Merge 3dc33515c0bcba749a775cf08b8aba546763fb66 into 3199058194a48d45aeee740f2aa9bdbef0bec29d

This commit is contained in:
Zengwei Yao 2023-09-12 08:25:12 -07:00 committed by GitHub
commit 9ceffa4db1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 517 additions and 36 deletions

View File

@ -1602,6 +1602,61 @@ def convert_num_channels(x: Tensor, num_channels: int) -> Tensor:
return torch.cat((x, zeros), dim=-1)
def unfold(
x: Tensor, x_pad: int, num_blocks: int, kernel: int, stride: int, padding: int
) -> Tensor:
"""
Args:
x: input of shape (seq_len, batch_size, channel)
Returns:
blocks: (kernel, batch_size * num_blocks, channel)
"""
seq_len, batch_size, channel = x.size()
x = x.permute(1, 2, 0) # (batch_size, channel, seq_len)
x = nn.functional.pad(x, pad=(0, x_pad), value=0.0)
blocks = nn.functional.unfold(
x.unsqueeze(-1),
kernel_size=(kernel, 1),
padding=(padding, 0),
stride=(stride, 1),
) # (B, C * kernel, num_blocks)
blocks = blocks.reshape(batch_size, channel, kernel, num_blocks)
blocks = blocks.permute(2, 0, 3, 1)
blocks = blocks.reshape(kernel, batch_size * num_blocks, channel)
return blocks
def fold(
blocks: Tensor, seq_len: int, x_pad: int, num_blocks: int, kernel: int, stride: int, padding: int
) -> Tensor:
"""
Args:
blocks: (kernel, batch_size * num_blocks, channel)
Returns:
x: (seq_len, batch_size, channel)
"""
batch_size = blocks.size(1) // num_blocks
channel = blocks.size(2)
blocks = blocks.reshape(kernel, batch_size, num_blocks, channel)
blocks = blocks.permute(1, 3, 0, 2).reshape(batch_size, channel * kernel, num_blocks)
x = nn.functional.fold(
blocks,
output_size=(seq_len + x_pad, 1),
kernel_size=(kernel, 1),
padding=(padding, 0),
stride=(stride, 1),
)
x = x.squeeze(-1).permute(2, 0, 1)
x = x[:seq_len] # (seq_len, batch_size, channel)
return x
def _test_whiten():
for proportion in [0.1, 0.5, 10.0]:
logging.info(f"_test_whiten(): proportion = {proportion}")

View File

@ -187,6 +187,13 @@ def add_model_arguments(parser: argparse.ArgumentParser):
help="Positional-encoding embedding dimension",
)
parser.add_argument(
"--max-block-size",
type=str,
default="512",
help="Max block size used in block-wise attention; a single int or comma-separated list",
)
parser.add_argument(
"--encoder-unmasked-dim",
type=str,
@ -574,6 +581,7 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
num_heads=_to_int_tuple(params.num_heads),
feedforward_dim=_to_int_tuple(params.feedforward_dim),
cnn_module_kernel=_to_int_tuple(params.cnn_module_kernel),
max_block_size=_to_int_tuple(params.max_block_size),
dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)),
warmup_batches=4000.0,
causal=params.causal,

View File

@ -39,6 +39,8 @@ from scaling import (
FloatLike,
limit_param_value,
convert_num_channels,
fold,
unfold,
)
from torch import Tensor, nn
@ -105,6 +107,8 @@ class Zipformer2(EncoderInterface):
feedforward_dim: Union[int, Tuple[int]] = 1536,
cnn_module_kernel: Union[int, Tuple[int]] = 31,
pos_dim: int = 192,
max_block_size: Union[int, Tuple[int]] = 512,
block_pad: int = 16,
dropout: FloatLike = None, # see code below for default
warmup_batches: float = 4000.0,
causal: bool = False,
@ -140,6 +144,7 @@ class Zipformer2(EncoderInterface):
self.num_heads = num_heads = _to_tuple(num_heads)
feedforward_dim = _to_tuple(feedforward_dim)
self.cnn_module_kernel = cnn_module_kernel = _to_tuple(cnn_module_kernel)
self.max_block_size = max_block_size = _to_tuple(max_block_size)
self.causal = causal
self.chunk_size = chunk_size
@ -153,6 +158,7 @@ class Zipformer2(EncoderInterface):
num_encoders = len(downsampling_factor)
for i in range(num_encoders):
ds = downsampling_factor[i]
encoder_layer = Zipformer2EncoderLayer(
embed_dim=encoder_dim[i],
@ -173,13 +179,15 @@ class Zipformer2(EncoderInterface):
encoder_layer,
num_encoder_layers[i],
pos_dim=pos_dim,
max_block_size=max_block_size[i],
block_pad=block_pad,
dropout=dropout,
warmup_begin=warmup_batches * (i + 1) / (num_encoders + 1),
warmup_end=warmup_batches * (i + 2) / (num_encoders + 1),
final_layerdrop_rate=0.035 * (downsampling_factor[i] ** 0.5),
)
if downsampling_factor[i] != 1:
if ds != 1:
encoder = DownsampledZipformer2Encoder(
encoder,
dim=encoder_dim[i],
@ -674,6 +682,8 @@ class Zipformer2EncoderLayer(nn.Module):
pos_emb: Tensor,
chunk_size: int = -1,
attn_mask: Optional[Tensor] = None,
attn_offsets: Optional[Tensor] = None,
all_pad_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
) -> Tensor:
"""
@ -681,6 +691,8 @@ class Zipformer2EncoderLayer(nn.Module):
Args:
src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim).
