Replace relu with swish-squared.

This commit is contained in:
Daniel Povey 2022-03-05 22:21:42 +08:00
parent 5f2c0a09b7
commit 8a8b81cd18
3 changed files with 14 additions and 12 deletions

View File

@ -212,12 +212,11 @@ class ExpScale(torch.nn.Module):
def _exp_scale_swish(x: Tensor, scale: Tensor, speed: float) -> Tensor:
return (x * torch.sigmoid(x)) * (scale * speed).exp()
def _exp_scale_swish_backward(x: Tensor, scale: Tensor, speed: float) -> Tensor:
return (x * torch.sigmoid(x)) * (scale * speed).exp()
# double-swish!
x = (x * torch.sigmoid(x))
x = (x * torch.sigmoid(x))
x = x * (scale * speed).exp()
return x
class ExpScaleSwishFunction(torch.autograd.Function):
@staticmethod
@ -247,8 +246,11 @@ class ExpScaleSwish(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
return ExpScaleSwishFunction.apply(x, self.scale, self.speed)
# return (x * torch.sigmoid(x)) * (self.scale * self.speed).exp()
# return x * (self.scale * self.speed).exp()
# x = (x * torch.sigmoid(x))
# x = (x * torch.sigmoid(x))
# x = x * (self.scale * self.speed).exp()
# return x
def _exp_scale_relu(x: Tensor, scale: Tensor, speed: float) -> Tensor:

View File

@ -158,7 +158,7 @@ class ConformerEncoderLayer(nn.Module):
nn.Linear(d_model, dim_feedforward),
DerivBalancer(channel_dim=-1, threshold=0.05,
max_factor=0.025),
ExpScaleRelu(dim_feedforward, speed=20.0),
ExpScaleSwish(dim_feedforward, speed=20.0),
nn.Dropout(dropout),
nn.Linear(dim_feedforward, d_model),
)
@ -167,7 +167,7 @@ class ConformerEncoderLayer(nn.Module):
nn.Linear(d_model, dim_feedforward),
DerivBalancer(channel_dim=-1, threshold=0.05,
max_factor=0.025),
ExpScaleRelu(dim_feedforward, speed=20.0),
ExpScaleSwish(dim_feedforward, speed=20.0),
nn.Dropout(dropout),
nn.Linear(dim_feedforward, d_model),
)
@ -880,7 +880,7 @@ class ConvolutionModule(nn.Module):
self.balancer = DerivBalancer(channel_dim=1, threshold=0.05,
max_factor=0.025)
# shape: (channels, 1), broadcasts with (batch, channel, time).
self.activation = ExpScaleRelu(channels, 1, speed=20.0)
self.activation = ExpScaleSwish(channels, 1, speed=20.0)
self.pointwise_conv2 = nn.Conv1d(
channels,

View File

@ -110,7 +110,7 @@ def get_parser():
parser.add_argument(
"--exp-dir",
type=str,
default="transducer_stateless/specaugmod_baseline_randcombine1_expscale5_brelu2relu",
default="transducer_stateless/specaugmod_baseline_randcombine1_expscale5_brelu2swish2",
help="""The experiment dir.
It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved