mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Add MMI training with word pieces.
This commit is contained in:
parent
f03c991781
commit
897307f445
0
egs/librispeech/ASR/conformer_mmi/__init__.py
Normal file
0
egs/librispeech/ASR/conformer_mmi/__init__.py
Normal file
918
egs/librispeech/ASR/conformer_mmi/conformer.py
Normal file
918
egs/librispeech/ASR/conformer_mmi/conformer.py
Normal file
@ -0,0 +1,918 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||||
|
# Apache 2.0
|
||||||
|
|
||||||
|
import math
|
||||||
|
import warnings
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import Tensor, nn
|
||||||
|
from transformer import Supervisions, Transformer, encoder_padding_mask
|
||||||
|
|
||||||
|
|
||||||
|
class Conformer(Transformer):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
num_features (int): Number of input features
|
||||||
|
num_classes (int): Number of output classes
|
||||||
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
|
d_model (int): attention dimension
|
||||||
|
nhead (int): number of head
|
||||||
|
dim_feedforward (int): feedforward dimention
|
||||||
|
num_encoder_layers (int): number of encoder layers
|
||||||
|
num_decoder_layers (int): number of decoder layers
|
||||||
|
dropout (float): dropout rate
|
||||||
|
cnn_module_kernel (int): Kernel size of convolution module
|
||||||
|
normalize_before (bool): whether to use layer_norm before the first block.
|
||||||
|
vgg_frontend (bool): whether to use vgg frontend.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_features: int,
|
||||||
|
num_classes: int,
|
||||||
|
subsampling_factor: int = 4,
|
||||||
|
d_model: int = 256,
|
||||||
|
nhead: int = 4,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
num_encoder_layers: int = 12,
|
||||||
|
num_decoder_layers: int = 6,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
cnn_module_kernel: int = 31,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
vgg_frontend: bool = False,
|
||||||
|
is_espnet_structure: bool = False,
|
||||||
|
use_feat_batchnorm: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super(Conformer, self).__init__(
|
||||||
|
num_features=num_features,
|
||||||
|
num_classes=num_classes,
|
||||||
|
subsampling_factor=subsampling_factor,
|
||||||
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
num_encoder_layers=num_encoder_layers,
|
||||||
|
num_decoder_layers=num_decoder_layers,
|
||||||
|
dropout=dropout,
|
||||||
|
normalize_before=normalize_before,
|
||||||
|
vgg_frontend=vgg_frontend,
|
||||||
|
use_feat_batchnorm=use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||||
|
|
||||||
|
encoder_layer = ConformerEncoderLayer(
|
||||||
|
d_model,
|
||||||
|
nhead,
|
||||||
|
dim_feedforward,
|
||||||
|
dropout,
|
||||||
|
cnn_module_kernel,
|
||||||
|
normalize_before,
|
||||||
|
is_espnet_structure,
|
||||||
|
)
|
||||||
|
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
self.is_espnet_structure = is_espnet_structure
|
||||||
|
if self.normalize_before and self.is_espnet_structure:
|
||||||
|
self.after_norm = nn.LayerNorm(d_model)
|
||||||
|
else:
|
||||||
|
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
||||||
|
# and throws an error without this change.
|
||||||
|
self.after_norm = identity
|
||||||
|
|
||||||
|
def run_encoder(
|
||||||
|
self, x: Tensor, supervisions: Optional[Supervisions] = None
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The model input. Its shape is [N, T, C].
|
||||||
|
supervisions:
|
||||||
|
Supervision in lhotse format.
|
||||||
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
|
CAUTION: It contains length information, i.e., start and number of
|
||||||
|
frames, before subsampling
|
||||||
|
It is read directly from the batch, without any sorting. It is used
|
||||||
|
to compute encoder padding mask, which is used as memory key padding
|
||||||
|
mask for the decoder.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: Predictor tensor of dimension (input_length, batch_size, d_model).
|
||||||
|
Tensor: Mask tensor of dimension (batch_size, input_length)
|
||||||
|
"""
|
||||||
|
x = self.encoder_embed(x)
|
||||||
|
x, pos_emb = self.encoder_pos(x)
|
||||||
|
x = x.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||||
|
mask = encoder_padding_mask(x.size(0), supervisions)
|
||||||
|
if mask is not None:
|
||||||
|
mask = mask.to(x.device)
|
||||||
|
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F)
|
||||||
|
|
||||||
|
if self.normalize_before and self.is_espnet_structure:
|
||||||
|
x = self.after_norm(x)
|
||||||
|
|
||||||
|
return x, mask
|
||||||
|
|
||||||
|
|
||||||
|
class ConformerEncoderLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
||||||
|
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model: the number of expected features in the input (required).
|
||||||
|
nhead: the number of heads in the multiheadattention models (required).
|
||||||
|
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
||||||
|
dropout: the dropout value (default=0.1).
|
||||||
|
cnn_module_kernel (int): Kernel size of convolution module.
|
||||||
|
normalize_before: whether to use layer_norm before the first block.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> src = torch.rand(10, 32, 512)
|
||||||
|
>>> pos_emb = torch.rand(32, 19, 512)
|
||||||
|
>>> out = encoder_layer(src, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int,
|
||||||
|
nhead: int,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
cnn_module_kernel: int = 31,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
is_espnet_structure: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super(ConformerEncoderLayer, self).__init__()
|
||||||
|
self.self_attn = RelPositionMultiheadAttention(
|
||||||
|
d_model, nhead, dropout=0.0, is_espnet_structure=is_espnet_structure
|
||||||
|
)
|
||||||
|
|
||||||
|
self.feed_forward = nn.Sequential(
|
||||||
|
nn.Linear(d_model, dim_feedforward),
|
||||||
|
Swish(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(dim_feedforward, d_model),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.feed_forward_macaron = nn.Sequential(
|
||||||
|
nn.Linear(d_model, dim_feedforward),
|
||||||
|
Swish(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(dim_feedforward, d_model),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
||||||
|
|
||||||
|
self.norm_ff_macaron = nn.LayerNorm(
|
||||||
|
d_model
|
||||||
|
) # for the macaron style FNN module
|
||||||
|
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
||||||
|
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
||||||
|
|
||||||
|
self.ff_scale = 0.5
|
||||||
|
|
||||||
|
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
||||||
|
self.norm_final = nn.LayerNorm(
|
||||||
|
d_model
|
||||||
|
) # for the final output of the block
|
||||||
|
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
src_mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tensor:
|
||||||
|
"""
|
||||||
|
Pass the input through the encoder layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder layer (required).
|
||||||
|
pos_emb: Positional embedding tensor (required).
|
||||||
|
src_mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
src: (S, N, E).
|
||||||
|
pos_emb: (N, 2*S-1, E)
|
||||||
|
src_mask: (S, S).
|
||||||
|
src_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, N is the batch size, E is the feature number
|
||||||
|
"""
|
||||||
|
|
||||||
|
# macaron style feed forward module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_ff_macaron(src)
|
||||||
|
src = residual + self.ff_scale * self.dropout(
|
||||||
|
self.feed_forward_macaron(src)
|
||||||
|
)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_ff_macaron(src)
|
||||||
|
|
||||||
|
# multi-headed self-attention module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_mha(src)
|
||||||
|
src_att = self.self_attn(
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
pos_emb=pos_emb,
|
||||||
|
attn_mask=src_mask,
|
||||||
|
key_padding_mask=src_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
src = residual + self.dropout(src_att)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_mha(src)
|
||||||
|
|
||||||
|
# convolution module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_conv(src)
|
||||||
|
src = residual + self.dropout(self.conv_module(src))
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_conv(src)
|
||||||
|
|
||||||
|
# feed forward module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_ff(src)
|
||||||
|
src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_ff(src)
|
||||||
|
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_final(src)
|
||||||
|
|
||||||
|
return src
|
||||||
|
|
||||||
|
|
||||||
|
class ConformerEncoder(nn.TransformerEncoder):
|
||||||
|
r"""ConformerEncoder is a stack of N encoder layers
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
||||||
|
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||||
|
norm: the layer normalization component (optional).
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
||||||
|
>>> src = torch.rand(10, 32, 512)
|
||||||
|
>>> pos_emb = torch.rand(32, 19, 512)
|
||||||
|
>>> out = conformer_encoder(src, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
||||||
|
) -> None:
|
||||||
|
super(ConformerEncoder, self).__init__(
|
||||||
|
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tensor:
|
||||||
|
r"""Pass the input through the encoder layers in turn.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder (required).
|
||||||
|
pos_emb: Positional embedding tensor (required).
|
||||||
|
mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
src: (S, N, E).
|
||||||
|
pos_emb: (N, 2*S-1, E)
|
||||||
|
mask: (S, S).
|
||||||
|
src_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
||||||
|
|
||||||
|
"""
|
||||||
|
output = src
|
||||||
|
|
||||||
|
for mod in self.layers:
|
||||||
|
output = mod(
|
||||||
|
output,
|
||||||
|
pos_emb,
|
||||||
|
src_mask=mask,
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.norm is not None:
|
||||||
|
output = self.norm(output)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class RelPositionalEncoding(torch.nn.Module):
|
||||||
|
"""Relative positional encoding module.
|
||||||
|
|
||||||
|
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model: Embedding dimension.
|
||||||
|
dropout_rate: Dropout rate.
|
||||||
|
max_len: Maximum input length.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
||||||
|
) -> None:
|
||||||
|
"""Construct an PositionalEncoding object."""
|
||||||
|
super(RelPositionalEncoding, self).__init__()
|
||||||
|
self.d_model = d_model
|
||||||
|
self.xscale = math.sqrt(self.d_model)
|
||||||
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||||
|
self.pe = None
|
||||||
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||||
|
|
||||||
|
def extend_pe(self, x: Tensor) -> None:
|
||||||
|
"""Reset the positional encodings."""
|
||||||
|
if self.pe is not None:
|
||||||
|
# self.pe contains both positive and negative parts
|
||||||
|
# the length of self.pe is 2 * input_len - 1
|
||||||
|
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||||
|
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||||
|
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
||||||
|
x.device
|
||||||
|
):
|
||||||
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||||
|
return
|
||||||
|
# Suppose `i` means to the position of query vecotr and `j` means the
|
||||||
|
# position of key vector. We use position relative positions when keys
|
||||||
|
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||||
|
pe_positive = torch.zeros(x.size(1), self.d_model)
|
||||||
|
pe_negative = torch.zeros(x.size(1), self.d_model)
|
||||||
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||||
|
div_term = torch.exp(
|
||||||
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||||
|
* -(math.log(10000.0) / self.d_model)
|
||||||
|
)
|
||||||
|
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||||
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||||
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||||
|
|
||||||
|
# Reserve the order of positive indices and concat both positive and
|
||||||
|
# negative indices. This is used to support the shifting trick
|
||||||
|
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||||
|
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||||
|
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||||
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
||||||
|
"""Add positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||||
|
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
||||||
|
|
||||||
|
"""
|
||||||
|
self.extend_pe(x)
|
||||||
|
x = x * self.xscale
|
||||||
|
pos_emb = self.pe[
|
||||||
|
:,
|
||||||
|
self.pe.size(1) // 2
|
||||||
|
- x.size(1)
|
||||||
|
+ 1 : self.pe.size(1) // 2
|
||||||
|
+ x.size(1),
|
||||||
|
]
|
||||||
|
return self.dropout(x), self.dropout(pos_emb)
|
||||||
|
|
||||||
|
|
||||||
|
class RelPositionMultiheadAttention(nn.Module):
|
||||||
|
r"""Multi-Head Attention layer with relative position encoding
|
||||||
|
|
||||||
|
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
|
||||||
|
Args:
|
||||||
|
embed_dim: total dimension of the model.
|
||||||
|
num_heads: parallel attention heads.
