mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Merge c934cc2ac448e8b0521aeea1ab0dbfba397c961d into fba5e67d5e14c808cea7f2bf5ccc7fa0c248cc5c
This commit is contained in:
commit
9a5197b560
@ -8,9 +8,9 @@ Switchboard is a collection of about 2,400 two-sided telephone conversations amo
|
|||||||
|
|
||||||
|
|
||||||
## Performance Record
|
## Performance Record
|
||||||
| | eval2000 | rt03 |
|
| | eval2000-swbd | eval2000-callhome | eval2000-avg |
|
||||||
|--------------------------------|------------|--------|
|
|--------------------------------|-----------------|---------------------|--------------|
|
||||||
| `conformer_ctc` | 33.37 | 35.06 |
|
| `conformer_ctc` | 9.48 | 17.73 | 13.67 |
|
||||||
|
|
||||||
See [RESULTS](/egs/swbd/ASR/RESULTS.md) for details.
|
See [RESULTS](/egs/swbd/ASR/RESULTS.md) for details.
|
||||||
|
|
||||||
|
@ -1,6 +1,19 @@
|
|||||||
## Results
|
## Results
|
||||||
### Switchboard BPE training results (Conformer-CTC)
|
### Switchboard BPE training results (Conformer-CTC)
|
||||||
|
|
||||||
|
#### 2023-12-05 (Narrowband Setup)
|
||||||
|
|
||||||
|
The best WER, for the narrowband Switchboard system is presented below
|
||||||
|
|
||||||
|
Results using attention decoder are given as:
|
||||||
|
|
||||||
|
| | eval2000-swbd | eval2000-callhome | eval2000-avg |
|
||||||
|
|--------------------------------|-----------------|---------------------|--------------|
|
||||||
|
| `conformer_ctc` | 11.82 | 23.34 | 17.61 |
|
||||||
|
|
||||||
|
Decoding results and models can be found here:
|
||||||
|
https://huggingface.co/zrjin/icefall-asr-swbd-narrowband-conformer-ctc-2023-12-3
|
||||||
|
|
||||||
#### 2023-09-04
|
#### 2023-09-04
|
||||||
|
|
||||||
The best WER, as of 2023-09-04, for the Switchboard is below
|
The best WER, as of 2023-09-04, for the Switchboard is below
|
||||||
@ -13,6 +26,7 @@ Results using attention decoder are given as:
|
|||||||
|
|
||||||
Decoding results and models can be found here:
|
Decoding results and models can be found here:
|
||||||
https://huggingface.co/zrjin/icefall-asr-swbd-conformer-ctc-2023-8-26
|
https://huggingface.co/zrjin/icefall-asr-swbd-conformer-ctc-2023-8-26
|
||||||
|
|
||||||
#### 2023-06-27
|
#### 2023-06-27
|
||||||
|
|
||||||
The best WER, as of 2023-06-27, for the Switchboard is below
|
The best WER, as of 2023-06-27, for the Switchboard is below
|
||||||
|
139
egs/swbd/ASR/local/compute_fbank_eval2000_nb.py
Executable file
139
egs/swbd/ASR/local/compute_fbank_eval2000_nb.py
Executable file
@ -0,0 +1,139 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# Modified 2023 The Chinese University of Hong Kong (author: Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the SwitchBoard dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from filter_cuts import filter_cuts
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor, str2bool
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to the bpe.model. If not None, we will remove short and
|
||||||
|
long utterances before extracting features""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dataset",
|
||||||
|
type=str,
|
||||||
|
help="""Dataset parts to compute fbank. If None, we will use all""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--perturb-speed",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_switchboard(
|
||||||
|
dir_name: str,
|
||||||
|
bpe_model: Optional[str] = None,
|
||||||
|
dataset: Optional[str] = None,
|
||||||
|
perturb_speed: Optional[bool] = True,
|
||||||
|
):
|
||||||
|
src_dir = Path(f"data/manifests/{dir_name}")
|
||||||
|
output_dir = Path(f"data/fbank_nb/{dir_name}")
|
||||||
|
num_jobs = min(1, os.cpu_count())
|
||||||
|
num_mel_bins = 80
|
||||||
|
|
||||||
|
if bpe_model:
|
||||||
|
logging.info(f"Loading {bpe_model}")
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(bpe_model)
|
||||||
|
|
||||||
|
if dataset is None:
|
||||||
|
dataset_parts = ("all",)
|
||||||
|
else:
|
||||||
|
dataset_parts = dataset.split(" ", -1)
|
||||||
|
|
||||||
|
prefix = dir_name
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
manifests = {
|
||||||
|
"eval2000": "data/manifests/eval2000/eval2000_cuts_all_trimmed.jsonl.gz",
|
||||||
|
}
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins, sampling_rate=8000))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
partition = "all"
|
||||||
|
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
|
||||||
|
print(cuts_filename)
|
||||||
|
if (output_dir / cuts_filename).is_file():
|
||||||
|
logging.info(f"{prefix} already exists - skipping.")
