diff --git a/egs/librispeech/ASR/zipformer/scaling.py b/egs/librispeech/ASR/zipformer/scaling.py index 7c98ef045..a8b63184f 100644 --- a/egs/librispeech/ASR/zipformer/scaling.py +++ b/egs/librispeech/ASR/zipformer/scaling.py @@ -1602,6 +1602,61 @@ def convert_num_channels(x: Tensor, num_channels: int) -> Tensor: return torch.cat((x, zeros), dim=-1) +def unfold( + x: Tensor, x_pad: int, num_blocks: int, kernel: int, stride: int, padding: int +) -> Tensor: + """ + Args: + x: input of shape (seq_len, batch_size, channel) + Returns: + blocks: (kernel, batch_size * num_blocks, channel) + """ + seq_len, batch_size, channel = x.size() + x = x.permute(1, 2, 0) # (batch_size, channel, seq_len) + + x = nn.functional.pad(x, pad=(0, x_pad), value=0.0) + + blocks = nn.functional.unfold( + x.unsqueeze(-1), + kernel_size=(kernel, 1), + padding=(padding, 0), + stride=(stride, 1), + ) # (B, C * kernel, num_blocks) + blocks = blocks.reshape(batch_size, channel, kernel, num_blocks) + blocks = blocks.permute(2, 0, 3, 1) + blocks = blocks.reshape(kernel, batch_size * num_blocks, channel) + + return blocks + + +def fold( + blocks: Tensor, seq_len: int, x_pad: int, num_blocks: int, kernel: int, stride: int, padding: int +) -> Tensor: + """ + Args: + blocks: (kernel, batch_size * num_blocks, channel) + Returns: + x: (seq_len, batch_size, channel) + """ + batch_size = blocks.size(1) // num_blocks + channel = blocks.size(2) + + blocks = blocks.reshape(kernel, batch_size, num_blocks, channel) + blocks = blocks.permute(1, 3, 0, 2).reshape(batch_size, channel * kernel, num_blocks) + + x = nn.functional.fold( + blocks, + output_size=(seq_len + x_pad, 1), + kernel_size=(kernel, 1), + padding=(padding, 0), + stride=(stride, 1), + ) + x = x.squeeze(-1).permute(2, 0, 1) + x = x[:seq_len] # (seq_len, batch_size, channel) + + return x + + def _test_whiten(): for proportion in [0.1, 0.5, 10.0]: logging.info(f"_test_whiten(): proportion = {proportion}") diff --git a/egs/librispeech/ASR/zipformer/train.py b/egs/librispeech/ASR/zipformer/train.py index bc3e9c1ba..9b2dd8a95 100755 --- a/egs/librispeech/ASR/zipformer/train.py +++ b/egs/librispeech/ASR/zipformer/train.py @@ -187,6 +187,13 @@ def add_model_arguments(parser: argparse.ArgumentParser): help="Positional-encoding embedding dimension", ) + parser.add_argument( + "--max-block-size", + type=str, + default="512", + help="Max block size used in block-wise attention; a single int or comma-separated list", + ) + parser.add_argument( "--encoder-unmasked-dim", type=str, @@ -574,6 +581,7 @@ def get_encoder_model(params: AttributeDict) -> nn.Module: num_heads=_to_int_tuple(params.num_heads), feedforward_dim=_to_int_tuple(params.feedforward_dim), cnn_module_kernel=_to_int_tuple(params.cnn_module_kernel), + max_block_size=_to_int_tuple(params.max_block_size), dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)), warmup_batches=4000.0, causal=params.causal, diff --git a/egs/librispeech/ASR/zipformer/zipformer.py b/egs/librispeech/ASR/zipformer/zipformer.py index b39af02b8..e305c10e7 100644 --- a/egs/librispeech/ASR/zipformer/zipformer.py +++ b/egs/librispeech/ASR/zipformer/zipformer.py @@ -39,6 +39,8 @@ from scaling import ( FloatLike, limit_param_value, convert_num_channels, + fold, + unfold, ) from torch import Tensor, nn @@ -105,6 +107,8 @@ class Zipformer2(EncoderInterface): feedforward_dim: Union[int, Tuple[int]] = 1536, cnn_module_kernel: Union[int, Tuple[int]] = 31, pos_dim: int = 192, + max_block_size: Union[int, Tuple[int]] = 512, + block_pad: int = 16, dropout: FloatLike = None, # see code below for default warmup_batches: float = 4000.0, causal: bool = False, @@ -140,6 +144,7 @@ class Zipformer2(EncoderInterface): self.num_heads = num_heads = _to_tuple(num_heads) feedforward_dim = _to_tuple(feedforward_dim) self.cnn_module_kernel = cnn_module_kernel = _to_tuple(cnn_module_kernel) + self.max_block_size = max_block_size = _to_tuple(max_block_size) self.causal = causal self.chunk_size = chunk_size @@ -153,6 +158,7 @@ class Zipformer2(EncoderInterface): num_encoders = len(downsampling_factor) for i in range(num_encoders): + ds = downsampling_factor[i] encoder_layer = Zipformer2EncoderLayer( embed_dim=encoder_dim[i], @@ -173,13 +179,15 @@ class Zipformer2(EncoderInterface): encoder_layer, num_encoder_layers[i], pos_dim=pos_dim, + max_block_size=max_block_size[i], + block_pad=block_pad, dropout=dropout, warmup_begin=warmup_batches * (i + 1) / (num_encoders + 1), warmup_end=warmup_batches * (i + 2) / (num_encoders + 1), final_layerdrop_rate=0.035 * (downsampling_factor[i] ** 0.5), ) - if downsampling_factor[i] != 1: + if ds != 1: encoder = DownsampledZipformer2Encoder( encoder, dim=encoder_dim[i], @@ -674,6 +682,8 @@ class Zipformer2EncoderLayer(nn.Module): pos_emb: Tensor, chunk_size: int = -1, attn_mask: Optional[Tensor] = None, + attn_offsets: Optional[Tensor] = None, + all_pad_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, ) -> Tensor: """ @@ -681,6 +691,8 @@ class Zipformer2EncoderLayer(nn.Module): Args: src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim). pos_emb: (1, 2*seq_len-1, pos_emb_dim) or (batch_size, 2*seq_len-1, pos_emb_dim) + block_size: size of block + block_pad: pad size at each side of block chunk_size: the number of frames per chunk, of >= 0; if -1, no chunking. feature_mask: something that broadcasts with src, that we'll multiply `src` by at every layer: if a Tensor, likely of shape (seq_len, batch_size, embedding_dim) @@ -706,7 +718,8 @@ class Zipformer2EncoderLayer(nn.Module): src, pos_emb=pos_emb, attn_mask=attn_mask, - key_padding_mask=src_key_padding_mask, + attn_offsets=attn_offsets, + all_pad_mask=all_pad_mask, ) src = src + self.feed_forward1(src) @@ -725,7 +738,8 @@ class Zipformer2EncoderLayer(nn.Module): selected_attn_weights = (selected_attn_weights > 0.0).to(selected_attn_weights.dtype) selected_attn_weights = selected_attn_weights * (1.0 / selected_attn_weights.sum(dim=-1, keepdim=True)) - na = self.balancer_na(self.nonlin_attention(src, selected_attn_weights)) + na = self.nonlin_attention(src, selected_attn_weights) + na = self.balancer_na(na) src = src + (na if self_attn_dropout_mask is None else na * self_attn_dropout_mask) @@ -917,9 +931,11 @@ class Zipformer2Encoder(nn.Module): encoder_layer: nn.Module, num_layers: int, pos_dim: int, + max_block_size: int, dropout: float, warmup_begin: float, warmup_end: float, + block_pad: int = 16, initial_layerdrop_rate: float = 0.5, final_layerdrop_rate: float = 0.05, ) -> None: @@ -931,6 +947,8 @@ class Zipformer2Encoder(nn.Module): [copy.deepcopy(encoder_layer) for i in range(num_layers)] ) self.num_layers = num_layers + self.max_block_size = max_block_size + self.block_pad = block_pad assert 0 <= warmup_begin <= warmup_end @@ -957,7 +975,7 @@ class Zipformer2Encoder(nn.Module): src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim). chunk_size: the number of frames per chunk, of >= 0; if -1, no chunking. feature_mask: something that broadcasts with src, that we'll multiply `src` - by at every layer: if a Tensor, likely of shape (seq_len, batch_size, embedding_dim) + by at every layer: if a Tensor, likely of shape (1, batch_size, embedding_dim) attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len) or (seq_len, seq_len), interpreted as (batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len). True means masked position. May be None. @@ -966,6 +984,70 @@ class Zipformer2Encoder(nn.Module): Returns: a Tensor with the same shape as src. """ + seq_len, batch_size, channel = src.size() + max_block_size = self.max_block_size + block_pad = self.block_pad + + if seq_len > max_block_size: + # divide into blocks with overlaps + num_blocks = math.ceil(seq_len / max_block_size) + block_size = math.ceil(seq_len / num_blocks) + pad_len = num_blocks * block_size - seq_len + kernel_size = block_size + 2 * block_pad + if random.random() < 0.2 or __name__ == "__main__": + logging.info(f"seq_len={seq_len}, block_size={block_size}, pad_len={pad_len}") + + # (block_size + 2 * block_pad, batch_size * num_blocks, channel) + src = unfold( + src, pad_len, num_blocks, + kernel=kernel_size, stride=block_size, padding=block_pad + ) + + # Used to mask out the padding positions + attn_offsets = torch.ones(batch_size, seq_len, device=src.device) + + if src_key_padding_mask is not None: + assert src_key_padding_mask.shape == (batch_size, seq_len), src_key_padding_mask.shape + attn_offsets = attn_offsets.masked_fill(src_key_padding_mask, 0.0) # 0 at padding positions + # (seq_len, batch, 1) + attn_offsets = attn_offsets.transpose(0, 1).unsqueeze(-1) + # (kernel_size, new_batch_size) + attn_offsets = unfold( + attn_offsets, pad_len, num_blocks, + kernel=kernel_size, stride=block_size, padding=block_pad, + ).squeeze(-1) + + # Used for the blocks are all padding + all_pad_mask = (attn_offsets.sum(dim=0, keepdim=True) == 0) # (1, new_batch_size) + all_pad_mask = all_pad_mask.unsqueeze(-1).unsqueeze(-1) # (1, new_batch_size, 1, 1) + + # (new_batch_size, kernel_size) + src_key_padding_mask = (attn_offsets == 0).transpose(0, 1) + + attn_offsets = 1 - attn_offsets # 1 at padding positions + attn_offsets[attn_offsets != 0] = -1000 + + # (1, new_batch_size, 1, kernel) + attn_offsets = attn_offsets.transpose(0, 1).unsqueeze(1).unsqueeze(0) + + # feature_mask: (1, batch_size, channel) + if isinstance(feature_mask, Tensor): + feature_mask = feature_mask.unsqueeze(2).expand(-1, -1, num_blocks, -1) + # now (kernel_size, batch_size, num_blocks, channel) + feature_mask = feature_mask.reshape(1, batch_size * num_blocks, channel) + else: + block_size = 0 + + # Used to mask out the padding positions + attn_offsets = torch.zeros(batch_size, seq_len, device=src.device) + if src_key_padding_mask is not None: + assert src_key_padding_mask.shape == (batch_size, seq_len), src_key_padding_mask.shape + attn_offsets = attn_offsets.masked_fill(src_key_padding_mask, -1000) # 0 at padding positions + # (1, batch_size, 1, seq_len) + attn_offsets = attn_offsets.unsqueeze(1).unsqueeze(0) + + all_pad_mask = None + pos_emb = self.encoder_pos(src) output = src @@ -978,12 +1060,29 @@ class Zipformer2Encoder(nn.Module): pos_emb, chunk_size=chunk_size, attn_mask=attn_mask, + attn_offsets=attn_offsets, + all_pad_mask=all_pad_mask, src_key_padding_mask=src_key_padding_mask, ) if not torch.jit.is_scripting() and not torch.jit.is_tracing(): output = output * feature_mask + if seq_len > max_block_size: + # overlap-and-add + output = fold( + output, seq_len, pad_len, num_blocks, + kernel=kernel_size, stride=block_size, padding=block_pad + ) # (seq_len, batch_size, channel) + mask = torch.ones( + kernel_size, batch_size * num_blocks, 1, device=src.device, + ) + mask = fold( + mask, seq_len, pad_len, num_blocks, + kernel=kernel_size, stride=block_size, padding=block_pad + ) # (seq_len, batch_size, 1) + output = output / mask + return output def streaming_forward( @@ -1314,9 +1413,9 @@ class CompactRelPositionalEncoding(torch.nn.Module): self.length_factor = length_factor self.extend_pe(torch.tensor(0.0).expand(max_len)) - def extend_pe(self, x: Tensor, left_context_len: int = 0) -> None: + def extend_pe(self, x: Tensor) -> None: """Reset the positional encodings.""" - T = x.size(0) + left_context_len + T = x.size(0) if self.pe is not None: # self.pe contains both positive and negative parts @@ -1361,25 +1460,24 @@ class CompactRelPositionalEncoding(torch.nn.Module): self.pe = pe.to(dtype=x.dtype) - def forward(self, x: Tensor, left_context_len: int = 0) -> Tensor: + def forward(self, x: Tensor, rel_pos: int = 0) -> Tensor: """Create positional encoding. Args: x (Tensor): Input tensor (time, batch, `*`). - left_context_len: (int): Length of cached left context. + block_size (int): Returns: - positional embedding, of shape (batch, left_context_len + 2*time-1, `*`). + positional embedding, of shape (1, 2*time-1, `*`) or (1, 4*block_size-1, `*`). """ - self.extend_pe(x, left_context_len) - x_size_left = x.size(0) + left_context_len - # length of positive side: x.size(0) + left_context_len - # length of negative side: x.size(0) + self.extend_pe(x) + if rel_pos == 0: + rel_pos = x.size(0) pos_emb = self.pe[ self.pe.size(0) // 2 - - x_size_left + - rel_pos + 1 : self.pe.size(0) // 2 # noqa E203 - + x.size(0), + + rel_pos, : ] pos_emb = pos_emb.unsqueeze(0) @@ -1472,7 +1570,8 @@ class RelPositionMultiheadAttentionWeights(nn.Module): self, x: Tensor, pos_emb: Tensor, - key_padding_mask: Optional[Tensor] = None, + attn_offsets: Optional[Tensor] = None, + all_pad_mask: Optional[Tensor] = None, attn_mask: Optional[Tensor] = None, ) -> Tensor: r""" @@ -1580,6 +1679,7 @@ class RelPositionMultiheadAttentionWeights(nn.Module): assert attn_scores.shape == (num_heads, batch_size, seq_len, seq_len) if attn_mask is not None: + assert attn_mask is None assert attn_mask.dtype == torch.bool # use -1000 to avoid nan's where attn_mask and key_padding_mask make # all scores zero. It's important that this be large enough that exp(-1000) @@ -1587,12 +1687,10 @@ class RelPositionMultiheadAttentionWeights(nn.Module): # compares the final weights with zero. attn_scores = attn_scores.masked_fill(attn_mask, -1000) - if key_padding_mask is not None: - assert key_padding_mask.shape == (batch_size, seq_len), key_padding_mask.shape - attn_scores = attn_scores.masked_fill( - key_padding_mask.unsqueeze(1), - -1000, - ) + if attn_offsets is not None: + # attn_offsets: (1, batch_size, 1, seq_len) + # or (1, new_batch_size, 1, kernel) + attn_scores = attn_scores + attn_offsets # We use our own version of softmax, defined in scaling.py, which should # save a little of the memory used in backprop by, if we are in @@ -1600,6 +1698,189 @@ class RelPositionMultiheadAttentionWeights(nn.Module): # half-precision output for backprop purposes. attn_weights = softmax(attn_scores, dim=-1) + if all_pad_mask is not None: + # For the blocks are all padding + # all_pad_mask: (1, new_batch_size, 1, 1) + attn_weights = attn_weights.masked_fill(all_pad_mask, 0.0) + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + pass + elif random.random() < 0.001 and not self.training: + self._print_attn_entropy(attn_weights) + + attn_weights = nn.functional.dropout( + attn_weights, p=self.dropout, training=self.training + ) + + return attn_weights + + def forward_block( + self, + x: Tensor, + pos_emb: Tensor, + block_size: int, + block_pad: int, + key_padding_mask: Optional[Tensor] = None, + attn_mask: Optional[Tensor] = None, + ) -> Tensor: + r""" + Args: + x: input of shape (seq_len, batch_size, embed_dim) + pos_emb: Positional embedding tensor, of shape (1, 4*block_size-1, pos_dim) + block_size: size of block + block_pad: pad size at each side of block + key_padding_mask: a bool tensor of shape (batch_size, seq_len). Positions that + are True in this mask will be ignored as sources in the attention weighting. + attn_mask: mask of shape (seq_len, seq_len) or (batch_size, seq_len, seq_len), + interpreted as ([batch_size,] tgt_seq_len, src_seq_len) + saying which positions are allowed to attend to which other positions. + Returns: + a tensor of attention weights, of shape (hum_heads, batch_size * num_blocks, block_size, block_size * 3) + interpreted as (hum_heads, batch_size * num_blocks, tgt_seq_len, src_seq_len), + where num_blocks = (seq_len + block_size - 1) // block_size. + """ + assert attn_mask is None, "Not supported yet" + + x = self.in_proj(x) + query_head_dim = self.query_head_dim + pos_head_dim = self.pos_head_dim + num_heads = self.num_heads + + seq_len, batch_size, _ = x.shape + + query_dim = query_head_dim * num_heads + + # self-attention + q = x[...,0:query_dim] + k = x[...,query_dim:2*query_dim] + # p is the position-encoding query + p = x[...,2*query_dim:] + assert p.shape[-1] == num_heads * pos_head_dim + + q = self.copy_query(q) # for diagnostics only, does nothing. + k = self.whiten_keys(self.balance_keys(k)) # does nothing in the forward pass. + p = self.copy_pos_query(p) # for diagnostics only, does nothing. + + # divide into blocks by unfold function + num_blocks = (seq_len + block_size - 1) // block_size + pad_len = num_blocks * block_size - seq_len + + # (kernel, batch_size * num_blocks, channel) + q_blocks = unfold(q, pad_len, num_blocks, kernel=block_size, stride=block_size, padding=0) + p_blocks = unfold(p, pad_len, num_blocks, kernel=block_size, stride=block_size, padding=0) + k_blocks = unfold(k, pad_len, num_blocks, kernel=block_size + 2 * block_pad, stride=block_size, padding=block_pad) + + # time1 refers to target, time2 refers to source. + time1 = q_blocks.size(0) + time2 = k_blocks.size(0) + new_batch_size = batch_size * num_blocks + + q_blocks = q_blocks.reshape(time1, new_batch_size, num_heads, query_head_dim) + p_blocks = p_blocks.reshape(time1, new_batch_size, num_heads, pos_head_dim) + k_blocks = k_blocks.reshape(time2, new_batch_size, num_heads, query_head_dim) + + q_blocks = q_blocks.permute(2, 1, 0, 3) # (head, new_batch, time1, query_head_dim) + p_blocks = p_blocks.permute(2, 1, 0, 3) # (head, new_batch, time1, pos_head_dim) + k_blocks = k_blocks.permute(2, 1, 3, 0) # (head, new_batch, d_k, time2) + + # (head, new_batch, time1, time2) + attn_scores = torch.matmul(q_blocks, k_blocks) + + use_pos_scores = False + if torch.jit.is_scripting() or torch.jit.is_tracing(): + # We can't put random.random() in the same line + use_pos_scores = True + elif not self.training or random.random() >= float(self.pos_emb_skip_rate): + use_pos_scores = True + + if use_pos_scores: + pos_emb = self.linear_pos(pos_emb) + pos_emb = pos_emb.reshape(1, time1 + time2 - 1, num_heads, pos_head_dim).permute(2, 0, 3, 1) + # pos shape now: (head, 1, pos_dim, time1+time2-1) + + # (head, batch, time1, pos_dim) x (head, 1, pos_dim, time1+time2-1) -> (head, batch, time1, time1+time2-1) + # [where seq_len2 represents relative position.] + pos_scores = torch.matmul(p_blocks, pos_emb) + # the following .as_strided() expression converts the last axis of pos_scores from relative + # to absolute position. I don't know whether I might have got the time-offsets backwards or + # not, but let this code define which way round it is supposed to be. + pos_scores = pos_scores.as_strided((num_heads, new_batch_size, time1, time2), + (pos_scores.stride(0), + pos_scores.stride(1), + pos_scores.stride(2)-pos_scores.stride(3), + pos_scores.stride(3)), + storage_offset=pos_scores.stride(3) * (time1 - 1)) + + attn_scores = attn_scores + pos_scores + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + pass + elif self.training and random.random() < 0.1: + # This is a harder way of limiting the attention scores to not be + # too large. It incurs a penalty if any of them has an absolute + # value greater than 50.0. this should be outside the normal range + # of the attention scores. We use this mechanism instead of, say, + # something added to the loss function involving the entropy, + # because once the entropy gets very small gradients through the + # softmax can become very small, and we'd get zero derivatives. The + # choices of 1.0e-04 as the scale on the penalty makes this + # mechanism vulnerable to the absolute scale of the loss function, + # but we view this as a failsafe to avoid "implausible" parameter + # values rather than a regularization method that should be active + # under normal circumstances. + attn_scores = penalize_abs_values_gt(attn_scores, + limit=25.0, + penalty=1.0e-04, + name=self.name) + + assert attn_scores.shape == (num_heads, new_batch_size, time1, time2) + + assert attn_mask is None + if attn_mask is not None: + # TODO: + assert attn_mask.dtype == torch.bool + # use -1000 to avoid nan's where attn_mask and key_padding_mask make + # all scores zero. It's important that this be large enough that exp(-1000) + # is exactly zero, for reasons related to const_attention_rate, it + # compares the final weights with zero. + attn_scores = attn_scores.masked_fill(attn_mask, -1000) + + # Used to mask out the padding positions + attn_offsets = torch.ones(batch_size, seq_len, device=x.device) + + if key_padding_mask is not None: + assert key_padding_mask.shape == (batch_size, seq_len), key_padding_mask.shape + attn_offsets = attn_offsets.masked_fill(key_padding_mask, 0.0) # 0 at padding positions + + # (seq_len, batch, 1) + attn_offsets = attn_offsets.transpose(0, 1).unsqueeze(-1) + # (time2, new_batch_size) + attn_offsets = unfold( + attn_offsets, pad_len, num_blocks, + kernel=block_size + 2 * block_pad, stride=block_size, padding=block_pad, + ).squeeze(-1) + + # Used for the blocks are all padding + all_pad_mask = (attn_offsets.sum(dim=0, keepdim=True) == 0) # (1, new_batch_size) + all_pad_mask = all_pad_mask.unsqueeze(-1).unsqueeze(-1) # (1, new_batch_size, 1, 1) + + attn_offsets = 1 - attn_offsets # 1 at padding positions + attn_offsets[attn_offsets != 0] = -1000 + + # (1, new_batch_size, 1, time2) + attn_offsets = attn_offsets.transpose(0, 1).unsqueeze(1).unsqueeze(0) + + attn_scores = attn_scores + attn_offsets + + # We use our own version of softmax, defined in scaling.py, which should + # save a little of the memory used in backprop by, if we are in + # automatic mixed precision mode (amp / autocast), by only storing the + # half-precision output for backprop purposes. + attn_weights = softmax(attn_scores, dim=-1) + + # For the blocks are all padding + attn_weights = attn_weights.masked_fill(all_pad_mask, 0.0) + if torch.jit.is_scripting() or torch.jit.is_tracing(): pass elif random.random() < 0.001 and not self.training: @@ -1678,7 +1959,7 @@ class RelPositionMultiheadAttentionWeights(nn.Module): # (head, batch, time1, pos_dim) x (head, 1, pos_dim, seq_len2) -> (head, batch, time1, seq_len2) # [where seq_len2 represents relative position.] pos_scores = torch.matmul(p, pos_emb) - + if torch.jit.is_tracing(): (num_heads, batch_size, time1, n) = pos_scores.shape rows = torch.arange(start=time1 - 1, end=-1, step=-1) @@ -1794,6 +2075,63 @@ class SelfAttention(nn.Module): return x + def forward_block( + self, + x: Tensor, + attn_weights: Tensor, + block_size: int, + block_pad: int, + ) -> Tensor: + """ + Args: + x: input tensor, of shape (seq_len, batch_size, embed_dim) + attn_weights: a tensor of attention weights, of shape + (hum_heads, batch_size * num_blocks, block_size, block_size * 3) + interpreted as (hum_heads, batch_size * num_blocks, tgt_seq_len, src_seq_len), + where num_blocks = (seq_len + block_size - 1) // block_size. + Expect attn_weights.sum(dim=-1) == 1. + block_size: size of block + block_pad: pad size at each side of block + Returns: + a tensor with the same shape as x. + """ + (seq_len, batch_size, embed_dim) = x.shape + num_heads = attn_weights.shape[0] + + # divide into blocks by unfold function + num_blocks = (seq_len + block_size - 1) // block_size + pad_len = num_blocks * block_size - seq_len + new_batch_size = batch_size * num_blocks + time1 = block_size # target length + time2 = block_size + 2 * block_pad # source length + + assert attn_weights.shape == (num_heads, new_batch_size, time1, time2) + + x = self.in_proj(x) # (seq_len, batch_size, num_heads * value_head_dim) + + # (time2, new_batch_size, channel) + x_blocks = unfold(x, pad_len, num_blocks, kernel=time2, stride=block_size, padding=block_pad) + + x_blocks = x_blocks.reshape(time2, new_batch_size, num_heads, -1).permute(2, 1, 0, 3) + # now x: (num_heads, new_batch_size, time2, value_head_dim) + value_head_dim = x_blocks.shape[-1] + + # todo: see whether there is benefit in overriding matmul + x = torch.matmul(attn_weights, x_blocks) + # v: (num_heads, new_batch_size, time1, value_head_dim) + + x = x.reshape(num_heads, batch_size, num_blocks, time1, value_head_dim) + x = x.permute(2, 3, 1, 0, 4).contiguous().view( + num_blocks * time1, batch_size, num_heads * value_head_dim) + + x = x[:seq_len] # (seq_len, batch_size, value_dim) + + # returned value is of shape (seq_len, batch_size, embed_dim), like the input. + x = self.out_proj(x) + x = self.whiten(x) + + return x + def streaming_forward( self, x: Tensor, @@ -1981,6 +2319,78 @@ attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len) x = self.whiten2(x) return x + def forward_block( + self, + x: Tensor, + attn_weights: Tensor, + block_size: int, + block_pad: int, + ) -> Tensor: + """. + Args: + x: a Tensor of shape (seq_len, batch_size, num_channels) + attn_weights: a tensor of attention weights, of