|
||||||
|
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
|
||||||
|
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
||||||
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embed_dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
is_espnet_structure: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super(RelPositionMultiheadAttention, self).__init__()
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.dropout = dropout
|
||||||
|
self.head_dim = embed_dim // num_heads
|
||||||
|
assert (
|
||||||
|
self.head_dim * num_heads == self.embed_dim
|
||||||
|
), "embed_dim must be divisible by num_heads"
|
||||||
|
|
||||||
|
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
|
||||||
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
||||||
|
|
||||||
|
# linear transformation for positional encoding.
|
||||||
|
self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
|
||||||
|
# these two learnable bias are used in matrix c and matrix d
|
||||||
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
|
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||||
|
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||||
|
|
||||||
|
self._reset_parameters()
|
||||||
|
|
||||||
|
self.is_espnet_structure = is_espnet_structure
|
||||||
|
|
||||||
|
def _reset_parameters(self) -> None:
|
||||||
|
nn.init.xavier_uniform_(self.in_proj.weight)
|
||||||
|
nn.init.constant_(self.in_proj.bias, 0.0)
|
||||||
|
nn.init.constant_(self.out_proj.bias, 0.0)
|
||||||
|
|
||||||
|
nn.init.xavier_uniform_(self.pos_bias_u)
|
||||||
|
nn.init.xavier_uniform_(self.pos_bias_v)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
query: Tensor,
|
||||||
|
key: Tensor,
|
||||||
|
value: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
|
need_weights: bool = True,
|
||||||
|
attn_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||||||
|
pos_emb: Positional embedding tensor
|
||||||
|
key_padding_mask: if provided, specified padding elements in the key will
|
||||||
|
be ignored by the attention. When given a binary mask and a value is True,
|
||||||
|
the corresponding value on the attention layer will be ignored. When given
|
||||||
|
a byte mask and a value is non-zero, the corresponding value on the attention
|
||||||
|
layer will be ignored
|
||||||
|
need_weights: output attn_output_weights.
|
||||||
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||||
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
- Inputs:
|
||||||
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||||
|
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
||||||
|
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
||||||
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||||
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||||
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||||
|
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
||||||
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||||
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||||
|
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||||
|
is provided, it will be added to the attention weight.
|
||||||
|
|
||||||
|
- Outputs:
|
||||||
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||||
|
E is the embedding dimension.
|
||||||
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||||
|
L is the target sequence length, S is the source sequence length.
|
||||||
|
"""
|
||||||
|
return self.multi_head_attention_forward(
|
||||||
|
query,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
pos_emb,
|
||||||
|
self.embed_dim,
|
||||||
|
self.num_heads,
|
||||||
|
self.in_proj.weight,
|
||||||
|
self.in_proj.bias,
|
||||||
|
self.dropout,
|
||||||
|
self.out_proj.weight,
|
||||||
|
self.out_proj.bias,
|
||||||
|
training=self.training,
|
||||||
|
key_padding_mask=key_padding_mask,
|
||||||
|
need_weights=need_weights,
|
||||||
|
attn_mask=attn_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
def rel_shift(self, x: Tensor) -> Tensor:
|
||||||
|
"""Compute relative positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input tensor (batch, head, time1, 2*time1-1).
|
||||||
|
time1 means the length of query vector.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: tensor of shape (batch, head, time1, time2)
|
||||||
|
(note: time2 has the same value as time1, but it is for
|
||||||
|
the key, while time1 is for the query).
|
||||||
|
"""
|
||||||
|
(batch_size, num_heads, time1, n) = x.shape
|
||||||
|
assert n == 2 * time1 - 1
|
||||||
|
# Note: TorchScript requires explicit arg for stride()
|
||||||
|
batch_stride = x.stride(0)
|
||||||
|
head_stride = x.stride(1)
|
||||||
|
time1_stride = x.stride(2)
|
||||||
|
n_stride = x.stride(3)
|
||||||
|
return x.as_strided(
|
||||||
|
(batch_size, num_heads, time1, time1),
|
||||||
|
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
||||||
|
storage_offset=n_stride * (time1 - 1),
|
||||||
|
)
|
||||||
|
|
||||||
|
def multi_head_attention_forward(
|
||||||
|
self,
|
||||||
|
query: Tensor,
|
||||||
|
key: Tensor,
|
||||||
|
value: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
embed_dim_to_check: int,
|
||||||
|
num_heads: int,
|
||||||
|
in_proj_weight: Tensor,
|
||||||
|
in_proj_bias: Tensor,
|
||||||
|
dropout_p: float,
|
||||||
|
out_proj_weight: Tensor,
|
||||||
|
out_proj_bias: Tensor,
|
||||||
|
training: bool = True,
|
||||||
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
|
need_weights: bool = True,
|
||||||
|
attn_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||||||
|
pos_emb: Positional embedding tensor
|
||||||
|
embed_dim_to_check: total dimension of the model.
|
||||||
|
num_heads: parallel attention heads.
|
||||||
|
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||||
|
dropout_p: probability of an element to be zeroed.
|
||||||
|
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||||
|
training: apply dropout if is ``True``.
|
||||||
|
key_padding_mask: if provided, specified padding elements in the key will
|
||||||
|
be ignored by the attention. This is an binary mask. When the value is True,
|
||||||
|
the corresponding value on the attention layer will be filled with -inf.
|
||||||
|
need_weights: output attn_output_weights.
|
||||||
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||||
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
Inputs:
|
||||||
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
||||||
|
length, N is the batch size, E is the embedding dimension.
|
||||||
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||||
|
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
||||||
|
will be unchanged. If a BoolTensor is provided, the positions with the
|
||||||
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||||
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||||
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||||
|
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||||
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||||
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||||
|
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||||
|
is provided, it will be added to the attention weight.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||||
|
E is the embedding dimension.
|
||||||
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||||
|
L is the target sequence length, S is the source sequence length.
|
||||||
|
"""
|
||||||
|
|
||||||
|
tgt_len, bsz, embed_dim = query.size()
|
||||||
|
assert embed_dim == embed_dim_to_check
|
||||||
|
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
||||||
|
|
||||||
|
head_dim = embed_dim // num_heads
|
||||||
|
assert (
|
||||||
|
head_dim * num_heads == embed_dim
|
||||||
|
), "embed_dim must be divisible by num_heads"
|
||||||
|
scaling = float(head_dim) ** -0.5
|
||||||
|
|
||||||
|
if torch.equal(query, key) and torch.equal(key, value):
|
||||||
|
# self-attention
|
||||||
|
q, k, v = nn.functional.linear(
|
||||||
|
query, in_proj_weight, in_proj_bias
|
||||||
|
).chunk(3, dim=-1)
|
||||||
|
|
||||||
|
elif torch.equal(key, value):
|
||||||
|
# encoder-decoder attention
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = 0
|
||||||
|
_end = embed_dim
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
q = nn.functional.linear(query, _w, _b)
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim
|
||||||
|
_end = None
|
||||||
|
_w = in_proj_weight[_start:, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:]
|
||||||
|
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = 0
|
||||||
|
_end = embed_dim
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
q = nn.functional.linear(query, _w, _b)
|
||||||
|
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim
|
||||||
|
_end = embed_dim * 2
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
k = nn.functional.linear(key, _w, _b)
|
||||||
|
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim * 2
|
||||||
|
_end = None
|
||||||
|
_w = in_proj_weight[_start:, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:]
|
||||||
|
v = nn.functional.linear(value, _w, _b)
|
||||||
|
|
||||||
|
if not self.is_espnet_structure:
|
||||||
|
q = q * scaling
|
||||||
|
|
||||||
|
if attn_mask is not None:
|
||||||
|
assert (
|
||||||
|
attn_mask.dtype == torch.float32
|
||||||
|
or attn_mask.dtype == torch.float64
|
||||||
|
or attn_mask.dtype == torch.float16
|
||||||
|
or attn_mask.dtype == torch.uint8
|
||||||
|
or attn_mask.dtype == torch.bool
|
||||||
|
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
||||||
|
attn_mask.dtype
|
||||||
|
)
|
||||||
|
if attn_mask.dtype == torch.uint8:
|
||||||
|
warnings.warn(
|
||||||
|
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
||||||
|
)
|
||||||
|
attn_mask = attn_mask.to(torch.bool)
|
||||||
|
|
||||||
|
if attn_mask.dim() == 2:
|
||||||
|
attn_mask = attn_mask.unsqueeze(0)
|
||||||
|
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||||
|
raise RuntimeError(
|
||||||
|
"The size of the 2D attn_mask is not correct."
|
||||||
|
)
|
||||||
|
elif attn_mask.dim() == 3:
|
||||||
|
if list(attn_mask.size()) != [
|
||||||
|
bsz * num_heads,
|
||||||
|
query.size(0),
|
||||||
|
key.size(0),
|
||||||
|
]:
|
||||||
|
raise RuntimeError(
|
||||||
|
"The size of the 3D attn_mask is not correct."
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise RuntimeError(
|
||||||
|
"attn_mask's dimension {} is not supported".format(
|
||||||
|
attn_mask.dim()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# attn_mask's dim is 3 now.
|
||||||
|
|
||||||
|
# convert ByteTensor key_padding_mask to bool
|
||||||
|
if (
|
||||||
|
key_padding_mask is not None
|
||||||
|
and key_padding_mask.dtype == torch.uint8
|
||||||
|
):
|
||||||
|
warnings.warn(
|
||||||
|
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
||||||
|
)
|
||||||
|
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||||
|
|
||||||
|
q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
||||||
|
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
||||||
|
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
||||||
|
|
||||||
|
src_len = k.size(0)
|
||||||
|
|
||||||
|
if key_padding_mask is not None:
|
||||||
|
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
||||||
|
key_padding_mask.size(0), bsz
|
||||||
|
)
|
||||||
|
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
||||||
|
key_padding_mask.size(1), src_len
|
||||||
|
)
|
||||||
|
|
||||||
|
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
||||||
|
|
||||||
|
pos_emb_bsz = pos_emb.size(0)
|
||||||
|
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
||||||
|
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
||||||
|
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
||||||
|
|
||||||
|
q_with_bias_u = (q + self.pos_bias_u).transpose(
|
||||||
|
1, 2
|
||||||
|
) # (batch, head, time1, d_k)
|
||||||
|
|
||||||
|
q_with_bias_v = (q + self.pos_bias_v).transpose(
|
||||||
|
1, 2
|
||||||
|
) # (batch, head, time1, d_k)
|
||||||
|
|
||||||
|
# compute attention score
|
||||||
|
# first compute matrix a and matrix c
|
||||||
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
|
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||||
|
matrix_ac = torch.matmul(
|
||||||
|
q_with_bias_u, k
|
||||||
|
) # (batch, head, time1, time2)
|
||||||
|
|
||||||
|
# compute matrix b and matrix d
|
||||||
|
matrix_bd = torch.matmul(
|
||||||
|
q_with_bias_v, p.transpose(-2, -1)
|
||||||
|
) # (batch, head, time1, 2*time1-1)
|
||||||
|
matrix_bd = self.rel_shift(matrix_bd)
|
||||||
|
|
||||||
|
if not self.is_espnet_structure:
|
||||||
|
attn_output_weights = (
|
||||||
|
matrix_ac + matrix_bd
|
||||||
|
) # (batch, head, time1, time2)
|
||||||
|
else:
|
||||||
|
attn_output_weights = (
|
||||||
|
matrix_ac + matrix_bd
|
||||||
|
) * scaling # (batch, head, time1, time2)
|
||||||
|
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz * num_heads, tgt_len, -1
|
||||||
|
)
|
||||||
|
|
||||||
|
assert list(attn_output_weights.size()) == [
|
||||||
|
bsz * num_heads,
|
||||||
|
tgt_len,
|
||||||
|
src_len,
|
||||||
|
]
|
||||||
|
|
||||||
|
if attn_mask is not None:
|
||||||
|
if attn_mask.dtype == torch.bool:
|
||||||
|
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
||||||
|
else:
|
||||||
|
attn_output_weights += attn_mask
|
||||||
|
|
||||||
|
if key_padding_mask is not None:
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz, num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
attn_output_weights = attn_output_weights.masked_fill(
|
||||||
|
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||||
|
float("-inf"),
|
||||||
|
)
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz * num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
||||||
|
attn_output_weights = nn.functional.dropout(
|
||||||
|
attn_output_weights, p=dropout_p, training=training
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = torch.bmm(attn_output_weights, v)
|
||||||
|
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
||||||
|
attn_output = (
|
||||||
|
attn_output.transpose(0, 1)
|
||||||
|
.contiguous()
|
||||||
|
.view(tgt_len, bsz, embed_dim)
|
||||||
|
)
|
||||||
|
attn_output = nn.functional.linear(
|
||||||
|
attn_output, out_proj_weight, out_proj_bias
|
||||||
|
)
|
||||||
|
|
||||||
|
if need_weights:
|
||||||
|
# average attention weights over heads
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz, num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
||||||
|
else:
|
||||||
|
return attn_output, None
|
||||||
|
|
||||||
|
|
||||||
|
class ConvolutionModule(nn.Module):
|
||||||
|
"""ConvolutionModule in Conformer model.
|
||||||
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
||||||
|
|
||||||
|
Args:
|
||||||
|
channels (int): The number of channels of conv layers.
|
||||||
|
kernel_size (int): Kernerl size of conv layers.
|
||||||
|
bias (bool): Whether to use bias in conv layers (default=True).
