,7 +175,7 @@ def main():
lattice = get_lattice(
nnet_output=nnet_output,
HLG=HLG,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,

View File

@ -66,7 +66,7 @@ def _intersect_device(
def get_lattice(
nnet_output: torch.Tensor,
HLG: k2.Fsa,
decoding_graph: k2.Fsa,
supervision_segments: torch.Tensor,
search_beam: float,
output_beam: float,
@ -79,8 +79,9 @@ def get_lattice(
Args:
nnet_output:
It is the output of a neural model of shape `(N, T, C)`.
HLG:
An Fsa, the decoding graph. See also `compile_HLG.py`.
decoding_graph:
An Fsa, the decoding graph. It can be either an HLG
(see `compile_HLG.py`) or an H (see `k2.ctc_topo`).
supervision_segments:
A 2-D **CPU** tensor of dtype `torch.int32` with 3 columns.
Each row contains information for a supervision segment. Column 0
@ -117,7 +118,7 @@ def get_lattice(
)
lattice = k2.intersect_dense_pruned(
HLG,
decoding_graph,
dense_fsa_vec,
search_beam=search_beam,
output_beam=output_beam,
@ -180,7 +181,7 @@ class Nbest(object):
lattice: k2.Fsa,
num_paths: int,
use_double_scores: bool = True,
lattice_score_scale: float = 0.5,
nbest_scale: float = 0.5,
) -> "Nbest":
"""Construct an Nbest object by **sampling** `num_paths` from a lattice.
@ -206,7 +207,7 @@ class Nbest(object):
Return an Nbest instance.
"""
saved_scores = lattice.scores.clone()
lattice.scores *= lattice_score_scale
lattice.scores *= nbest_scale
# path is a ragged tensor with dtype torch.int32.
# It has three axes [utt][path][arc_pos]
path = k2.random_paths(
@ -446,7 +447,7 @@ def nbest_decoding(
lattice: k2.Fsa,
num_paths: int,
use_double_scores: bool = True,
lattice_score_scale: float = 1.0,
nbest_scale: float = 1.0,
) -> k2.Fsa:
"""It implements something like CTC prefix beam search using n-best lists.
@ -474,7 +475,7 @@ def nbest_decoding(
use_double_scores:
True to use double precision floating point in the computation.
False to use single precision.
lattice_score_scale:
nbest_scale:
It's the scale applied to the `lattice.scores`. A smaller value
leads to more unique paths at the risk of missing the correct path.
Returns:
@ -484,7 +485,7 @@ def nbest_decoding(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
lattice_score_scale=lattice_score_scale,
nbest_scale=nbest_scale,
)
# nbest.fsa.scores contains 0s
@ -505,7 +506,7 @@ def nbest_oracle(
ref_texts: List[str],
word_table: k2.SymbolTable,
use_double_scores: bool = True,
lattice_score_scale: float = 0.5,
nbest_scale: float = 0.5,
oov: str = "<UNK>",
) -> Dict[str, List[List[int]]]:
"""Select the best hypothesis given a lattice and a reference transcript.
@ -517,7 +518,7 @@ def nbest_oracle(
The decoding result returned from this function is the best result that
we can obtain using n-best decoding with all kinds of rescoring techniques.
This function is useful to tune the value of `lattice_score_scale`.
This function is useful to tune the value of `nbest_scale`.
Args:
lattice:
@ -533,7 +534,7 @@ def nbest_oracle(
use_double_scores:
True to use double precision for computation. False to use
single precision.
lattice_score_scale:
nbest_scale:
It's the scale applied to the lattice.scores. A smaller value
yields more unique paths.
oov:
@ -549,7 +550,7 @@ def nbest_oracle(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
lattice_score_scale=lattice_score_scale,
nbest_scale=nbest_scale,
)
hyps = nbest.build_levenshtein_graphs()
@ -590,7 +591,7 @@ def rescore_with_n_best_list(
G: k2.Fsa,
num_paths: int,
lm_scale_list: List[float],
lattice_score_scale: float = 1.0,
nbest_scale: float = 1.0,
use_double_scores: bool = True,
) -> Dict[str, k2.Fsa]:
"""Rescore an n-best list with an n-gram LM.
@ -607,7 +608,7 @@ def rescore_with_n_best_list(
Size of nbest list.
lm_scale_list:
A list of float representing LM score scales.
lattice_score_scale:
nbest_scale:
Scale to be applied to ``lattice.score`` when sampling paths
using ``k2.random_paths``.
use_double_scores:
@ -631,7 +632,7 @@ def rescore_with_n_best_list(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
lattice_score_scale=lattice_score_scale,
nbest_scale=nbest_scale,
)
# nbest.fsa.scores are all 0s at this point
@ -769,7 +770,7 @@ def rescore_with_attention_decoder(
memory_key_padding_mask: Optional[torch.Tensor],
sos_id: int,
eos_id: int,
lattice_score_scale: float = 1.0,
nbest_scale: float = 1.0,
ngram_lm_scale: Optional[float] = None,
attention_scale: Optional[float] = None,
use_double_scores: bool = True,
@ -796,7 +797,7 @@ def rescore_with_attention_decoder(
The token ID for SOS.
eos_id:
The token ID for EOS.
lattice_score_scale:
nbest_scale:
It's the scale applied to `lattice.scores`. A smaller value
leads to more unique paths at the risk of missing the correct path.
ngram_lm_scale:
@ -812,7 +813,7 @@ def rescore_with_attention_decoder(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
lattice_score_scale=lattice_score_scale,
nbest_scale=nbest_scale,
)
# nbest.fsa.scores are all 0s at this point

31
setup.py Normal file
View File

@ -0,0 +1,31 @@
#!/usr/bin/env python3
from setuptools import find_packages, setup
from pathlib import Path
icefall_dir = Path(__file__).parent
install_requires = (icefall_dir / "requirements.txt").read_text().splitlines()
setup(
name="icefall",
version="1.0",
python_requires=">=3.6.0",
description="Speech processing recipes using k2 and Lhotse.",
author="The k2 and Lhotse Development Team",
license="Apache-2.0 License",
packages=find_packages(),
install_requires=install_requires,
classifiers=[
"Development Status :: 3 - Alpha",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Intended Audience :: Science/Research",
"Operating System :: POSIX :: Linux",
"License :: OSI Approved :: Apache Software License",
"Topic :: Multimedia :: Sound/Audio :: Speech",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries :: Python Modules",
"Typing :: Typed",
],
)

View File

@ -43,7 +43,7 @@ def test_nbest_from_lattice():
lattice=lattice,
num_paths=10,
use_double_scores=True,
lattice_score_scale=0.5,
nbest_scale=0.5,
)
# each lattice has only 4 distinct paths that have different word sequences:
# 10->30