|
||||||
|
return
|
||||||
|
logging.info(f"Processing {prefix}")
|
||||||
|
cut_set = CutSet.from_file(manifests[prefix])
|
||||||
|
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
||||||
|
# when an executor is specified, make more partitions
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
|
||||||
|
cut_set.to_file(output_dir / cuts_filename)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
args = get_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
compute_fbank_switchboard(
|
||||||
|
dir_name="eval2000",
|
||||||
|
bpe_model=args.bpe_model,
|
||||||
|
dataset=args.dataset,
|
||||||
|
perturb_speed=args.perturb_speed,
|
||||||
|
)
|
1
egs/swbd/ASR/local/compute_fbank_musan.py
Symbolic link
1
egs/swbd/ASR/local/compute_fbank_musan.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/compute_fbank_musan.py
|
110
egs/swbd/ASR/local/compute_fbank_musan_nb.py
Executable file
110
egs/swbd/ASR/local/compute_fbank_musan_nb.py
Executable file
@ -0,0 +1,110 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the musan dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter, MonoCut, combine
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def is_cut_long(c: MonoCut) -> bool:
|
||||||
|
return c.duration > 5
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_musan():
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank_nb")
|
||||||
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
num_mel_bins = 80
|
||||||
|
|
||||||
|
dataset_parts = (
|
||||||
|
"music",
|
||||||
|
"speech",
|
||||||
|
"noise",
|
||||||
|
)
|
||||||
|
prefix = "musan"
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix=prefix,
|
||||||
|
suffix=suffix,
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
assert len(manifests) == len(dataset_parts), (
|
||||||
|
len(manifests),
|
||||||
|
len(dataset_parts),
|
||||||
|
list(manifests.keys()),
|
||||||
|
dataset_parts,
|
||||||
|
)
|
||||||
|
|
||||||
|
musan_cuts_path = output_dir / "musan_cuts.jsonl.gz"
|
||||||
|
|
||||||
|
if musan_cuts_path.is_file():
|
||||||
|
logging.info(f"{musan_cuts_path} already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info("Extracting features for Musan")
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins, sampling_rate=8000))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
# create chunks of Musan with duration 5 - 10 seconds
|
||||||
|
musan_cuts = (
|
||||||
|
CutSet.from_manifests(
|
||||||
|
recordings=combine(part["recordings"] for part in manifests.values())
|
||||||
|
)
|
||||||
|
.resample(8000)
|
||||||
|
.cut_into_windows(10.0)
|
||||||
|
.filter(is_cut_long)
|
||||||
|
.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/musan_feats",
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
musan_cuts.to_file(musan_cuts_path)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
compute_fbank_musan()
|
@ -66,7 +66,7 @@ def get_args():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--perturb-speed",
|
"--perturb-speed",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=True,
|
||||||
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
|
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
162
egs/swbd/ASR/local/compute_fbank_swbd_nb.py
Executable file
162
egs/swbd/ASR/local/compute_fbank_swbd_nb.py
Executable file
@ -0,0 +1,162 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# Modified 2023 The Chinese University of Hong Kong (author: Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the SwitchBoard dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from filter_cuts import filter_cuts