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, channels: int, kernel_size: int, bias: bool = True
|
||||||
|
) -> None:
|
||||||
|
"""Construct an ConvolutionModule object."""
|
||||||
|
super(ConvolutionModule, self).__init__()
|
||||||
|
# kernerl_size should be a odd number for 'SAME' padding
|
||||||
|
assert (kernel_size - 1) % 2 == 0
|
||||||
|
|
||||||
|
self.pointwise_conv1 = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
2 * channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.depthwise_conv = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
stride=1,
|
||||||
|
padding=(kernel_size - 1) // 2,
|
||||||
|
groups=channels,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.norm = nn.BatchNorm1d(channels)
|
||||||
|
self.pointwise_conv2 = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.activation = Swish()
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
"""Compute convolution module.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input tensor (#time, batch, channels).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: Output tensor (#time, batch, channels).
|
||||||
|
|
||||||
|
"""
|
||||||
|
# exchange the temporal dimension and the feature dimension
|
||||||
|
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
||||||
|
|
||||||
|
# GLU mechanism
|
||||||
|
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
||||||
|
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
||||||
|
|
||||||
|
# 1D Depthwise Conv
|
||||||
|
x = self.depthwise_conv(x)
|
||||||
|
x = self.activation(self.norm(x))
|
||||||
|
|
||||||
|
x = self.pointwise_conv2(x) # (batch, channel, time)
|
||||||
|
|
||||||
|
return x.permute(2, 0, 1)
|
||||||
|
|
||||||
|
|
||||||
|
class Swish(torch.nn.Module):
|
||||||
|
"""Construct an Swish object."""
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
"""Return Swich activation function."""
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
def identity(x):
|
||||||
|
return x
|
507
egs/librispeech/ASR/conformer_mmi/decode.py
Executable file
507
egs/librispeech/ASR/conformer_mmi/decode.py
Executable file
@ -0,0 +1,507 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, Fangjun Kuang)
|
||||||
|
|
||||||
|
# (still working in progress)
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from conformer import Conformer
|
||||||
|
|
||||||
|
from icefall.bpe_mmi_graph_compiler import BpeMmiTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
nbest_decoding,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_attention_decoder,
|
||||||
|
rescore_with_n_best_list,
|
||||||
|
rescore_with_whole_lattice,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=9,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"exp_dir": Path("conformer_mmi/exp"),
|
||||||
|
"lang_dir": Path("data/lang_bpe"),
|
||||||
|
"lm_dir": Path("data/lm"),
|
||||||
|
"feature_dim": 80,
|
||||||
|
"nhead": 8,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"num_decoder_layers": 6,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
"is_espnet_structure": True,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
|
"search_beam": 20,
|
||||||
|
"output_beam": 8,
|
||||||
|
"min_active_states": 30,
|
||||||
|
"max_active_states": 10000,
|
||||||
|
"use_double_scores": True,
|
||||||
|
# Possible values for method:
|
||||||
|
# - 1best
|
||||||
|
# - nbest
|
||||||
|
# - nbest-rescoring
|
||||||
|
# - whole-lattice-rescoring
|
||||||
|
# - attention-decoder
|
||||||
|
# "method": "whole-lattice-rescoring",
|
||||||
|
"method": "1best",
|
||||||
|
# num_paths is used when method is "nbest", "nbest-rescoring",
|
||||||
|
# and attention-decoder
|
||||||
|
"num_paths": 100,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
HLG: k2.Fsa,
|
||||||
|
batch: dict,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
G: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[int]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if no rescoring is used, the key is the string `no_rescore`.
|
||||||
|
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||||
|
where `xxx` is the value of `lm_scale`. An example key is
|
||||||
|
`lm_scale_0.7`
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
|
||||||
|
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||||
|
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||||
|
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||||
|
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||||
|
rescoring.
|
||||||
|
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
lexicon:
|
||||||
|
It contains word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID of the SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID of the EOS.
|
||||||
|
G:
|
||||||
|
An LM. It is not None when params.method is "nbest-rescoring"
|
||||||
|
or "whole-lattice-rescoring". In general, the G in HLG
|
||||||
|
is a 3-gram LM, while this G is a 4-gram LM.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = HLG.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is [N, T, C]
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
|
||||||
|
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
||||||
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
|
supervision_segments = torch.stack(
|
||||||
|
(
|
||||||
|
supervisions["sequence_idx"],
|
||||||
|
supervisions["start_frame"] // params.subsampling_factor,
|
||||||
|
supervisions["num_frames"] // params.subsampling_factor,
|
||||||
|
),
|
||||||
|
1,
|
||||||
|
).to(torch.int32)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
HLG=HLG,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method in ["1best", "nbest"]:
|
||||||
|
if params.method == "1best":
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
key = "no_rescore"
|
||||||
|
else:
|
||||||
|
best_path = nbest_decoding(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
use_double_scores=params.use_double_scores,
|
||||||
|
)
|
||||||
|
key = f"no_rescore-{params.num_paths}"
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
assert params.method in [
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
"attention-decoder",
|
||||||
|
]
|
||||||
|
|
||||||
|
lm_scale_list = [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||||
|
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||||
|
|
||||||
|
if params.method == "nbest-rescoring":
|
||||||
|
best_path_dict = rescore_with_n_best_list(
|
||||||
|
lattice=lattice,
|
||||||
|
G=G,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
lm_scale_list=lm_scale_list,
|
||||||
|
)
|
||||||
|
elif params.method == "whole-lattice-rescoring":
|
||||||
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=lm_scale_list
|
||||||
|
)
|
||||||
|
elif params.method == "attention-decoder":
|
||||||
|
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||||
|
rescored_lattice = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path_dict = rescore_with_attention_decoder(
|
||||||
|
lattice=rescored_lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
model=model,
|
||||||
|
memory=memory,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert False, f"Unsupported decoding method: {params.method}"
|
||||||
|
|
||||||
|
ans = dict()
|
||||||
|
for lm_scale_str, best_path in best_path_dict.items():
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||||
|
ans[lm_scale_str] = hyps
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
HLG: k2.Fsa,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
G: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph.
|
||||||
|
lexicon:
|
||||||
|
It contains word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID for SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID for EOS.
|
||||||
|
G:
|
||||||
|
An LM. It is not None when params.method is "nbest-rescoring"
|
||||||
|
or "whole-lattice-rescoring". In general, the G in HLG
|
||||||
|
is a 3-gram LM, while this G is a 4-gram LM.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||||
|
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
|
||||||
|
num_cuts = 0
|
||||||
|
tot_num_cuts = len(dl.dataset.cuts)
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
HLG=HLG,
|
||||||
|
batch=batch,
|
||||||
|
lexicon=lexicon,
|
||||||
|
G=G,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
for lm_scale, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[lm_scale].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0:
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_idx}, cuts processed until now is "
|
||||||
|
f"{num_cuts}/{tot_num_cuts} "
|
||||||
|
f"({float(num_cuts)/tot_num_cuts*100:.6f}%)"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
if params.method == "attention-decoder":
|
||||||
|
# Set it to False since there are too many logs.
|
||||||
|
enable_log = False
|
||||||
|
else:
|
||||||
|
enable_log = True
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
if enable_log:
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=enable_log
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
if enable_log:
|
||||||
|
logging.info(
|
||||||
|
"Wrote detailed error stats to {}".format(errs_filename)
|
||||||
|
)
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-decode")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
num_classes = max_token_id + 1 # +1 for the blank
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
graph_compiler = BpeMmiTrainingGraphCompiler(
|
||||||
|
params.lang_dir,
|
||||||
|
device=device,
|
||||||
|
sos_token="<sos/eos>",
|
||||||
|
eos_token="<sos/eos>",
|
||||||
|
)
|
||||||
|
sos_id = graph_compiler.sos_id
|
||||||
|
eos_id = graph_compiler.eos_id
|
||||||
|
|
||||||
|
HLG = k2.Fsa.from_dict(torch.load(f"{params.lang_dir}/HLG.pt"))
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
assert HLG.requires_grad is False
|
||||||
|
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
|
if params.method in (
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
"attention-decoder",
|
||||||
|
):
|
||||||
|
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||||
|
logging.info("Loading G_4_gram.fst.txt")
|
||||||
|
logging.warning("It may take 8 minutes.")
|
||||||
|
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
||||||
|
first_word_disambig_id = lexicon.word_table["#0"]
|
||||||
|
|
||||||
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||||
|
# G.aux_labels is not needed in later computations, so
|
||||||
|
# remove it here.
|
||||||
|
del G.aux_labels
|
||||||
|
# CAUTION: The following line is crucial.
|
||||||
|
# Arcs entering the back-off state have label equal to #0.
|
||||||
|
# We have to change it to 0 here.
|
||||||
|
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||||
|
G = k2.Fsa.from_fsas([G]).to(device)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||||
|
else:
|
||||||
|
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||||
|
d = torch.load(params.lm_dir / "G_4_gram.pt")
|
||||||
|
G = k2.Fsa.from_dict(d).to(device)
|
||||||
|
|
||||||
|
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
||||||
|
# Add epsilon self-loops to G as we will compose
|
||||||
|
# it with the whole lattice later
|
||||||
|
G = k2.add_epsilon_self_loops(G)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
G = G.to(device)
|
||||||
|
|
||||||
|
# G.lm_scores is used to replace HLG.lm_scores during
|
||||||
|
# LM rescoring.
|
||||||
|
G.lm_scores = G.scores.clone()
|
||||||
|
else:
|
||||||
|
G = None
|
||||||
|
|
||||||
|
model = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
num_classes=num_classes,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
is_espnet_structure=params.is_espnet_structure,
|
||||||
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
# CAUTION: `test_sets` is for displaying only.
|
||||||
|
# If you want to skip test-clean, you have to skip
|
||||||
|
# it inside the for loop. That is, use
|
||||||
|
#
|
||||||
|
# if test_set == 'test-clean': continue
|
||||||
|
#
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
HLG=HLG,
|
||||||
|
lexicon=lexicon,
|
||||||
|
G=G,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params, test_set_name=test_set, results_dict=results_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
144
egs/librispeech/ASR/conformer_mmi/subsampling.py
Normal file
144
egs/librispeech/ASR/conformer_mmi/subsampling.py
Normal file
@ -0,0 +1,144 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class Conv2dSubsampling(nn.Module):
|
||||||
|
"""Convolutional 2D subsampling (to 1/4 length).
|
||||||
|
|
||||||
|
Convert an input of shape [N, T, idim] to an output
|
||||||
|
with shape [N, T', odim], where
|
||||||
|
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
|
||||||
|
|
||||||
|
It is based on
|
||||||
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, idim: int, odim: int) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
idim:
|
||||||
|
Input dim. The input shape is [N, T, idim].
|
||||||
|
Caution: It requires: T >=7, idim >=7
|
||||||
|
odim:
|
||||||
|
Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
assert idim >= 7
|
||||||
|
super().__init__()
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
nn.Conv2d(
|
||||||
|
in_channels=1, out_channels=odim, kernel_size=3, stride=2
|
||||||
|
),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Conv2d(
|
||||||
|
in_channels=odim, out_channels=odim, kernel_size=3, stride=2
|
||||||
|
),
|
||||||
|
nn.ReLU(),
|
||||||
|
)
|
||||||
|
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Subsample x.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is [N, T, idim].