pos_emb: (1, 2*seq_len-1, pos_emb_dim) or (batch_size, 2*seq_len-1, pos_emb_dim)
block_size: size of block
block_pad: pad size at each side of block
chunk_size: the number of frames per chunk, of >= 0; if -1, no chunking.
feature_mask: something that broadcasts with src, that we'll multiply `src`
by at every layer: if a Tensor, likely of shape (seq_len, batch_size, embedding_dim)
@ -706,7 +718,8 @@ class Zipformer2EncoderLayer(nn.Module):
src,
pos_emb=pos_emb,
attn_mask=attn_mask,
key_padding_mask=src_key_padding_mask,
attn_offsets=attn_offsets,
all_pad_mask=all_pad_mask,
)
src = src + self.feed_forward1(src)
@ -725,7 +738,8 @@ class Zipformer2EncoderLayer(nn.Module):
selected_attn_weights = (selected_attn_weights > 0.0).to(selected_attn_weights.dtype)
selected_attn_weights = selected_attn_weights * (1.0 / selected_attn_weights.sum(dim=-1, keepdim=True))
na = self.balancer_na(self.nonlin_attention(src, selected_attn_weights))
na = self.nonlin_attention(src, selected_attn_weights)
na = self.balancer_na(na)
src = src + (na if self_attn_dropout_mask is None else na * self_attn_dropout_mask)
@ -917,9 +931,11 @@ class Zipformer2Encoder(nn.Module):
encoder_layer: nn.Module,
num_layers: int,
pos_dim: int,
max_block_size: int,
dropout: float,
warmup_begin: float,
warmup_end: float,
block_pad: int = 16,
initial_layerdrop_rate: float = 0.5,
final_layerdrop_rate: float = 0.05,
) -> None:
@ -931,6 +947,8 @@ class Zipformer2Encoder(nn.Module):
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
)
self.num_layers = num_layers
self.max_block_size = max_block_size
self.block_pad = block_pad
assert 0 <= warmup_begin <= warmup_end
@ -957,7 +975,7 @@ class Zipformer2Encoder(nn.Module):
src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim).
chunk_size: the number of frames per chunk, of >= 0; if -1, no chunking.
feature_mask: something that broadcasts with src, that we'll multiply `src`
by at every layer: if a Tensor, likely of shape (seq_len, batch_size, embedding_dim)
by at every layer: if a Tensor, likely of shape (1, batch_size, embedding_dim)
attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len) or (seq_len, seq_len),
interpreted as (batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len).
True means masked position. May be None.
@ -966,6 +984,70 @@ class Zipformer2Encoder(nn.Module):
Returns: a Tensor with the same shape as src.
"""
seq_len, batch_size, channel = src.size()
max_block_size = self.max_block_size
block_pad = self.block_pad
if seq_len > max_block_size:
# divide into blocks with overlaps
num_blocks = math.ceil(seq_len / max_block_size)
block_size = math.ceil(seq_len / num_blocks)
pad_len = num_blocks * block_size - seq_len
kernel_size = block_size + 2 * block_pad
if random.random() < 0.2 or __name__ == "__main__":
logging.info(f"seq_len={seq_len}, block_size={block_size}, pad_len={pad_len}")
# (block_size + 2 * block_pad, batch_size * num_blocks, channel)
src = unfold(
src, pad_len, num_blocks,
kernel=kernel_size, stride=block_size, padding=block_pad
)
# Used to mask out the padding positions
attn_offsets = torch.ones(batch_size, seq_len, device=src.device)
if src_key_padding_mask is not None:
assert src_key_padding_mask.shape == (batch_size, seq_len), src_key_padding_mask.shape
attn_offsets = attn_offsets.masked_fill(src_key_padding_mask, 0.0) # 0 at padding positions
# (seq_len, batch, 1)
attn_offsets = attn_offsets.transpose(0, 1).unsqueeze(-1)
# (kernel_size, new_batch_size)
attn_offsets = unfold(
attn_offsets, pad_len, num_blocks,
kernel=kernel_size, stride=block_size, padding=block_pad,
).squeeze(-1)
# Used for the blocks are all padding
all_pad_mask = (attn_offsets.sum(dim=0, keepdim=True) == 0) # (1, new_batch_size)
all_pad_mask = all_pad_mask.unsqueeze(-1).unsqueeze(-1) # (1, new_batch_size, 1, 1)
# (new_batch_size, kernel_size)
src_key_padding_mask = (attn_offsets == 0).transpose(0, 1)
attn_offsets = 1 - attn_offsets # 1 at padding positions
attn_offsets[attn_offsets != 0] = -1000
# (1, new_batch_size, 1, kernel)
attn_offsets = attn_offsets.transpose(0, 1).unsqueeze(1).unsqueeze(0)
# feature_mask: (1, batch_size, channel)
if isinstance(feature_mask, Tensor):
feature_mask = feature_mask.unsqueeze(2).expand(-1, -1, num_blocks, -1)
# now (kernel_size, batch_size, num_blocks, channel)
feature_mask = feature_mask.reshape(1, batch_size * num_blocks, channel)
else:
block_size = 0
# Used to mask out the padding positions
attn_offsets = torch.zeros(batch_size, seq_len, device=src.device)
if src_key_padding_mask is not None:
assert src_key_padding_mask.shape == (batch_size, seq_len), src_key_padding_mask.shape
attn_offsets = attn_offsets.masked_fill(src_key_padding_mask, -1000) # 0 at padding positions
# (1, batch_size, 1, seq_len)
attn_offsets = attn_offsets.unsqueeze(1).unsqueeze(0)
all_pad_mask = None
pos_emb = self.encoder_pos(src)
output = src
@ -978,12 +1060,29 @@ class Zipformer2Encoder(nn.Module):
pos_emb,
chunk_size=chunk_size,
attn_mask=attn_mask,
attn_offsets=attn_offsets,
all_pad_mask=all_pad_mask,
src_key_padding_mask=src_key_padding_mask,
)
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
output = output * feature_mask
if seq_len > max_block_size:
# overlap-and-add
output = fold(
output, seq_len, pad_len, num_blocks,
kernel=kernel_size, stride=block_size, padding=block_pad
) # (seq_len, batch_size, channel)
mask = torch.ones(
kernel_size, batch_size * num_blocks, 1, device=src.device,
)
mask = fold(
mask, seq_len, pad_len, num_blocks,
kernel=kernel_size, stride=block_size, padding=block_pad
) # (seq_len, batch_size, 1)
output = output / mask
return output
def streaming_forward(
@ -1314,9 +1413,9 @@ class CompactRelPositionalEncoding(torch.nn.Module):
self.length_factor = length_factor
self.extend_pe(torch.tensor(0.0).expand(max_len))
def extend_pe(self, x: Tensor, left_context_len: int = 0) -> None:
def extend_pe(self, x: Tensor) -> None:
"""Reset the positional encodings."""
T = x.size(0) + left_context_len
T = x.size(0)
if self.pe is not None:
# self.pe contains both positive and negative parts
@ -1361,25 +1460,24 @@ class CompactRelPositionalEncoding(torch.nn.Module):
self.pe = pe.to(dtype=x.dtype)
def forward(self, x: Tensor, left_context_len: int = 0) -> Tensor:
def forward(self, x: Tensor, rel_pos: int = 0) -> Tensor:
"""Create positional encoding.
Args:
x (Tensor): Input tensor (time, batch, `*`).
left_context_len: (int): Length of cached left context.
block_size (int):
Returns:
positional embedding, of shape (batch, left_context_len + 2*time-1, `*`).
positional embedding, of shape (1, 2*time-1, `*`) or (1, 4*block_size-1, `*`).
"""
self.extend_pe(x, left_context_len)
x_size_left = x.size(0) + left_context_len
# length of positive side: x.size(0) + left_context_len
# length of negative side: x.size(0)
self.extend_pe(x)
if rel_pos == 0:
rel_pos = x.size(0)
pos_emb = self.pe[
self.pe.size(0) // 2
- x_size_left
- rel_pos
+ 1 : self.pe.size(0) // 2 # noqa E203
+ x.size(0),
+ rel_pos,
:
]
pos_emb = pos_emb.unsqueeze(0)
@ -1472,7 +1570,8 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
self,
x: Tensor,
pos_emb: Tensor,
key_padding_mask: Optional[Tensor] = None,
attn_offsets: Optional[Tensor] = None,
all_pad_mask: Optional[Tensor] = None,
attn_mask: Optional[Tensor] = None,
) -> Tensor:
r"""
@ -1580,6 +1679,7 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
assert attn_scores.shape == (num_heads, batch_size, seq_len, seq_len)
if attn_mask is not None:
assert attn_mask is None
assert attn_mask.dtype == torch.bool
# use -1000 to avoid nan's where attn_mask and key_padding_mask make
# all scores zero. It's important that this be large enough that exp(-1000)
@ -1587,12 +1687,10 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
# compares the final weights with zero.
attn_scores = attn_scores.masked_fill(attn_mask, -1000)
if key_padding_mask is not None:
assert key_padding_mask.shape == (batch_size, seq_len), key_padding_mask.shape
attn_scores = attn_scores.masked_fill(
key_padding_mask.unsqueeze(1),
-1000,
)
if attn_offsets is not None:
# attn_offsets: (1, batch_size, 1, seq_len)
# or (1, new_batch_size, 1, kernel)
attn_scores = attn_scores + attn_offsets
# We use our own version of softmax, defined in scaling.py, which should
# save a little of the memory used in backprop by, if we are in
@ -1600,6 +1698,189 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
# half-precision output for backprop purposes.
attn_weights = softmax(attn_scores, dim=-1)
if all_pad_mask is not None:
# For the blocks are all padding
# all_pad_mask: (1, new_batch_size, 1, 1)
attn_weights = attn_weights.masked_fill(all_pad_mask, 0.0)
if torch.jit.is_scripting() or torch.jit.is_tracing():
pass
elif random.random() < 0.001 and not self.training:
self._print_attn_entropy(attn_weights)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
)
return attn_weights
def forward_block(
self,
x: Tensor,
pos_emb: Tensor,
block_size: int,
block_pad: int,
key_padding_mask: Optional[Tensor] = None,
attn_mask: Optional[Tensor] = None,
) -> Tensor:
r"""
Args:
x: input of shape (seq_len, batch_size, embed_dim)
pos_emb: Positional embedding tensor, of shape (1, 4*block_size-1, pos_dim)
block_size: size of block
block_pad: pad size at each side of block
key_padding_mask: a bool tensor of shape (batch_size, seq_len). Positions that
are True in this mask will be ignored as sources in the attention weighting.
attn_mask: mask of shape (seq_len, seq_len) or (batch_size, seq_len, seq_len),
interpreted as ([batch_size,] tgt_seq_len, src_seq_len)
saying which positions are allowed to attend to which other positions.
Returns:
a tensor of attention weights, of shape (hum_heads, batch_size * num_blocks, block_size, block_size * 3)
interpreted as (hum_heads, batch_size * num_blocks, tgt_seq_len, src_seq_len),
where num_blocks = (seq_len + block_size - 1) // block_size.
"""
assert attn_mask is None, "Not supported yet"
x = self.in_proj(x)
query_head_dim = self.query_head_dim
pos_head_dim = self.pos_head_dim
num_heads = self.num_heads
seq_len, batch_size, _ = x.shape
query_dim = query_head_dim * num_heads
# self-attention
q = x[...,0:query_dim]
k = x[...,query_dim:2*query_dim]
# p is the position-encoding query
p = x[...,2*query_dim:]
assert p.shape[-1] == num_heads * pos_head_dim
q = self.copy_query(q) # for diagnostics only, does nothing.
k = self.whiten_keys(self.balance_keys(k)) # does nothing in the forward pass.
p = self.copy_pos_query(p) # for diagnostics only, does nothing.