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor, str2bool
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to the bpe.model. If not None, we will remove short and
|
||||||
|
long utterances before extracting features""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dataset",
|
||||||
|
type=str,
|
||||||
|
help="""Dataset parts to compute fbank. If None, we will use all""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--perturb-speed",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--split-index",
|
||||||
|
type=int,
|
||||||
|
required=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_switchboard(
|
||||||
|
dir_name: str,
|
||||||
|
split_index: int,
|
||||||
|
bpe_model: Optional[str] = None,
|
||||||
|
dataset: Optional[str] = None,
|
||||||
|
perturb_speed: Optional[bool] = True,
|
||||||
|
):
|
||||||
|
src_dir = Path(f"data/manifests/{dir_name}")
|
||||||
|
output_dir = Path(f"data/fbank_nb/{dir_name}_split16")
|
||||||
|
num_jobs = min(1, os.cpu_count())
|
||||||
|
num_mel_bins = 80
|
||||||
|
|
||||||
|
if bpe_model:
|
||||||
|
logging.info(f"Loading {bpe_model}")
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(bpe_model)
|
||||||
|
|
||||||
|
if dataset is None:
|
||||||
|
dataset_parts = ("all",)
|
||||||
|
else:
|
||||||
|
dataset_parts = dataset.split(" ", -1)
|
||||||
|
|
||||||
|
prefix = dir_name
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
split_dir = Path("data/manifests/swbd_split16/")
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins, sampling_rate=8000))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
partition = "all"
|
||||||
|
cuts_filename = (
|
||||||
|
f"{prefix}_cuts_{partition}.{str(split_index).zfill(2)}.{suffix}"
|
||||||
|
)
|
||||||
|
print(cuts_filename)
|
||||||
|
if (output_dir / cuts_filename).is_file():
|
||||||
|
logging.info(f"{prefix} already exists - skipping.")
|
||||||
|
return
|
||||||
|
logging.info(f"Processing {prefix}")
|
||||||
|
cut_set = (
|
||||||
|
CutSet.from_file(
|
||||||
|
split_dir
|
||||||
|
/ f"swbd_train_all_trimmed.{str(split_index).zfill(2)}.jsonl.gz"
|
||||||
|
)
|
||||||
|
.to_eager()
|
||||||
|
.filter(lambda c: c.duration > 2.0)
|
||||||
|
)
|
||||||
|
|
||||||
|
if bpe_model:
|
||||||
|
cut_set = filter_cuts(cut_set, sp)
|
||||||
|
if perturb_speed:
|
||||||
|
logging.info(f"Doing speed perturb")
|
||||||
|
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}_{str(split_index).zfill(2)}",
|
||||||
|
# when an executor is specified, make more partitions
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
cut_set = cut_set.trim_to_supervisions(
|
||||||
|
keep_overlapping=False,
|
||||||
|
min_duration=None,
|
||||||
|
)
|
||||||
|
cut_set.to_file(output_dir / cuts_filename)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
args = get_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
compute_fbank_switchboard(
|
||||||
|
dir_name="swbd",
|
||||||
|
split_index=args.split_index,
|
||||||
|
bpe_model=args.bpe_model,
|
||||||
|
dataset=args.dataset,
|
||||||
|
perturb_speed=args.perturb_speed,
|
||||||
|
)
|
@ -145,6 +145,13 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
log "
|
||||||
|
Computing fbank for SwitchBoard and MUSAN noise.
|
||||||
|
|
||||||
|
Note that the current setup upsamples the audio to 16kHz before fbank extraction
|
||||||
|
please use prepare_nb.sh if you want to use 8kHz audio for narrowband systems.