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
# On entry, x is [N, T, idim]
|
||||||
|
x = x.unsqueeze(1) # [N, T, idim] -> [N, 1, T, idim] i.e., [N, C, H, W]
|
||||||
|
x = self.conv(x)
|
||||||
|
# Now x is of shape [N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2]
|
||||||
|
b, c, t, f = x.size()
|
||||||
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||||
|
# Now x is of shape [N, ((T-1)//2 - 1))//2, odim]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class VggSubsampling(nn.Module):
|
||||||
|
"""Trying to follow the setup described in the following paper:
|
||||||
|
https://arxiv.org/pdf/1910.09799.pdf
|
||||||
|
|
||||||
|
This paper is not 100% explicit so I am guessing to some extent,
|
||||||
|
and trying to compare with other VGG implementations.
|
||||||
|
|
||||||
|
Convert an input of shape [N, T, idim] to an output
|
||||||
|
with shape [N, T', odim], where
|
||||||
|
T' = ((T-1)//2 - 1)//2, which approximates T' = T//4
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, idim: int, odim: int) -> None:
|
||||||
|
"""Construct a VggSubsampling object.
|
||||||
|
|
||||||
|
This uses 2 VGG blocks with 2 Conv2d layers each,
|
||||||
|
subsampling its input by a factor of 4 in the time dimensions.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
idim:
|
||||||
|
Input dim. The input shape is [N, T, idim].
|
||||||
|
Caution: It requires: T >=7, idim >=7
|
||||||
|
odim:
|
||||||
|
Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
cur_channels = 1
|
||||||
|
layers = []
|
||||||
|
block_dims = [32, 64]
|
||||||
|
|
||||||
|
# The decision to use padding=1 for the 1st convolution, then padding=0
|
||||||
|
# for the 2nd and for the max-pooling, and ceil_mode=True, was driven by
|
||||||
|
# a back-compatibility concern so that the number of frames at the
|
||||||
|
# output would be equal to:
|
||||||
|
# (((T-1)//2)-1)//2.
|
||||||
|
# We can consider changing this by using padding=1 on the
|
||||||
|
# 2nd convolution, so the num-frames at the output would be T//4.
|
||||||
|
for block_dim in block_dims:
|
||||||
|
layers.append(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=cur_channels,
|
||||||
|
out_channels=block_dim,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=1,
|
||||||
|
stride=1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
layers.append(torch.nn.ReLU())
|
||||||
|
layers.append(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=block_dim,
|
||||||
|
out_channels=block_dim,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=0,
|
||||||
|
stride=1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
layers.append(
|
||||||
|
torch.nn.MaxPool2d(
|
||||||
|
kernel_size=2, stride=2, padding=0, ceil_mode=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
cur_channels = block_dim
|
||||||
|
|
||||||
|
self.layers = nn.Sequential(*layers)
|
||||||
|
|
||||||
|
self.out = nn.Linear(
|
||||||
|
block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Subsample x.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is [N, T, idim].
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
x = x.unsqueeze(1)
|
||||||
|
x = self.layers(x)
|
||||||
|
b, c, t, f = x.size()
|
||||||
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||||
|
return x
|
33
egs/librispeech/ASR/conformer_mmi/test_subsampling.py
Executable file
33
egs/librispeech/ASR/conformer_mmi/test_subsampling.py
Executable file
@ -0,0 +1,33 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
from subsampling import Conv2dSubsampling
|
||||||
|
from subsampling import VggSubsampling
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def test_conv2d_subsampling():
|
||||||
|
N = 3
|
||||||
|
odim = 2
|
||||||
|
|
||||||
|
for T in range(7, 19):
|
||||||
|
for idim in range(7, 20):
|
||||||
|
model = Conv2dSubsampling(idim=idim, odim=odim)
|
||||||
|
x = torch.empty(N, T, idim)
|
||||||
|
y = model(x)
|
||||||
|
assert y.shape[0] == N
|
||||||
|
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
||||||
|
assert y.shape[2] == odim
|
||||||
|
|
||||||
|
|
||||||
|
def test_vgg_subsampling():
|
||||||
|
N = 3
|
||||||
|
odim = 2
|
||||||
|
|
||||||
|
for T in range(7, 19):
|
||||||
|
for idim in range(7, 20):
|
||||||
|
model = VggSubsampling(idim=idim, odim=odim)
|
||||||
|
x = torch.empty(N, T, idim)
|
||||||
|
y = model(x)
|
||||||
|
assert y.shape[0] == N
|
||||||
|
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
||||||
|
assert y.shape[2] == odim
|
89
egs/librispeech/ASR/conformer_mmi/test_transformer.py
Normal file
89
egs/librispeech/ASR/conformer_mmi/test_transformer.py
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transformer import (
|
||||||
|
Transformer,
|
||||||
|
encoder_padding_mask,
|
||||||
|
generate_square_subsequent_mask,
|
||||||
|
decoder_padding_mask,
|
||||||
|
add_sos,
|
||||||
|
add_eos,
|
||||||
|
)
|
||||||
|
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
|
||||||
|
def test_encoder_padding_mask():
|
||||||
|
supervisions = {
|
||||||
|
"sequence_idx": torch.tensor([0, 1, 2]),
|
||||||
|
"start_frame": torch.tensor([0, 0, 0]),
|
||||||
|
"num_frames": torch.tensor([18, 7, 13]),
|
||||||
|
}
|
||||||
|
|
||||||
|
max_len = ((18 - 1) // 2 - 1) // 2
|
||||||
|
mask = encoder_padding_mask(max_len, supervisions)
|
||||||
|
expected_mask = torch.tensor(
|
||||||
|
[
|
||||||
|
[False, False, False], # ((18 - 1)//2 - 1)//2 = 3,
|
||||||
|
[False, True, True], # ((7 - 1)//2 - 1)//2 = 1,
|
||||||
|
[False, False, True], # ((13 - 1)//2 - 1)//2 = 2,
|
||||||
|
]
|
||||||
|
)
|
||||||
|
assert torch.all(torch.eq(mask, expected_mask))
|
||||||
|
|
||||||
|
|
||||||
|
def test_transformer():
|
||||||
|
num_features = 40
|
||||||
|
num_classes = 87
|
||||||
|
model = Transformer(num_features=num_features, num_classes=num_classes)
|
||||||
|
|
||||||
|
N = 31
|
||||||
|
|
||||||
|
for T in range(7, 30):
|
||||||
|
x = torch.rand(N, T, num_features)
|
||||||
|
y, _, _ = model(x)
|
||||||
|
assert y.shape == (N, (((T - 1) // 2) - 1) // 2, num_classes)
|
||||||
|
|
||||||
|
|
||||||
|
def test_generate_square_subsequent_mask():
|
||||||
|
s = 5
|
||||||
|
mask = generate_square_subsequent_mask(s)
|
||||||
|
inf = float("inf")
|
||||||
|
expected_mask = torch.tensor(
|
||||||
|
[
|
||||||
|
[0.0, -inf, -inf, -inf, -inf],
|
||||||
|
[0.0, 0.0, -inf, -inf, -inf],
|
||||||
|
[0.0, 0.0, 0.0, -inf, -inf],
|
||||||
|
[0.0, 0.0, 0.0, 0.0, -inf],
|
||||||
|
[0.0, 0.0, 0.0, 0.0, 0.0],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
assert torch.all(torch.eq(mask, expected_mask))
|
||||||
|
|
||||||
|
|
||||||
|
def test_decoder_padding_mask():
|
||||||
|
x = [torch.tensor([1, 2]), torch.tensor([3]), torch.tensor([2, 5, 8])]
|
||||||
|
y = pad_sequence(x, batch_first=True, padding_value=-1)
|
||||||
|
mask = decoder_padding_mask(y, ignore_id=-1)
|
||||||
|
expected_mask = torch.tensor(
|
||||||
|
[
|
||||||
|
[False, False, True],
|
||||||
|
[False, True, True],
|
||||||
|
[False, False, False],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
assert torch.all(torch.eq(mask, expected_mask))
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_sos():
|
||||||
|
x = [[1, 2], [3], [2, 5, 8]]
|
||||||
|
y = add_sos(x, sos_id=0)
|
||||||
|
expected_y = [[0, 1, 2], [0, 3], [0, 2, 5, 8]]
|
||||||
|
assert y == expected_y
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_eos():
|
||||||
|
x = [[1, 2], [3], [2, 5, 8]]
|
||||||
|
y = add_eos(x, eos_id=0)
|
||||||
|
expected_y = [[1, 2, 0], [3, 0], [2, 5, 8, 0]]
|
||||||
|
assert y == expected_y
|
688
egs/librispeech/ASR/conformer_mmi/train.py
Executable file
688
egs/librispeech/ASR/conformer_mmi/train.py
Executable file
@ -0,0 +1,688 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
from conformer import Conformer
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from transformer import Noam
|
||||||
|
|
||||||
|
from icefall.bpe_mmi_graph_compiler import BpeMmiTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.mmi import LFMMILoss
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
encode_supervisions,
|
||||||
|
setup_logger,
|
||||||
|
str2bool,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO: add extra arguments and support DDP training.
|
||||||
|
# Currently, only single GPU training is implemented. Will add
|
||||||
|
# DDP training once single GPU training is finished.
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
is saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- exp_dir: It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
|
||||||
|
- lang_dir: It contains language related input files such as
|
||||||
|
"lexicon.txt"
|
||||||
|
|
||||||
|
- lr: It specifies the initial learning rate
|
||||||
|
|
||||||
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- weight_decay: The weight_decay for the optimizer.
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
||||||
|
and continue training from that checkpoint.
|
||||||
|
|
||||||
|
- num_epochs: Number of epochs to train.
|
||||||
|
|
||||||
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
|
the model that has the lowest training loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_valid_loss: Best validation loss so far. It is used to select
|
||||||
|
the model that has the lowest validation loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_train_epoch: It is the epoch that has the best training loss.
|
||||||
|
|
||||||
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||||
|
|
||||||
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||||
|
contains number of batches trained so far across
|
||||||
|
epochs.
|
||||||
|
|
||||||
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"exp_dir": Path("conformer_mmi/exp"),
|
||||||
|
"lang_dir": Path("data/lang_bpe"),
|
||||||
|
"feature_dim": 80,
|
||||||
|
"weight_decay": 1e-6,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"start_epoch": 0,
|
||||||
|
"num_epochs": 10,
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 10,
|
||||||
|
# It takes about 10 minutes (1 GPU, max_duration=200)
|
||||||
|
# to run a validation process.
|
||||||
|
# For the 100 h subset, there are 85617 batches.
|
||||||
|
# For the 960 h dataset, there are 843723 batches
|
||||||
|
"valid_interval": 8000,
|
||||||
|
"use_pruned_intersect": False,
|
||||||
|
"den_scale": 1.0,
|
||||||
|
#
|
||||||
|
"att_rate": 0.7,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"nhead": 8,
|
||||||
|
"num_decoder_layers": 6,
|
||||||
|
"is_espnet_structure": True,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
|
"lr_factor": 5.0,
|
||||||
|
"warm_step": 80000,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_epoch is positive, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||||
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer that we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler we are using.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if params.start_epoch <= 0:
|
||||||
|
return
|
||||||
|
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
saved_params = load_checkpoint(
|
||||||
|
filename,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Save model, optimizer, scheduler and training stats to file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
"""
|
||||||
|
if rank != 0:
|
||||||
|
return
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=filename,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
graph_compiler: BpeMmiTrainingGraphCompiler,
|
||||||
|
is_training: bool,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Compute MMI loss given the model and its inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training. It is an instance of Conformer in our case.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to build num_graphs and den_graphs.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation. When it is True, this
|
||||||
|
function enables autograd during computation; when it is False, it
|
||||||
|
disables autograd.
|
||||||
|
"""
|
||||||
|
device = graph_compiler.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
# at entry, feature is [N, T, C]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||||
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||||
|
# different duration in decreasing order, required by
|
||||||
|
# `k2.intersect_dense` called in LFMMILoss
|
||||||
|
#
|
||||||
|
# TODO: If params.use_pruned_intersect is True, there is no
|
||||||
|
# need to call encode_supervisions
|
||||||
|
supervision_segments, texts = encode_supervisions(
|
||||||
|
supervisions, subsampling_factor=params.subsampling_factor
|
||||||
|
)
|
||||||
|
|
||||||
|
dense_fsa_vec = k2.DenseFsaVec(
|
||||||
|
nnet_output,
|
||||||
|
supervision_segments,
|
||||||
|
allow_truncate=params.subsampling_factor - 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_fn = LFMMILoss(
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
den_scale=params.den_scale,
|
||||||
|
use_pruned_intersect=params.use_pruned_intersect,
|
||||||
|
)
|
||||||
|
|
||||||
|
mmi_loss = loss_fn(dense_fsa_vec=dense_fsa_vec, texts=texts)
|
||||||
|
|
||||||
|
if params.att_rate != 0.0:
|
||||||
|
token_ids = graph_compiler.texts_to_ids(texts)
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
if hasattr(model, "module"):
|
||||||
|
att_loss = model.module.decoder_forward(
|
||||||
|
encoder_memory,
|
||||||
|
memory_mask,
|
||||||
|
token_ids=token_ids,
|
||||||
|
sos_id=graph_compiler.sos_id,
|
||||||
|
eos_id=graph_compiler.eos_id,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
att_loss = model.decoder_forward(
|
||||||
|
encoder_memory,
|
||||||
|
memory_mask,
|
||||||
|
token_ids=token_ids,
|
||||||
|
sos_id=graph_compiler.sos_id,
|
||||||
|
eos_id=graph_compiler.eos_id,
|
||||||
|
)
|
||||||
|
loss = (1.0 - params.att_rate) * mmi_loss + params.att_rate * att_loss
|
||||||
|
else:
|
||||||
|
loss = mmi_loss
|
||||||
|
att_loss = torch.tensor([0])
|
||||||
|
|
||||||
|
# train_frames and valid_frames are used for printing.
|
||||||
|
if is_training:
|
||||||
|
params.train_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
else:
|
||||||
|
params.valid_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
return loss, mmi_loss.detach(), att_loss.detach()
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
graph_compiler: BpeMmiTrainingGraphCompiler,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Run the validation process. The validation loss
|
||||||
|
is saved in `params.valid_loss`.