# divide into blocks by unfold function
num_blocks = (seq_len + block_size - 1) // block_size
pad_len = num_blocks * block_size - seq_len
# (kernel, batch_size * num_blocks, channel)
q_blocks = unfold(q, pad_len, num_blocks, kernel=block_size, stride=block_size, padding=0)
p_blocks = unfold(p, pad_len, num_blocks, kernel=block_size, stride=block_size, padding=0)
k_blocks = unfold(k, pad_len, num_blocks, kernel=block_size + 2 * block_pad, stride=block_size, padding=block_pad)
# time1 refers to target, time2 refers to source.
time1 = q_blocks.size(0)
time2 = k_blocks.size(0)
new_batch_size = batch_size * num_blocks
q_blocks = q_blocks.reshape(time1, new_batch_size, num_heads, query_head_dim)
p_blocks = p_blocks.reshape(time1, new_batch_size, num_heads, pos_head_dim)
k_blocks = k_blocks.reshape(time2, new_batch_size, num_heads, query_head_dim)
q_blocks = q_blocks.permute(2, 1, 0, 3) # (head, new_batch, time1, query_head_dim)
p_blocks = p_blocks.permute(2, 1, 0, 3) # (head, new_batch, time1, pos_head_dim)
k_blocks = k_blocks.permute(2, 1, 3, 0) # (head, new_batch, d_k, time2)
# (head, new_batch, time1, time2)
attn_scores = torch.matmul(q_blocks, k_blocks)
use_pos_scores = False
if torch.jit.is_scripting() or torch.jit.is_tracing():
# We can't put random.random() in the same line
use_pos_scores = True
elif not self.training or random.random() >= float(self.pos_emb_skip_rate):
use_pos_scores = True
if use_pos_scores:
pos_emb = self.linear_pos(pos_emb)
pos_emb = pos_emb.reshape(1, time1 + time2 - 1, num_heads, pos_head_dim).permute(2, 0, 3, 1)
# pos shape now: (head, 1, pos_dim, time1+time2-1)
# (head, batch, time1, pos_dim) x (head, 1, pos_dim, time1+time2-1) -> (head, batch, time1, time1+time2-1)
# [where seq_len2 represents relative position.]
pos_scores = torch.matmul(p_blocks, pos_emb)
# the following .as_strided() expression converts the last axis of pos_scores from relative
# to absolute position. I don't know whether I might have got the time-offsets backwards or
# not, but let this code define which way round it is supposed to be.
pos_scores = pos_scores.as_strided((num_heads, new_batch_size, time1, time2),
(pos_scores.stride(0),
pos_scores.stride(1),
pos_scores.stride(2)-pos_scores.stride(3),
pos_scores.stride(3)),
storage_offset=pos_scores.stride(3) * (time1 - 1))
attn_scores = attn_scores + pos_scores
if torch.jit.is_scripting() or torch.jit.is_tracing():
pass
elif self.training and random.random() < 0.1:
# This is a harder way of limiting the attention scores to not be
# too large. It incurs a penalty if any of them has an absolute
# value greater than 50.0. this should be outside the normal range
# of the attention scores. We use this mechanism instead of, say,
# something added to the loss function involving the entropy,
# because once the entropy gets very small gradients through the
# softmax can become very small, and we'd get zero derivatives. The
# choices of 1.0e-04 as the scale on the penalty makes this
# mechanism vulnerable to the absolute scale of the loss function,
# but we view this as a failsafe to avoid "implausible" parameter
# values rather than a regularization method that should be active
# under normal circumstances.
attn_scores = penalize_abs_values_gt(attn_scores,
limit=25.0,
penalty=1.0e-04,
name=self.name)
assert attn_scores.shape == (num_heads, new_batch_size, time1, time2)
assert attn_mask is None
if attn_mask is not None:
# TODO:
assert attn_mask.dtype == torch.bool
# use -1000 to avoid nan's where attn_mask and key_padding_mask make
# all scores zero. It's important that this be large enough that exp(-1000)
# is exactly zero, for reasons related to const_attention_rate, it
# compares the final weights with zero.
attn_scores = attn_scores.masked_fill(attn_mask, -1000)
# Used to mask out the padding positions
attn_offsets = torch.ones(batch_size, seq_len, device=x.device)
if key_padding_mask is not None:
assert key_padding_mask.shape == (batch_size, seq_len), key_padding_mask.shape
attn_offsets = attn_offsets.masked_fill(key_padding_mask, 0.0) # 0 at padding positions
# (seq_len, batch, 1)
attn_offsets = attn_offsets.transpose(0, 1).unsqueeze(-1)
# (time2, new_batch_size)
attn_offsets = unfold(
attn_offsets, pad_len, num_blocks,
kernel=block_size + 2 * block_pad, stride=block_size, padding=block_pad,
).squeeze(-1)
# Used for the blocks are all padding
all_pad_mask = (attn_offsets.sum(dim=0, keepdim=True) == 0) # (1, new_batch_size)
all_pad_mask = all_pad_mask.unsqueeze(-1).unsqueeze(-1) # (1, new_batch_size, 1, 1)
attn_offsets = 1 - attn_offsets # 1 at padding positions
attn_offsets[attn_offsets != 0] = -1000
# (1, new_batch_size, 1, time2)
attn_offsets = attn_offsets.transpose(0, 1).unsqueeze(1).unsqueeze(0)
attn_scores = attn_scores + attn_offsets
# We use our own version of softmax, defined in scaling.py, which should
# save a little of the memory used in backprop by, if we are in
# automatic mixed precision mode (amp / autocast), by only storing the
# half-precision output for backprop purposes.
attn_weights = softmax(attn_scores, dim=-1)
# For the blocks are all padding
attn_weights = attn_weights.masked_fill(all_pad_mask, 0.0)
if torch.jit.is_scripting() or torch.jit.is_tracing():
pass
elif random.random() < 0.001 and not self.training:
@ -1794,6 +2075,63 @@ class SelfAttention(nn.Module):
return x
def forward_block(
self,
x: Tensor,
attn_weights: Tensor,
block_size: int,
block_pad: int,
) -> Tensor:
"""
Args:
x: input tensor, of shape (seq_len, batch_size, embed_dim)
attn_weights: a tensor of attention weights, of shape
(hum_heads, batch_size * num_blocks, block_size, block_size * 3)
interpreted as (hum_heads, batch_size * num_blocks, tgt_seq_len, src_seq_len),
where num_blocks = (seq_len + block_size - 1) // block_size.
Expect attn_weights.sum(dim=-1) == 1.
block_size: size of block
block_pad: pad size at each side of block
Returns:
a tensor with the same shape as x.
"""
(seq_len, batch_size, embed_dim) = x.shape
num_heads = attn_weights.shape[0]
# divide into blocks by unfold function
num_blocks = (seq_len + block_size - 1) // block_size
pad_len = num_blocks * block_size - seq_len
new_batch_size = batch_size * num_blocks
time1 = block_size # target length
time2 = block_size + 2 * block_pad # source length
assert attn_weights.shape == (num_heads, new_batch_size, time1, time2)
x = self.in_proj(x) # (seq_len, batch_size, num_heads * value_head_dim)
# (time2, new_batch_size, channel)
x_blocks = unfold(x, pad_len, num_blocks, kernel=time2, stride=block_size, padding=block_pad)
x_blocks = x_blocks.reshape(time2, new_batch_size, num_heads, -1).permute(2, 1, 0, 3)
# now x: (num_heads, new_batch_size, time2, value_head_dim)
value_head_dim = x_blocks.shape[-1]
# todo: see whether there is benefit in overriding matmul
x = torch.matmul(attn_weights, x_blocks)
# v: (num_heads, new_batch_size, time1, value_head_dim)
x = x.reshape(num_heads, batch_size, num_blocks, time1, value_head_dim)
x = x.permute(2, 3, 1, 0, 4).contiguous().view(
num_blocks * time1, batch_size, num_heads * value_head_dim)
x = x[:seq_len] # (seq_len, batch_size, value_dim)
# returned value is of shape (seq_len, batch_size, embed_dim), like the input.
x = self.out_proj(x)
x = self.whiten(x)
return x
def streaming_forward(
self,
x: Tensor,
@ -1981,6 +2319,78 @@ attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len)
x = self.whiten2(x)
return x
def forward_block(
self,
x: Tensor,
attn_weights: Tensor,
block_size: int,
block_pad: int,
) -> Tensor:
""".
Args:
x: a Tensor of shape (seq_len, batch_size, num_channels)
attn_weights: a tensor of attention weights, of shape
(hum_heads, batch_size * num_blocks, block_size, block_size * 3)
interpreted as (hum_heads, batch_size * num_blocks, tgt_seq_len, src_seq_len),
where num_blocks = (seq_len + block_size - 1) // block_size.
Expect attn_weights.sum(dim=-1) == 1.
block_size: size of block
block_pad: pad size at each side of block
Returns:
a Tensor with the same shape as x
"""
x = self.in_proj(x)
(seq_len, batch_size, _) = x.shape
hidden_channels = self.hidden_channels
s, x, y = x.chunk(3, dim=-1)
# s will go through tanh.
s = self.balancer(s)
s = self.tanh(s)
s = s.unsqueeze(-1).reshape(seq_len, batch_size, hidden_channels)
x = self.whiten1(x)
x = x * s
x = self.identity1(x) # diagnostics only, it's the identity.
(seq_len, batch_size, embed_dim) = x.shape
num_heads = attn_weights.shape[0]
# divide into blocks by unfold function
num_blocks = (seq_len + block_size - 1) // block_size
pad_len = num_blocks * block_size - seq_len
new_batch_size = batch_size * num_blocks
time1 = block_size # target length
time2 = block_size + 2 * block_pad # source length
assert attn_weights.shape == (num_heads, new_batch_size, time1, time2)
# (time2, new_batch_size, channel)
x_blocks = unfold(x, pad_len, num_blocks, kernel=time2, stride=block_size, padding=block_pad)
x_blocks = x_blocks.reshape(time2, new_batch_size, num_heads, -1).permute(2, 1, 0, 3)
# now x: (num_heads, new_batch_size, time2, head_dim)
x = torch.matmul(attn_weights, x_blocks)
# now x: (num_heads, new_batch_size, time1, head_dim)
x = x.reshape(num_heads, batch_size, num_blocks, time1, -1)
x = x.permute(2, 3, 1, 0, 4).contiguous().view(
num_blocks * time1, batch_size, embed_dim)
x = x[:seq_len] # (seq_len, batch_size, embed_dim)
y = self.identity2(y)
x = x * y
x = self.identity3(x)
x = self.out_proj(x)
x = self.whiten2(x)
return x
def streaming_forward(
self,
x: Tensor,
@ -2220,30 +2630,38 @@ class ScalarMultiply(nn.Module):
def _test_zipformer_main(causal: bool = False):
batch_size = 5
seq_len = 20
# Just make sure the forward pass runs.
from icefall.utils import make_pad_mask
c = Zipformer2(
encoder_dim=(64, 96), encoder_unmasked_dim=(48, 64), num_heads=(4, 4),
downsampling_factor=(1, 2),
max_block_size=14,
block_pad=2,
causal=causal,
chunk_size=(4,) if causal else (-1,),
left_context_frames=(64,)
)
batch_size = 5
seq_len = 20
batch_size = 2
seq_len = 27
# Just make sure the forward pass runs.
f = c(
torch.randn(seq_len, batch_size, 64),
torch.full((batch_size,), seq_len, dtype=torch.int64),
)
x = torch.randn(seq_len, batch_size, 64)
lengths = torch.full((batch_size,), seq_len, dtype=torch.int64)
lengths[-1] = 1
src_key_padding_mask = make_pad_mask(lengths)
f = c(x, lengths, src_key_padding_mask)
f[0].sum().backward()
c.eval()
f = c(
torch.randn(seq_len, batch_size, 64),
torch.full((batch_size,), seq_len, dtype=torch.int64),
)
x = torch.randn(seq_len, batch_size, 64)
lengths = torch.full((batch_size,), seq_len, dtype=torch.int64)
lengths[-1] = seq_len - 2
src_key_padding_mask = make_pad_mask(lengths)
f = c(x, lengths, src_key_padding_mask)
f # to remove flake8 warnings
print(f[0].sum())
if __name__ == "__main__":
@ -2251,4 +2669,4 @@ if __name__ == "__main__":
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
_test_zipformer_main(False)
_test_zipformer_main(True)
# _test_zipformer_main(True)