|
||||||
|
"
|
||||||
|
|
||||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
log "Stage 3 I: Compute fbank for SwitchBoard"
|
log "Stage 3 I: Compute fbank for SwitchBoard"
|
||||||
if [ ! -e data/fbank/.swbd.done ]; then
|
if [ ! -e data/fbank/.swbd.done ]; then
|
||||||
|
96
egs/swbd/ASR/prepare_nb.sh
Executable file
96
egs/swbd/ASR/prepare_nb.sh
Executable file
@ -0,0 +1,96 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
nj=15
|
||||||
|
stage=-1
|
||||||
|
stop_stage=100
|
||||||
|
|
||||||
|
# We assume dl_dir (download dir) contains the following
|
||||||
|
# directories and files. Most of them can't be downloaded automatically
|
||||||
|
# as they are not publically available and require a license purchased
|
||||||
|
# from the LDC.
|
||||||
|
#
|
||||||
|
# - $dl_dir/musan
|
||||||
|
# This directory contains the following directories downloaded from
|
||||||
|
# http://www.openslr.org/17/
|
||||||
|
#
|
||||||
|
# - music
|
||||||
|
# - noise
|
||||||
|
# - speech
|
||||||
|
|
||||||
|
dl_dir=./download
|
||||||
|
# swbd1_dir="/export/corpora3/LDC/LDC97S62"
|
||||||
|
swbd1_dir=./download/LDC97S62/
|
||||||
|
|
||||||
|
# eval2000_dir contains the following files and directories
|
||||||
|
# downloaded from LDC website:
|
||||||
|
# - LDC2002S09
|
||||||
|
# - hub5e_00
|
||||||
|
# - LDC2002T43
|
||||||
|
# - reference
|
||||||
|
eval2000_dir="/export/corpora2/LDC/eval2000"
|
||||||
|
|
||||||
|
rt03_dir="/export/corpora/LDC/LDC2007S10"
|
||||||
|
fisher_dir="/export/corpora3/LDC/LDC2004T19"
|
||||||
|
|
||||||
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
|
# vocab size for sentence piece models.
|
||||||
|
# It will generate data/lang_bpe_xxx,
|
||||||
|
# data/lang_bpe_yyy if the array contains xxx, yyy
|
||||||
|
vocab_sizes=(
|
||||||
|
# 5000
|
||||||
|
# 2000
|
||||||
|
1000
|
||||||
|
500
|
||||||
|
)
|
||||||
|
|
||||||
|
# All files generated by this script are saved in "data".
|
||||||
|
# You can safely remove "data" and rerun this script to regenerate it.
|
||||||
|
mkdir -p data
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
log "swbd1_dir: $swbd1_dir"
|
||||||
|
log "eval2000_dir: $eval2000_dir"
|
||||||
|
log "rt03_dir: $rt03_dir"
|
||||||
|
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "Stage 1 I: Compute narrowband fbank for SwitchBoard"
|
||||||
|
if [ ! -e data/fbank_nb/.swbd.done ]; then
|
||||||
|
mkdir -p data/fbank_nb/swbd_split${num_splits}/
|
||||||
|
for index in $(seq 1 16); do
|
||||||
|
./local/compute_fbank_swbd_nb.py --split-index ${index} &
|
||||||
|
done
|
||||||
|
wait
|
||||||
|
pieces=$(find data/fbank_nb/swbd_split${num_splits} -name "swbd_cuts_all.*.jsonl.gz")
|
||||||
|
lhotse combine $pieces data/fbank_nb/swbd_cuts_all.jsonl.gz
|
||||||
|
touch data/fbank_nb/.swbd.done
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "Stage 1 II: Compute narrowband fbank for eval2000"
|
||||||
|
if [ ! -e data/fbank_nb/.eval2000.done ]; then
|
||||||
|
mkdir -p data/fbank_nb/eval2000/
|
||||||
|
./local/compute_fbank_eval2000_nb.py
|
||||||
|
touch data/fbank_nb/.eval2000.done
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "Stage 2: Compute narrowband fbank for musan"
|
||||||
|
mkdir -p data/fbank_nb/
|
||||||
|
if [ ! -e data/fbank_nb/.musan.done ]; then
|
||||||
|
./local/compute_fbank_musan_nb.py
|
||||||
|
touch data/fbank_nb/.musan.done
|
||||||
|
fi
|
||||||
|
fi
|
Loading…
x
Reference in New Issue
Block a user