|
||||||
|
"""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = 0.0
|
||||||
|
tot_mmi_loss = 0.0
|
||||||
|
tot_att_loss = 0.0
|
||||||
|
tot_frames = 0.0
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
loss, mmi_loss, att_loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
assert mmi_loss.requires_grad is False
|
||||||
|
assert att_loss.requires_grad is False
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
|
||||||
|
tot_mmi_loss += mmi_loss.detach().cpu().item()
|
||||||
|
tot_att_loss += att_loss.detach().cpu().item()
|
||||||
|
|
||||||
|
tot_frames += params.valid_frames
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
s = torch.tensor(
|
||||||
|
[tot_loss, tot_mmi_loss, tot_att_loss, tot_frames],
|
||||||
|
device=loss.device,
|
||||||
|
)
|
||||||
|
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||||
|
s = s.cpu().tolist()
|
||||||
|
tot_loss = s[0]
|
||||||
|
tot_mmi_loss = s[1]
|
||||||
|
tot_att_loss = s[2]
|
||||||
|
tot_frames = s[3]
|
||||||
|
|
||||||
|
params.valid_loss = tot_loss / tot_frames
|
||||||
|
params.valid_mmi_loss = tot_mmi_loss / tot_frames
|
||||||
|
params.valid_att_loss = tot_att_loss / tot_frames
|
||||||
|
|
||||||
|
if params.valid_loss < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = params.valid_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
graph_compiler: BpeMmiTrainingGraphCompiler,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to convert transcripts to FSAs.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
tot_loss = 0.0 # sum of losses over all batches
|
||||||
|
tot_mmi_loss = 0.0
|
||||||
|
tot_att_loss = 0.0
|
||||||
|
|
||||||
|
tot_frames = 0.0 # sum of frames over all batches
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
loss, mmi_loss, att_loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
mmi_loss_cpu = mmi_loss.detach().cpu().item()
|
||||||
|
att_loss_cpu = att_loss.detach().cpu().item()
|
||||||
|
|
||||||
|
tot_frames += params.train_frames
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
tot_mmi_loss += mmi_loss_cpu
|
||||||
|
tot_att_loss += att_loss_cpu
|
||||||
|
|
||||||
|
tot_avg_loss = tot_loss / tot_frames
|
||||||
|
tot_avg_mmi_loss = tot_mmi_loss / tot_frames
|
||||||
|
tot_avg_att_loss = tot_att_loss / tot_frames
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||||
|
f"batch avg mmi loss {mmi_loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"batch avg att loss {att_loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"total avg mmi loss: {tot_avg_mmi_loss:.4f}, "
|
||||||
|
f"total avg att loss: {tot_avg_att_loss:.4f}, "
|
||||||
|
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||||
|
f"batch size: {batch_size}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_mmi_loss",
|
||||||
|
mmi_loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_att_loss",
|
||||||
|
att_loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_loss",
|
||||||
|
loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_mmi_loss",
|
||||||
|
tot_avg_mmi_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_att_loss",
|
||||||
|
tot_avg_att_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_loss",
|
||||||
|
tot_avg_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
|
compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"valid mmi loss {params.valid_mmi_loss:.4f}, "
|
||||||
|
f"valid att loss {params.valid_att_loss:.4f}, "
|
||||||
|
f"valid loss {params.valid_loss:.4f}, "
|
||||||
|
f"best valid loss: {params.best_valid_loss:.4f}, "
|
||||||
|
f"best valid epoch: {params.best_valid_epoch}"
|
||||||
|
)
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/valid_mmi_loss",
|
||||||
|
params.valid_mmi_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/valid_att_loss",
|
||||||
|
params.valid_att_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/valid_loss",
|
||||||
|
params.valid_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
params.train_loss = tot_loss / tot_frames
|
||||||
|
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(42)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
num_classes = max_token_id + 1 # +1 for the blank
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
|
||||||
|
graph_compiler = BpeMmiTrainingGraphCompiler(
|
||||||
|
params.lang_dir,
|
||||||
|
device=device,
|
||||||
|
sos_token="<sos/eos>",
|
||||||
|
eos_token="<sos/eos>",
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
num_classes=num_classes,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
|
vgg_frontend=False,
|
||||||
|
is_espnet_structure=params.is_espnet_structure,
|
||||||
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if world_size > 1:
|
||||||
|
model = DDP(model, device_ids=[rank])
|
||||||
|
|
||||||
|
optimizer = Noam(
|
||||||
|
model.parameters(),
|
||||||
|
model_size=params.attention_dim,
|
||||||
|
factor=params.lr_factor,
|
||||||
|
warm_step=params.warm_step,
|
||||||
|
weight_decay=params.weight_decay,
|
||||||
|
)
|
||||||
|
|
||||||
|
if checkpoints:
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
train_dl = librispeech.train_dataloaders()
|
||||||
|
valid_dl = librispeech.valid_dataloaders()
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs):
|
||||||
|
train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
cur_lr = optimizer._rate
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
976
egs/librispeech/ASR/conformer_mmi/transformer.py
Normal file
976
egs/librispeech/ASR/conformer_mmi/transformer.py
Normal file
@ -0,0 +1,976 @@
|
|||||||
|
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||||
|
# Apache 2.0
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||||
|
|
||||||
|
from icefall.utils import get_texts
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
# Note: TorchScript requires Dict/List/etc. to be fully typed.
|
||||||
|
Supervisions = Dict[str, torch.Tensor]
|
||||||
|
|
||||||
|
|
||||||
|
class Transformer(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_features: int,
|
||||||
|
num_classes: int,
|
||||||
|
subsampling_factor: int = 4,
|
||||||
|
d_model: int = 256,
|
||||||
|
nhead: int = 4,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
num_encoder_layers: int = 12,
|
||||||
|
num_decoder_layers: int = 6,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
vgg_frontend: bool = False,
|
||||||
|
use_feat_batchnorm: bool = False,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
num_features:
|
||||||
|
The input dimension of the model.
|
||||||
|
num_classes:
|
||||||
|
The output dimension of the model.
|
||||||
|
subsampling_factor:
|
||||||
|
Number of output frames is num_in_frames // subsampling_factor.
|
||||||
|
Currently, subsampling_factor MUST be 4.
|
||||||
|
d_model:
|
||||||
|
Attention dimension.
|
||||||
|
nhead:
|
||||||
|
Number of heads in multi-head attention.
|
||||||
|
Must satisfy d_model // nhead == 0.
|
||||||
|
dim_feedforward:
|
||||||
|
The output dimension of the feedforward layers in encoder/decoder.
|
||||||
|
num_encoder_layers:
|
||||||
|
Number of encoder layers.
|
||||||
|
num_decoder_layers:
|
||||||
|
Number of decoder layers.
|
||||||
|
dropout:
|
||||||
|
Dropout in encoder/decoder.
|
||||||
|
normalize_before:
|
||||||
|
If True, use pre-layer norm; False to use post-layer norm.
|
||||||
|
vgg_frontend:
|
||||||
|
True to use vgg style frontend for subsampling.
|
||||||
|
use_feat_batchnorm:
|
||||||
|
True to use batchnorm for the input layer.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.use_feat_batchnorm = use_feat_batchnorm
|
||||||
|
if use_feat_batchnorm:
|
||||||
|
self.feat_batchnorm = nn.BatchNorm1d(num_features)
|
||||||
|
|
||||||
|
self.num_features = num_features
|
||||||
|
self.num_classes = num_classes
|
||||||
|
self.subsampling_factor = subsampling_factor
|
||||||
|
if subsampling_factor != 4:
|
||||||
|
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||||
|
|
||||||
|
# self.encoder_embed converts the input of shape [N, T, num_classes]
|
||||||
|
# to the shape [N, T//subsampling_factor, d_model].
|
||||||
|
# That is, it does two things simultaneously:
|
||||||
|
# (1) subsampling: T -> T//subsampling_factor
|
||||||
|
# (2) embedding: num_classes -> d_model
|
||||||
|
if vgg_frontend:
|
||||||
|
self.encoder_embed = VggSubsampling(num_features, d_model)
|
||||||
|
else:
|
||||||
|
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||||
|
|
||||||
|
self.encoder_pos = PositionalEncoding(d_model, dropout)
|
||||||
|
|
||||||
|
encoder_layer = TransformerEncoderLayer(
|
||||||
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
dropout=dropout,
|
||||||
|
normalize_before=normalize_before,
|
||||||
|
)
|
||||||
|
|
||||||
|
if normalize_before:
|
||||||
|
encoder_norm = nn.LayerNorm(d_model)
|
||||||
|
else:
|
||||||
|
encoder_norm = None
|
||||||
|
|
||||||
|
self.encoder = nn.TransformerEncoder(
|
||||||
|
encoder_layer=encoder_layer,
|
||||||
|
num_layers=num_encoder_layers,
|
||||||
|
norm=encoder_norm,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.encoder_output_layer = nn.Linear(d_model, num_classes)
|
||||||
|
|
||||||
|
if num_decoder_layers > 0:
|
||||||
|
self.decoder_num_class = self.num_classes
|
||||||
|
|
||||||
|
self.decoder_embed = nn.Embedding(
|
||||||
|
num_embeddings=self.decoder_num_class, embedding_dim=d_model
|
||||||
|
)
|
||||||
|
self.decoder_pos = PositionalEncoding(d_model, dropout)
|
||||||
|
|
||||||
|
decoder_layer = TransformerDecoderLayer(
|
||||||
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
dropout=dropout,
|
||||||
|
normalize_before=normalize_before,
|
||||||
|
)
|
||||||
|
|
||||||
|
if normalize_before:
|
||||||
|
decoder_norm = nn.LayerNorm(d_model)
|
||||||
|
else:
|
||||||
|
decoder_norm = None
|
||||||
|
|
||||||
|
self.decoder = nn.TransformerDecoder(
|
||||||
|
decoder_layer=decoder_layer,
|
||||||
|
num_layers=num_decoder_layers,
|
||||||
|
norm=decoder_norm,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.decoder_output_layer = torch.nn.Linear(
|
||||||
|
d_model, self.decoder_num_class
|
||||||
|
)
|
||||||
|
|
||||||
|
self.decoder_criterion = LabelSmoothingLoss(self.decoder_num_class)
|
||||||
|
else:
|
||||||
|
self.decoder_criterion = None
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, x: torch.Tensor, supervision: Optional[Supervisions] = None
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The input tensor. Its shape is [N, T, C].
|
||||||
|
supervision:
|
||||||
|
Supervision in lhotse format.
|
||||||
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
|
(CAUTION: It contains length information, i.e., start and number of
|
||||||
|
frames, before subsampling)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing 3 tensors:
|
||||||
|
- CTC output for ctc decoding. Its shape is [N, T, C]
|
||||||
|
- Encoder output with shape [T, N, C]. It can be used as key and
|
||||||
|
value for the decoder.
|
||||||
|
- Encoder output padding mask. It can be used as
|
||||||
|
memory_key_padding_mask for the decoder. Its shape is [N, T].
|
||||||
|
It is None if `supervision` is None.
