icefall/egs/swbd/ASR/local/compute_fbank_eval2000_nb.py
2023-11-24 12:01:50 +08:00

140 lines
4.3 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# Modified 2023 The Chinese University of Hong Kong (author: Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the SwitchBoard dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
import os
from pathlib import Path
from typing import Optional
import sentencepiece as spm
import torch
from filter_cuts import filter_cuts
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to the bpe.model. If not None, we will remove short and
long utterances before extracting features""",
)
parser.add_argument(
"--dataset",
type=str,
help="""Dataset parts to compute fbank. If None, we will use all""",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
)
return parser.parse_args()
def compute_fbank_switchboard(
dir_name: str,
bpe_model: Optional[str] = None,
dataset: Optional[str] = None,
perturb_speed: Optional[bool] = True,
):
src_dir = Path(f"data/manifests/{dir_name}")
output_dir = Path(f"data/fbank_nb/{dir_name}")
num_jobs = min(1, os.cpu_count())
num_mel_bins = 80
if bpe_model:
logging.info(f"Loading {bpe_model}")
sp = spm.SentencePieceProcessor()
sp.load(bpe_model)
if dataset is None:
dataset_parts = ("all",)
else:
dataset_parts = dataset.split(" ", -1)
prefix = dir_name
suffix = "jsonl.gz"
manifests = {
"eval2000": "data/manifests/eval2000/eval2000_cuts_all_trimmed.jsonl.gz",
}
assert manifests is not None
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins, sampling_rate=8000))
with get_executor() as ex: # Initialize the executor only once.
partition = "all"
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
print(cuts_filename)
if (output_dir / cuts_filename).is_file():
logging.info(f"{prefix} already exists - skipping.")
return
logging.info(f"Processing {prefix}")
cut_set = CutSet.from_file(manifests[prefix])
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
cut_set.to_file(output_dir / cuts_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
compute_fbank_switchboard(
dir_name="eval2000",
bpe_model=args.bpe_model,
dataset=args.dataset,
perturb_speed=args.perturb_speed,
)