mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 17:42:21 +00:00
Convert swish nonlinearities to ReLU
This commit is contained in:
parent
0cd14ae739
commit
5f2c0a09b7
@ -49,15 +49,13 @@ class Conv2dSubsampling(nn.Module):
|
||||
),
|
||||
DerivBalancer(channel_dim=1, threshold=0.05,
|
||||
max_factor=0.025),
|
||||
nn.ReLU(),
|
||||
ExpScale(odim, 1, 1, speed=20.0),
|
||||
ExpScaleRelu(odim, 1, 1, speed=20.0),
|
||||
nn.Conv2d(
|
||||
in_channels=odim, out_channels=odim, kernel_size=3, stride=2
|
||||
),
|
||||
DerivBalancer(channel_dim=1, threshold=0.05,
|
||||
max_factor=0.025),
|
||||
nn.ReLU(),
|
||||
ExpScale(odim, 1, 1, speed=20.0),
|
||||
ExpScaleRelu(odim, 1, 1, speed=20.0),
|
||||
)
|
||||
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
|
||||
self.out_norm = nn.LayerNorm(odim, elementwise_affine=False)
|
||||
@ -253,6 +251,60 @@ class ExpScaleSwish(torch.nn.Module):
|
||||
# return x * (self.scale * self.speed).exp()
|
||||
|
||||
|
||||
def _exp_scale_relu(x: Tensor, scale: Tensor, speed: float) -> Tensor:
|
||||
return (x * (scale * speed).exp()).relu()
|
||||
|
||||
|
||||
class ExpScaleReluFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor, scale: Tensor, speed: float) -> Tensor:
|
||||
ctx.save_for_backward(x.detach(), scale.detach())
|
||||
ctx.speed = speed
|
||||
return _exp_scale_swish(x, scale, speed)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||
x, scale = ctx.saved_tensors
|
||||
x.requires_grad = True
|
||||
scale.requires_grad = True
|
||||
with torch.enable_grad():
|
||||
y = _exp_scale_swish(x, scale, ctx.speed)
|
||||
y.backward(gradient=y_grad)
|
||||
return x.grad, scale.grad, None
|
||||
|
||||
|
||||
|
||||
class ExpScaleReluFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor, scale: Tensor, speed: float) -> Tensor:
|
||||
ctx.save_for_backward(x.detach(), scale.detach())
|
||||
ctx.speed = speed
|
||||
return _exp_scale_relu(x, scale, speed)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||
x, scale = ctx.saved_tensors
|
||||
x.requires_grad = True
|
||||
scale.requires_grad = True
|
||||
with torch.enable_grad():
|
||||
y = _exp_scale_relu(x, scale, ctx.speed)
|
||||
y.backward(gradient=y_grad)
|
||||
return x.grad, scale.grad, None
|
||||
|
||||
class ExpScaleRelu(torch.nn.Module):
|
||||
# combines ExpScale and Relu.
|
||||
# caution: need to specify name for speed, e.g. ExpScaleRelu(50, speed=4.0)
|
||||
def __init__(self, *shape, speed: float = 1.0):
|
||||
super(ExpScaleRelu, self).__init__()
|
||||
self.scale = nn.Parameter(torch.zeros(*shape))
|
||||
self.speed = speed
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return ExpScaleReluFunction.apply(x, self.scale, self.speed)
|
||||
# return (x * torch.sigmoid(x)) * (self.scale * self.speed).exp()
|
||||
# return x * (self.scale * self.speed).exp()
|
||||
|
||||
|
||||
|
||||
|
||||
class DerivBalancerFunction(torch.autograd.Function):
|
||||
@ -335,6 +387,23 @@ def _test_exp_scale_swish():
|
||||
y2.sum().backward()
|
||||
assert torch.allclose(x1.grad, x2.grad)
|
||||
|
||||
def _test_exp_scale_relu():
|
||||
|
||||
x1 = torch.randn(50, 60).detach()
|
||||
x2 = x1.detach()
|
||||
|
||||
m1 = ExpScaleRelu(50, 1, speed=4.0)
|
||||
m2 = torch.nn.Sequential(nn.ReLU(), ExpScale(50, 1, speed=4.0))
|
||||
x1.requires_grad = True
|
||||
x2.requires_grad = True
|
||||
|
||||
y1 = m1(x1)
|
||||
y2 = m2(x2)
|
||||
assert torch.allclose(y1, y2)
|
||||
y1.sum().backward()
|
||||
y2.sum().backward()
|
||||
assert torch.allclose(x1.grad, x2.grad)
|
||||
|
||||
|
||||
|
||||
def _test_deriv_balancer():
|
||||
@ -360,3 +429,4 @@ def _test_deriv_balancer():
|
||||
if __name__ == '__main__':
|
||||
_test_deriv_balancer()
|
||||
_test_exp_scale_swish()
|
||||
_test_exp_scale_relu()
|
||||
|
@ -19,7 +19,7 @@ import copy
|
||||
import math
|
||||
import warnings
|
||||
from typing import Optional, Tuple, Sequence
|
||||
from subsampling import PeLU, ExpScale, ExpScaleSwish, DerivBalancer
|
||||
from subsampling import PeLU, ExpScale, ExpScaleSwish, ExpScaleRelu, DerivBalancer
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
@ -158,7 +158,7 @@ class ConformerEncoderLayer(nn.Module):
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
DerivBalancer(channel_dim=-1, threshold=0.05,
|
||||
max_factor=0.025),
|
||||
ExpScaleSwish(dim_feedforward, speed=20.0),
|
||||
ExpScaleRelu(dim_feedforward, speed=20.0),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
@ -167,7 +167,7 @@ class ConformerEncoderLayer(nn.Module):
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
DerivBalancer(channel_dim=-1, threshold=0.05,
|
||||
max_factor=0.025),
|
||||
ExpScaleSwish(dim_feedforward, speed=20.0),
|
||||
ExpScaleRelu(dim_feedforward, speed=20.0),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
@ -877,8 +877,10 @@ class ConvolutionModule(nn.Module):
|
||||
groups=channels,
|
||||
bias=bias,
|
||||
)
|
||||
self.balancer = DerivBalancer(channel_dim=1, threshold=0.05,
|
||||
max_factor=0.025)
|
||||
# shape: (channels, 1), broadcasts with (batch, channel, time).
|
||||
self.activation = ExpScaleSwish(channels, 1, speed=20.0)
|
||||
self.activation = ExpScaleRelu(channels, 1, speed=20.0)
|
||||
|
||||
self.pointwise_conv2 = nn.Conv1d(
|
||||
channels,
|
||||
@ -910,6 +912,7 @@ class ConvolutionModule(nn.Module):
|
||||
x = self.depthwise_conv(x)
|
||||
# x is (batch, channels, time)
|
||||
|
||||
x = self.balancer(x)
|
||||
x = self.activation(x)
|
||||
|
||||
x = self.pointwise_conv2(x) # (batch, channel, time)
|
||||
|
@ -110,7 +110,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_stateless/specaugmod_baseline_randcombine1_expscale5_brelu2",
|
||||
default="transducer_stateless/specaugmod_baseline_randcombine1_expscale5_brelu2relu",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
|
Loading…
x
Reference in New Issue
Block a user