|
||||||
|
"""
|
||||||
|
if self.use_feat_batchnorm:
|
||||||
|
x = x.permute(0, 2, 1) # [N, T, C] -> [N, C, T]
|
||||||
|
x = self.feat_batchnorm(x)
|
||||||
|
x = x.permute(0, 2, 1) # [N, C, T] -> [N, T, C]
|
||||||
|
encoder_memory, memory_key_padding_mask = self.run_encoder(
|
||||||
|
x, supervision
|
||||||
|
)
|
||||||
|
x = self.ctc_output(encoder_memory)
|
||||||
|
return x, encoder_memory, memory_key_padding_mask
|
||||||
|
|
||||||
|
def run_encoder(
|
||||||
|
self, x: torch.Tensor, supervisions: Optional[Supervisions] = None
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||||
|
"""Run the transformer encoder.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The model input. Its shape is [N, T, C].
|
||||||
|
supervisions:
|
||||||
|
Supervision in lhotse format.
|
||||||
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
|
CAUTION: It contains length information, i.e., start and number of
|
||||||
|
frames, before subsampling
|
||||||
|
It is read directly from the batch, without any sorting. It is used
|
||||||
|
to compute the encoder padding mask, which is used as memory key
|
||||||
|
padding mask for the decoder.
|
||||||
|
Returns:
|
||||||
|
Return a tuple with two tensors:
|
||||||
|
- The encoder output, with shape [T, N, C]
|
||||||
|
- encoder padding mask, with shape [N, T].
|
||||||
|
The mask is None if `supervisions` is None.
|
||||||
|
It is used as memory key padding mask in the decoder.
|
||||||
|
"""
|
||||||
|
x = self.encoder_embed(x)
|
||||||
|
x = self.encoder_pos(x)
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
mask = encoder_padding_mask(x.size(0), supervisions)
|
||||||
|
mask = mask.to(x.device) if mask is not None else None
|
||||||
|
x = self.encoder(x, src_key_padding_mask=mask) # (T, N, C)
|
||||||
|
|
||||||
|
return x, mask
|
||||||
|
|
||||||
|
def ctc_output(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The output tensor from the transformer encoder.
|
||||||
|
Its shape is [T, N, C]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor that can be used for CTC decoding.
|
||||||
|
Its shape is [N, T, C]
|
||||||
|
"""
|
||||||
|
x = self.encoder_output_layer(x)
|
||||||
|
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
x = nn.functional.log_softmax(x, dim=-1) # (N, T, C)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def decoder_forward(
|
||||||
|
self,
|
||||||
|
memory: torch.Tensor,
|
||||||
|
memory_key_padding_mask: torch.Tensor,
|
||||||
|
token_ids: List[List[int]],
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
memory:
|
||||||
|
It's the output of the encoder with shape [T, N, C]
|
||||||
|
memory_key_padding_mask:
|
||||||
|
The padding mask from the encoder.
|
||||||
|
token_ids:
|
||||||
|
A list-of-list IDs. Each sublist contains IDs for an utterance.
|
||||||
|
The IDs can be either phone IDs or word piece IDs.
|
||||||
|
sos_id:
|
||||||
|
sos token id
|
||||||
|
eos_id:
|
||||||
|
eos token id
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A scalar, the **sum** of label smoothing loss over utterances
|
||||||
|
in the batch without any normalization.
|
||||||
|
"""
|
||||||
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||||
|
ys_in = [torch.tensor(y) for y in ys_in]
|
||||||
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=eos_id)
|
||||||
|
|
||||||
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||||
|
ys_out = [torch.tensor(y) for y in ys_out]
|
||||||
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=-1)
|
||||||
|
|
||||||
|
device = memory.device
|
||||||
|
ys_in_pad = ys_in_pad.to(device)
|
||||||
|
ys_out_pad = ys_out_pad.to(device)
|
||||||
|
|
||||||
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
|
||||||
|
device
|
||||||
|
)
|
||||||
|
|
||||||
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
|
# TODO: Use length information to create the decoder padding mask
|
||||||
|
# We set the first column to False since the first column in ys_in_pad
|
||||||
|
# contains sos_id, which is the same as eos_id in our current setting.
|
||||||
|
tgt_key_padding_mask[:, 0] = False
|
||||||
|
|
||||||
|
tgt = self.decoder_embed(ys_in_pad) # (N, T) -> (N, T, C)
|
||||||
|
tgt = self.decoder_pos(tgt)
|
||||||
|
tgt = tgt.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
pred_pad = self.decoder(
|
||||||
|
tgt=tgt,
|
||||||
|
memory=memory,
|
||||||
|
tgt_mask=tgt_mask,
|
||||||
|
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
) # (T, N, C)
|
||||||
|
pred_pad = pred_pad.permute(1, 0, 2) # (T, N, C) -> (N, T, C)
|
||||||
|
pred_pad = self.decoder_output_layer(pred_pad) # (N, T, C)
|
||||||
|
|
||||||
|
decoder_loss = self.decoder_criterion(pred_pad, ys_out_pad)
|
||||||
|
|
||||||
|
return decoder_loss
|
||||||
|
|
||||||
|
def decoder_nll(
|
||||||
|
self,
|
||||||
|
memory: torch.Tensor,
|
||||||
|
memory_key_padding_mask: torch.Tensor,
|
||||||
|
token_ids: List[List[int]],
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
memory:
|
||||||
|
It's the output of the encoder with shape [T, N, C]
|
||||||
|
memory_key_padding_mask:
|
||||||
|
The padding mask from the encoder.
|
||||||
|
token_ids:
|
||||||
|
A list-of-list IDs (e.g., word piece IDs).
|
||||||
|
Each sublist represents an utterance.
|
||||||
|
sos_id:
|
||||||
|
The token ID for SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID for EOS.
|
||||||
|
Returns:
|
||||||
|
A 2-D tensor of shape (len(token_ids), max_token_length)
|
||||||
|
representing the cross entropy loss (i.e., negative log-likelihood).
|
||||||
|
"""
|
||||||
|
# The common part between this function and decoder_forward could be
|
||||||
|
# extracted as a separate function.
|
||||||
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||||
|
ys_in = [torch.tensor(y) for y in ys_in]
|
||||||
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=eos_id)
|
||||||
|
|
||||||
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||||
|
ys_out = [torch.tensor(y) for y in ys_out]
|
||||||
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=-1)
|
||||||
|
|
||||||
|
device = memory.device
|
||||||
|
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
|
||||||
|
ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
|
||||||
|
|
||||||
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
|
||||||
|
device
|
||||||
|
)
|
||||||
|
|
||||||
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
|
tgt_key_padding_mask[:, 0] = False
|
||||||
|
|
||||||
|
tgt = self.decoder_embed(ys_in_pad) # (B, T) -> (B, T, F)
|
||||||
|
tgt = self.decoder_pos(tgt)
|
||||||
|
tgt = tgt.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||||
|
pred_pad = self.decoder(
|
||||||
|
tgt=tgt,
|
||||||
|
memory=memory,
|
||||||
|
tgt_mask=tgt_mask,
|
||||||
|
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
) # (T, B, F)
|
||||||
|
pred_pad = pred_pad.permute(1, 0, 2) # (T, B, F) -> (B, T, F)
|
||||||
|
pred_pad = self.decoder_output_layer(pred_pad) # (B, T, F)
|
||||||
|
# nll: negative log-likelihood
|
||||||
|
nll = torch.nn.functional.cross_entropy(
|
||||||
|
pred_pad.view(-1, self.decoder_num_class),
|
||||||
|
ys_out_pad.view(-1),
|
||||||
|
ignore_index=-1,
|
||||||
|
reduction="none",
|
||||||
|
)
|
||||||
|
|
||||||
|
nll = nll.view(pred_pad.shape[0], -1)
|
||||||
|
|
||||||
|
return nll
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerEncoderLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
Modified from torch.nn.TransformerEncoderLayer.
|
||||||
|
Add support of normalize_before,
|
||||||
|
i.e., use layer_norm before the first block.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model:
|
||||||
|
the number of expected features in the input (required).
|
||||||
|
nhead:
|
||||||
|
the number of heads in the multiheadattention models (required).
|
||||||
|
dim_feedforward:
|
||||||
|
the dimension of the feedforward network model (default=2048).
|
||||||
|
dropout:
|
||||||
|
the dropout value (default=0.1).
|
||||||
|
activation:
|
||||||
|
the activation function of intermediate layer, relu or
|
||||||
|
gelu (default=relu).
|
||||||
|
normalize_before:
|
||||||
|
whether to use layer_norm before the first block.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> src = torch.rand(10, 32, 512)
|
||||||
|
>>> out = encoder_layer(src)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int,
|
||||||
|
nhead: int,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
activation: str = "relu",
|
||||||
|
normalize_before: bool = True,
|
||||||
|
) -> None:
|
||||||
|
super(TransformerEncoderLayer, self).__init__()
|
||||||
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||||
|
# Implementation of Feedforward model
|
||||||
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||||
|
|
||||||
|
self.norm1 = nn.LayerNorm(d_model)
|
||||||
|
self.norm2 = nn.LayerNorm(d_model)
|
||||||
|
self.dropout1 = nn.Dropout(dropout)
|
||||||
|
self.dropout2 = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.activation = _get_activation_fn(activation)
|
||||||
|
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
if "activation" not in state:
|
||||||
|
state["activation"] = nn.functional.relu
|
||||||
|
super(TransformerEncoderLayer, self).__setstate__(state)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: torch.Tensor,
|
||||||
|
src_mask: Optional[torch.Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Pass the input through the encoder layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder layer (required).
|
||||||
|
src_mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional)
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
src: (S, N, E).
|
||||||
|
src_mask: (S, S).
|
||||||
|
src_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, T is the target sequence length,
|
||||||
|
N is the batch size, E is the feature number
|
||||||
|
"""
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm1(src)
|
||||||
|
src2 = self.self_attn(
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
attn_mask=src_mask,
|
||||||
|
key_padding_mask=src_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
src = residual + self.dropout1(src2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm1(src)
|
||||||
|
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm2(src)
|
||||||
|
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
||||||
|
src = residual + self.dropout2(src2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm2(src)
|
||||||
|
return src
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerDecoderLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
Modified from torch.nn.TransformerDecoderLayer.
|
||||||
|
Add support of normalize_before,
|
||||||
|
i.e., use layer_norm before the first block.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model:
|
||||||
|
the number of expected features in the input (required).
|
||||||
|
nhead:
|
||||||
|
the number of heads in the multiheadattention models (required).
|
||||||
|
dim_feedforward:
|
||||||
|
the dimension of the feedforward network model (default=2048).
|
||||||
|
dropout:
|
||||||
|
the dropout value (default=0.1).
|
||||||
|
activation:
|
||||||
|
the activation function of intermediate layer, relu or
|
||||||
|
gelu (default=relu).
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> memory = torch.rand(10, 32, 512)
|
||||||
|
>>> tgt = torch.rand(20, 32, 512)
|
||||||
|
>>> out = decoder_layer(tgt, memory)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int,
|
||||||
|
nhead: int,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
activation: str = "relu",
|
||||||
|
normalize_before: bool = True,
|
||||||
|
) -> None:
|
||||||
|
super(TransformerDecoderLayer, self).__init__()
|
||||||
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||||
|
self.src_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||||
|
# Implementation of Feedforward model
|
||||||
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||||
|
|
||||||
|
self.norm1 = nn.LayerNorm(d_model)
|
||||||
|
self.norm2 = nn.LayerNorm(d_model)
|
||||||
|
self.norm3 = nn.LayerNorm(d_model)
|
||||||
|
self.dropout1 = nn.Dropout(dropout)
|
||||||
|
self.dropout2 = nn.Dropout(dropout)
|
||||||
|
self.dropout3 = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.activation = _get_activation_fn(activation)
|
||||||
|
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
if "activation" not in state:
|
||||||
|
state["activation"] = nn.functional.relu
|
||||||
|
super(TransformerDecoderLayer, self).__setstate__(state)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
tgt: torch.Tensor,
|
||||||
|
memory: torch.Tensor,
|
||||||
|
tgt_mask: Optional[torch.Tensor] = None,
|
||||||
|
memory_mask: Optional[torch.Tensor] = None,
|
||||||
|
tgt_key_padding_mask: Optional[torch.Tensor] = None,
|
||||||
|
memory_key_padding_mask: Optional[torch.Tensor] = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""Pass the inputs (and mask) through the decoder layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tgt:
|
||||||
|
the sequence to the decoder layer (required).
|
||||||
|
memory:
|
||||||
|
the sequence from the last layer of the encoder (required).
|
||||||
|
tgt_mask:
|
||||||
|
the mask for the tgt sequence (optional).
|
||||||
|
memory_mask:
|
||||||
|
the mask for the memory sequence (optional).
|
||||||
|
tgt_key_padding_mask:
|
||||||
|
the mask for the tgt keys per batch (optional).
|
||||||
|
memory_key_padding_mask:
|
||||||
|
the mask for the memory keys per batch (optional).