shape + (hum_heads, batch_size * num_blocks, block_size, block_size * 3) + interpreted as (hum_heads, batch_size * num_blocks, tgt_seq_len, src_seq_len), + where num_blocks = (seq_len + block_size - 1) // block_size. + Expect attn_weights.sum(dim=-1) == 1. + block_size: size of block + block_pad: pad size at each side of block + Returns: + a Tensor with the same shape as x + """ + x = self.in_proj(x) + + (seq_len, batch_size, _) = x.shape + hidden_channels = self.hidden_channels + + s, x, y = x.chunk(3, dim=-1) + + # s will go through tanh. + + s = self.balancer(s) + s = self.tanh(s) + + s = s.unsqueeze(-1).reshape(seq_len, batch_size, hidden_channels) + x = self.whiten1(x) + x = x * s + x = self.identity1(x) # diagnostics only, it's the identity. + + (seq_len, batch_size, embed_dim) = x.shape + num_heads = attn_weights.shape[0] + + # divide into blocks by unfold function + num_blocks = (seq_len + block_size - 1) // block_size + pad_len = num_blocks * block_size - seq_len + new_batch_size = batch_size * num_blocks + time1 = block_size # target length + time2 = block_size + 2 * block_pad # source length + + assert attn_weights.shape == (num_heads, new_batch_size, time1, time2) + + # (time2, new_batch_size, channel) + x_blocks = unfold(x, pad_len, num_blocks, kernel=time2, stride=block_size, padding=block_pad) + + x_blocks = x_blocks.reshape(time2, new_batch_size, num_heads, -1).permute(2, 1, 0, 3) + # now x: (num_heads, new_batch_size, time2, head_dim) + + x = torch.matmul(attn_weights, x_blocks) + # now x: (num_heads, new_batch_size, time1, head_dim) + + x = x.reshape(num_heads, batch_size, num_blocks, time1, -1) + x = x.permute(2, 3, 1, 0, 4).contiguous().view( + num_blocks * time1, batch_size, embed_dim) + + x = x[:seq_len] # (seq_len, batch_size, embed_dim) + + y = self.identity2(y) + x = x * y + x = self.identity3(x) + + x = self.out_proj(x) + x = self.whiten2(x) + return x + def streaming_forward( self, x: Tensor, @@ -2220,30 +2630,38 @@ class ScalarMultiply(nn.Module): def _test_zipformer_main(causal: bool = False): - batch_size = 5 - seq_len = 20 # Just make sure the forward pass runs. + from icefall.utils import make_pad_mask + c = Zipformer2( encoder_dim=(64, 96), encoder_unmasked_dim=(48, 64), num_heads=(4, 4), + downsampling_factor=(1, 2), + max_block_size=14, + block_pad=2, causal=causal, chunk_size=(4,) if causal else (-1,), left_context_frames=(64,) ) - batch_size = 5 - seq_len = 20 + batch_size = 2 + seq_len = 27 + # Just make sure the forward pass runs. - f = c( - torch.randn(seq_len, batch_size, 64), - torch.full((batch_size,), seq_len, dtype=torch.int64), - ) + x = torch.randn(seq_len, batch_size, 64) + lengths = torch.full((batch_size,), seq_len, dtype=torch.int64) + lengths[-1] = 1 + src_key_padding_mask = make_pad_mask(lengths) + f = c(x, lengths, src_key_padding_mask) f[0].sum().backward() c.eval() - f = c( - torch.randn(seq_len, batch_size, 64), - torch.full((batch_size,), seq_len, dtype=torch.int64), - ) + + x = torch.randn(seq_len, batch_size, 64) + lengths = torch.full((batch_size,), seq_len, dtype=torch.int64) + lengths[-1] = seq_len - 2 + src_key_padding_mask = make_pad_mask(lengths) + f = c(x, lengths, src_key_padding_mask) f # to remove flake8 warnings + print(f[0].sum()) if __name__ == "__main__": @@ -2251,4 +2669,4 @@ if __name__ == "__main__": torch.set_num_threads(1) torch.set_num_interop_threads(1) _test_zipformer_main(False) - _test_zipformer_main(True) + # _test_zipformer_main(True)