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
tgt: (T, N, E).
|
||||||
|
memory: (S, N, E).
|
||||||
|
tgt_mask: (T, T).
|
||||||
|
memory_mask: (T, S).
|
||||||
|
tgt_key_padding_mask: (N, T).
|
||||||
|
memory_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, T is the target sequence length,
|
||||||
|
N is the batch size, E is the feature number
|
||||||
|
"""
|
||||||
|
residual = tgt
|
||||||
|
if self.normalize_before:
|
||||||
|
tgt = self.norm1(tgt)
|
||||||
|
tgt2 = self.self_attn(
|
||||||
|
tgt,
|
||||||
|
tgt,
|
||||||
|
tgt,
|
||||||
|
attn_mask=tgt_mask,
|
||||||
|
key_padding_mask=tgt_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
tgt = residual + self.dropout1(tgt2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
tgt = self.norm1(tgt)
|
||||||
|
|
||||||
|
residual = tgt
|
||||||
|
if self.normalize_before:
|
||||||
|
tgt = self.norm2(tgt)
|
||||||
|
tgt2 = self.src_attn(
|
||||||
|
tgt,
|
||||||
|
memory,
|
||||||
|
memory,
|
||||||
|
attn_mask=memory_mask,
|
||||||
|
key_padding_mask=memory_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
tgt = residual + self.dropout2(tgt2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
tgt = self.norm2(tgt)
|
||||||
|
|
||||||
|
residual = tgt
|
||||||
|
if self.normalize_before:
|
||||||
|
tgt = self.norm3(tgt)
|
||||||
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
||||||
|
tgt = residual + self.dropout3(tgt2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
tgt = self.norm3(tgt)
|
||||||
|
return tgt
|
||||||
|
|
||||||
|
|
||||||
|
def _get_activation_fn(activation: str):
|
||||||
|
if activation == "relu":
|
||||||
|
return nn.functional.relu
|
||||||
|
elif activation == "gelu":
|
||||||
|
return nn.functional.gelu
|
||||||
|
|
||||||
|
raise RuntimeError(
|
||||||
|
"activation should be relu/gelu, not {}".format(activation)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class PositionalEncoding(nn.Module):
|
||||||
|
"""This class implements the positional encoding
|
||||||
|
proposed in the following paper:
|
||||||
|
|
||||||
|
- Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
|
||||||
|
|
||||||
|
PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
|
||||||
|
PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
|
||||||
|
|
||||||
|
Note::
|
||||||
|
|
||||||
|
1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
|
||||||
|
= exp(-1* 2i / d_model * log(100000))
|
||||||
|
= exp(2i * -(log(10000) / d_model))
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, d_model: int, dropout: float = 0.1) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
d_model:
|
||||||
|
Embedding dimension.
|
||||||
|
dropout:
|
||||||
|
Dropout probability to be applied to the output of this module.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.d_model = d_model
|
||||||
|
self.xscale = math.sqrt(self.d_model)
|
||||||
|
self.dropout = nn.Dropout(p=dropout)
|
||||||
|
self.pe = None
|
||||||
|
|
||||||
|
def extend_pe(self, x: torch.Tensor) -> None:
|
||||||
|
"""Extend the time t in the positional encoding if required.
|
||||||
|
|
||||||
|
The shape of `self.pe` is [1, T1, d_model]. The shape of the input x
|
||||||
|
is [N, T, d_model]. If T > T1, then we change the shape of self.pe
|
||||||
|
to [N, T, d_model]. Otherwise, nothing is done.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
It is a tensor of shape [N, T, C].
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if self.pe is not None:
|
||||||
|
if self.pe.size(1) >= x.size(1):
|
||||||
|
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||||||
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||||
|
return
|
||||||
|
pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
|
||||||
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||||
|
div_term = torch.exp(
|
||||||
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||||
|
* -(math.log(10000.0) / self.d_model)
|
||||||
|
)
|
||||||
|
pe[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
pe[:, 1::2] = torch.cos(position * div_term)
|
||||||
|
pe = pe.unsqueeze(0)
|
||||||
|
# Now pe is of shape [1, T, d_model], where T is x.size(1)
|
||||||
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Add positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is [N, T, C]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape [N, T, C]
|
||||||
|
"""
|
||||||
|
self.extend_pe(x)
|
||||||
|
x = x * self.xscale + self.pe[:, : x.size(1), :]
|
||||||
|
return self.dropout(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Noam(object):
|
||||||
|
"""
|
||||||
|
Implements Noam optimizer.
|
||||||
|
|
||||||
|
Proposed in
|
||||||
|
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||||
|
|
||||||
|
Modified from
|
||||||
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
iterable of parameters to optimize or dicts defining parameter groups
|
||||||
|
model_size:
|
||||||
|
attention dimension of the transformer model
|
||||||
|
factor:
|
||||||
|
learning rate factor
|
||||||
|
warm_step:
|
||||||
|
warmup steps
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
params,
|
||||||
|
model_size: int = 256,
|
||||||
|
factor: float = 10.0,
|
||||||
|
warm_step: int = 25000,
|
||||||
|
weight_decay=0,
|
||||||
|
) -> None:
|
||||||
|
"""Construct an Noam object."""
|
||||||
|
self.optimizer = torch.optim.Adam(
|
||||||
|
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||||
|
)
|
||||||
|
self._step = 0
|
||||||
|
self.warmup = warm_step
|
||||||
|
self.factor = factor
|
||||||
|
self.model_size = model_size
|
||||||
|
self._rate = 0
|
||||||
|
|
||||||
|
@property
|
||||||
|
def param_groups(self):
|
||||||
|
"""Return param_groups."""
|
||||||
|
return self.optimizer.param_groups
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
"""Update parameters and rate."""
|
||||||
|
self._step += 1
|
||||||
|
rate = self.rate()
|
||||||
|
for p in self.optimizer.param_groups:
|
||||||
|
p["lr"] = rate
|
||||||
|
self._rate = rate
|
||||||
|
self.optimizer.step()
|
||||||
|
|
||||||
|
def rate(self, step=None):
|
||||||
|
"""Implement `lrate` above."""
|
||||||
|
if step is None:
|
||||||
|
step = self._step
|
||||||
|
return (
|
||||||
|
self.factor
|
||||||
|
* self.model_size ** (-0.5)
|
||||||
|
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
||||||
|
)
|
||||||
|
|
||||||
|
def zero_grad(self):
|
||||||
|
"""Reset gradient."""
|
||||||
|
self.optimizer.zero_grad()
|
||||||
|
|
||||||
|
def state_dict(self):
|
||||||
|
"""Return state_dict."""
|
||||||
|
return {
|
||||||
|
"_step": self._step,
|
||||||
|
"warmup": self.warmup,
|
||||||
|
"factor": self.factor,
|
||||||
|
"model_size": self.model_size,
|
||||||
|
"_rate": self._rate,
|
||||||
|
"optimizer": self.optimizer.state_dict(),
|
||||||
|
}
|
||||||
|
|
||||||
|
def load_state_dict(self, state_dict):
|
||||||
|
"""Load state_dict."""
|
||||||
|
for key, value in state_dict.items():
|
||||||
|
if key == "optimizer":
|
||||||
|
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||||
|
else:
|
||||||
|
setattr(self, key, value)
|
||||||
|
|
||||||
|
|
||||||
|
class LabelSmoothingLoss(nn.Module):
|
||||||
|
"""
|
||||||
|
Label-smoothing loss. KL-divergence between q_{smoothed ground truth prob.}(w)
|
||||||
|
and p_{prob. computed by model}(w) is minimized.
|
||||||
|
Modified from
|
||||||
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/label_smoothing_loss.py # noqa
|
||||||
|
|
||||||
|
Args:
|
||||||
|
size: the number of class
|
||||||
|
padding_idx: padding_idx: ignored class id
|
||||||
|
smoothing: smoothing rate (0.0 means the conventional CE)
|
||||||
|
normalize_length: normalize loss by sequence length if True
|
||||||
|
criterion: loss function to be smoothed
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
size: int,
|
||||||
|
padding_idx: int = -1,
|
||||||
|
smoothing: float = 0.1,
|
||||||
|
normalize_length: bool = False,
|
||||||
|
criterion: nn.Module = nn.KLDivLoss(reduction="none"),
|
||||||
|
) -> None:
|
||||||
|
"""Construct an LabelSmoothingLoss object."""
|
||||||
|
super(LabelSmoothingLoss, self).__init__()
|
||||||
|
self.criterion = criterion
|
||||||
|
self.padding_idx = padding_idx
|
||||||
|
assert 0.0 < smoothing <= 1.0
|
||||||
|
self.confidence = 1.0 - smoothing
|
||||||
|
self.smoothing = smoothing
|
||||||
|
self.size = size
|
||||||
|
self.true_dist = None
|
||||||
|
self.normalize_length = normalize_length
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Compute loss between x and target.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
prediction of dimension
|
||||||
|
(batch_size, input_length, number_of_classes).
|
||||||
|
target:
|
||||||
|
target masked with self.padding_id of
|
||||||
|
dimension (batch_size, input_length).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A scalar tensor containing the loss without normalization.
|
||||||
|
"""
|
||||||
|
assert x.size(2) == self.size
|
||||||
|
# batch_size = x.size(0)
|
||||||
|
x = x.view(-1, self.size)
|
||||||
|
target = target.view(-1)
|
||||||
|
with torch.no_grad():
|
||||||
|
true_dist = x.clone()
|
||||||
|
true_dist.fill_(self.smoothing / (self.size - 1))
|
||||||
|
ignore = target == self.padding_idx # (B,)
|
||||||
|
total = len(target) - ignore.sum().item()
|
||||||
|
target = target.masked_fill(ignore, 0) # avoid -1 index
|
||||||
|
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
||||||
|
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
||||||
|
# denom = total if self.normalize_length else batch_size
|
||||||
|
denom = total if self.normalize_length else 1
|
||||||
|
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
||||||
|
|
||||||
|
|
||||||
|
def encoder_padding_mask(
|
||||||
|
max_len: int, supervisions: Optional[Supervisions] = None
|
||||||
|
) -> Optional[torch.Tensor]:
|
||||||
|
"""Make mask tensor containing indexes of padded part.
|
||||||
|
|
||||||
|
TODO::
|
||||||
|
This function **assumes** that the model uses
|
||||||
|
a subsampling factor of 4. We should remove that
|
||||||
|
assumption later.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
max_len:
|
||||||
|
Maximum length of input features.
|
||||||
|
CAUTION: It is the length after subsampling.
|
||||||
|
supervisions:
|
||||||
|
Supervision in lhotse format.
|
||||||
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
|
(CAUTION: It contains length information, i.e., start and number of
|
||||||
|
frames, before subsampling)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: Mask tensor of dimension (batch_size, input_length), True denote the masked indices.
|
||||||
|
"""
|
||||||
|
if supervisions is None:
|
||||||
|
return None
|
||||||
|
|
||||||
|
supervision_segments = torch.stack(
|
||||||
|
(
|
||||||
|
supervisions["sequence_idx"],
|
||||||
|
supervisions["start_frame"],
|
||||||
|
supervisions["num_frames"],
|
||||||
|
),
|
||||||
|
1,
|
||||||
|
).to(torch.int32)
|
||||||
|
|
||||||
|
lengths = [
|
||||||
|
0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)
|
||||||
|
]
|
||||||
|
for idx in range(supervision_segments.size(0)):
|
||||||
|
# Note: TorchScript doesn't allow to unpack tensors as tuples
|
||||||
|
sequence_idx = supervision_segments[idx, 0].item()
|
||||||
|
start_frame = supervision_segments[idx, 1].item()
|
||||||
|
num_frames = supervision_segments[idx, 2].item()
|
||||||
|
lengths[sequence_idx] = start_frame + num_frames
|
||||||
|
|
||||||
|
lengths = [((i - 1) // 2 - 1) // 2 for i in lengths]
|
||||||
|
bs = int(len(lengths))
|
||||||
|
seq_range = torch.arange(0, max_len, dtype=torch.int64)
|
||||||
|
seq_range_expand = seq_range.unsqueeze(0).expand(bs, max_len)
|
||||||
|
# Note: TorchScript doesn't implement Tensor.new()
|
||||||
|
seq_length_expand = torch.tensor(
|
||||||
|
lengths, device=seq_range_expand.device, dtype=seq_range_expand.dtype
|
||||||
|
).unsqueeze(-1)
|
||||||
|
mask = seq_range_expand >= seq_length_expand
|
||||||
|
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
def decoder_padding_mask(
|
||||||
|
ys_pad: torch.Tensor, ignore_id: int = -1
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""Generate a length mask for input.
|
||||||
|
|
||||||
|
The masked position are filled with True,
|
||||||
|
Unmasked positions are filled with False.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ys_pad:
|
||||||
|
padded tensor of dimension (batch_size, input_length).
|
||||||
|
ignore_id:
|
||||||
|
the ignored number (the padding number) in ys_pad
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor:
|
||||||
|
a bool tensor of the same shape as the input tensor.
|
||||||
|
"""
|
||||||
|
ys_mask = ys_pad == ignore_id
|
||||||
|
return ys_mask
|
||||||
|
|
||||||
|
|
||||||
|
def generate_square_subsequent_mask(sz: int) -> torch.Tensor:
|
||||||
|
"""Generate a square mask for the sequence. The masked positions are
|
||||||
|
filled with float('-inf'). Unmasked positions are filled with float(0.0).
|
||||||
|
The mask can be used for masked self-attention.
|
||||||
|
|
||||||
|
For instance, if sz is 3, it returns::
|
||||||
|
|
||||||
|
tensor([[0., -inf, -inf],
|
||||||
|
[0., 0., -inf],
|
||||||
|
[0., 0., 0]])
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sz: mask size
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A square mask of dimension (sz, sz)
|
||||||
|
"""
|
||||||
|
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
|
||||||
|
mask = (
|
||||||
|
mask.float()
|
||||||
|
.masked_fill(mask == 0, float("-inf"))
|
||||||
|
.masked_fill(mask == 1, float(0.0))
|
||||||
|
)
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
def add_sos(token_ids: List[List[int]], sos_id: int) -> List[List[int]]:
|
||||||
|
"""Prepend sos_id to each utterance.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
token_ids:
|
||||||
|
A list-of-list of token IDs. Each sublist contains
|
||||||
|
token IDs (e.g., word piece IDs) of an utterance.
|
||||||
|
sos_id:
|
||||||
|
The ID of the SOS token.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
Return a new list-of-list, where each sublist starts
|
||||||
|
with SOS ID.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for utt in token_ids:
|
||||||
|
ans.append([sos_id] + utt)
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
|
||||||
|
"""Append eos_id to each utterance.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
token_ids:
|
||||||
|
A list-of-list of token IDs. Each sublist contains
|
||||||
|
token IDs (e.g., word piece IDs) of an utterance.
|
||||||
|
eos_id:
|
||||||
|
The ID of the EOS token.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
Return a new list-of-list, where each sublist ends
|
||||||
|
with EOS ID.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for utt in token_ids:
|
||||||
|
ans.append(utt + [eos_id])
|
||||||
|
return ans
|
100
egs/librispeech/ASR/local/convert_transcript_to_corpus.py
Executable file
100
egs/librispeech/ASR/local/convert_transcript_to_corpus.py
Executable file
@ -0,0 +1,100 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
"""
|
||||||
|
Convert a transcript file containing words to a corpus file containing tokens
|
||||||
|
for LM training with the help of a lexicon.
|
||||||
|
|
||||||
|
If the lexicon contains phones, the resulting LM will be a phone LM; If the
|
||||||
|
lexicon contains word pieces, the resulting LM will be a word piece LM.
|
||||||
|
|
||||||
|
If a word has multiple pronunciations, the one that appears last in the lexicon
|
||||||
|
is used.
|
||||||
|
|
||||||
|
If the input transcript is:
|
||||||
|
|
||||||
|
hello zoo world hello
|
||||||
|
world zoo
|
||||||
|
foo zoo world hellO
|
||||||
|
|
||||||
|
and if the lexicon is
|
||||||
|
|
||||||
|
<UNK> SPN
|
||||||
|
hello h e l l o
|
||||||
|
hello h e l l o 2
|
||||||
|
world w o r l d
|
||||||
|
zoo z o o
|
||||||
|
|
||||||
|
Then the output is
|
||||||
|
|
||||||
|
h e l l o 2 z o o w o r l d h e l l o 2
|
||||||
|
w o r l d z o o
|
||||||
|
SPN z o o w o r l d SPN
|
||||||
|
"""
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from icefall.lexicon import read_lexicon
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--transcript",
|
||||||
|
type=str,
|
||||||
|
help="The input transcript file."
|
||||||
|
"We assume that the transcript file consists of "
|
||||||
|
"lines. Each line consists of space separated words.",
|
||||||
|
)
|
||||||
|
parser.add_argument("--lexicon", type=str, help="The input lexicon file.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--oov", type=str, default="<UNK>", help="The OOV word."
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def process_line(lexicon: Dict[str, str], line: str, oov_token: str) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
A dict containing pronunciations. Its keys are words and values
|
||||||
|
are pronunciations (i.e., tokens).
|
||||||
|
line:
|
||||||
|
A line of transcript consisting of space(s) separated words.
|
||||||
|
oov_token:
|
||||||
|
The pronunciation of the oov word if a word in `line` is not present
|
||||||
|
in the lexicon.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
s = ""
|
||||||
|
words = line.strip().split()
|
||||||
|
for i, w in enumerate(words):
|
||||||
|
tokens = lexicon.get(w, oov_token)
|
||||||
|
s += " ".join(tokens)
|
||||||
|
s += " "
|
||||||
|
print(s.strip())
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
assert Path(args.lexicon).is_file()
|
||||||
|
assert Path(args.transcript).is_file()
|
||||||
|
assert len(args.oov) > 0
|
||||||
|
|
||||||
|
lexicon = dict(read_lexicon(args.lexicon))
|
||||||
|
assert args.oov in lexicon
|
||||||
|
|
||||||
|
oov_token = lexicon[args.oov]
|
||||||
|
|
||||||
|
with open(args.transcript) as f:
|
||||||
|
for line in f:
|
||||||
|
process_line(lexicon=lexicon, line=line, oov_token=oov_token)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
627
egs/librispeech/ASR/local/ngram_entropy_pruning.py
Normal file
627
egs/librispeech/ASR/local/ngram_entropy_pruning.py
Normal file
@ -0,0 +1,627 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
# Copyright 2021 Johns Hopkins University (Author: Ruizhe Huang)
|
||||||
|
# Apache 2.0.
|
||||||
|
|
||||||
|
# This is an implementation of ``Entropy-based Pruning of Backoff Language Models''
|
||||||
|
# in the same way as SRILM.
|
||||||
|
|
||||||
|
################################################
|
||||||
|
# Useful links/References:
|
||||||
|
################################################
|
||||||
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/lm/src/NgramLM.cc#L2330
|
||||||
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/lm/src/NgramLM.cc#L2124
|
||||||
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/lm/src/LM.cc#L527
|
||||||
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/flm/src/FNgramLM.cc#L2124
|
||||||
|
# https://github.com/sfischer13/python-arpa
|
||||||
|
|
||||||
|
################################################
|
||||||
|
# How to use:
|
||||||
|
################################################
|
||||||
|
# python3 ngram_entropy_pruning.py -threshold $threshold -lm $input_lm -write-lm $pruned_lm
|
||||||
|
|
||||||
|
################################################
|
||||||
|
# SRILM commands:
|
||||||
|
################################################
|
||||||
|
# to_prune_lm=egs/swbd/s5c/data/local/lm/sw1.o3g.kn.gz
|
||||||
|
# vocab=egs/swbd/s5c/data/local/lm/wordlist
|
||||||
|
# order=3
|
||||||
|
# oov_symbol="<unk>"
|
||||||
|
# threshold=4.7e-5
|
||||||
|
# pruned_lm=temp.${threshold}.gz
|
||||||
|
# ngram -unk -map-unk "$oov_symbol" -vocab $vocab -order $order -prune ${threshold} -lm ${to_prune_lm} -write-lm ${pruned_lm}
|
||||||
|
#
|
||||||
|
# lm=
|
||||||
|
# ngram -unk -lm $lm -ppl heldout
|
||||||
|
# ngram -unk -lm $lm -ppl heldout -debug 3
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
|
||||||
|
import gzip
|
||||||
|
from io import StringIO
|
||||||
|
from collections import OrderedDict
|
||||||
|
from collections import defaultdict
|
||||||
|
from enum import Enum, unique
|
||||||
|
import re
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="""
|
||||||
|
Prune an n-gram language model based on the relative entropy
|
||||||
|
between the original and the pruned model, based on Andreas Stolcke's paper.
|
||||||
|
An n-gram entry is removed, if the removal causes (training set) perplexity
|
||||||
|
of the model to increase by less than threshold relative.
|
||||||
|
|
||||||
|
The command takes an arpa file and a pruning threshold as input,
|
||||||
|
and outputs a pruned arpa file.
|
||||||
|
""")
|
||||||
|
parser.add_argument("-threshold",
|
||||||
|
type=float,
|
||||||
|
default=1e-6,
|
||||||
|
help="Order of n-gram")
|
||||||
|
parser.add_argument("-lm",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Path to the input arpa file")
|
||||||
|
parser.add_argument("-write-lm",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Path to output arpa file after pruning")
|
||||||
|
parser.add_argument("-minorder",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="The minorder parameter limits pruning to "
|
||||||
|
"ngrams of that length and above.")
|
||||||
|
parser.add_argument("-encoding",
|
||||||
|
type=str,
|
||||||
|
default="utf-8",
|
||||||
|
help="Encoding of the arpa file")
|
||||||
|
parser.add_argument("-verbose",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
choices=[0, 1, 2, 3, 4, 5],
|
||||||
|
help="Verbose level, where "
|
||||||
|
"0 is most noisy; "
|
||||||
|
"5 is most silent")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
default_encoding = args.encoding
|
||||||
|
logging.basicConfig(
|
||||||
|
format=
|
||||||
|
"%(asctime)s — %(levelname)s — %(funcName)s:%(lineno)d — %(message)s",
|
||||||
|
level=args.verbose * 10)
|
||||||
|
|
||||||
|
|
||||||
|
class Context(dict):
|
||||||
|
"""
|
||||||
|
This class stores data for a context h.
|
||||||
|
It behaves like a python dict object, except that it has several
|
||||||
|
additional attributes.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.log_bo = None
|
||||||
|
|
||||||
|
|
||||||
|
class Arpa:
|
||||||
|
"""
|
||||||
|
This is a class that implement the data structure of an APRA LM.
|
||||||
|
It (as well as some other classes) is modified based on the library
|
||||||
|
by Stefan Fischer:
|
||||||
|
https://github.com/sfischer13/python-arpa
|
||||||
|
"""
|
||||||
|
|
||||||
|
UNK = '<unk>'
|
||||||
|
SOS = '<s>'
|
||||||
|
EOS = '</s>'
|
||||||
|
FLOAT_NDIGITS = 7
|
||||||
|
base = 10
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _check_input(my_input):
|
||||||
|
if not my_input:
|
||||||
|
raise ValueError
|
||||||
|
elif isinstance(my_input, tuple):
|
||||||
|
return my_input
|
||||||
|
elif isinstance(my_input, list):
|
||||||
|
return tuple(my_input)
|
||||||
|
elif isinstance(my_input, str):
|
||||||
|
return tuple(my_input.strip().split(' '))
|
||||||
|
else:
|
||||||
|
raise ValueError
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _check_word(input_word):
|
||||||
|
if not isinstance(input_word, str):
|
||||||
|
raise ValueError
|
||||||
|
if ' ' in input_word:
|
||||||
|
raise ValueError
|
||||||
|
|
||||||
|
def _replace_unks(self, words):
|
||||||
|
return tuple((w if w in self else self._unk) for w in words)
|
||||||
|
|
||||||
|
def __init__(self, path=None, encoding=None, unk=None):
|
||||||
|
self._counts = OrderedDict()
|
||||||
|
self._ngrams = OrderedDict(
|
||||||
|
) # Use self._ngrams[len(h)][h][w] for saving the entry of (h,w)
|
||||||
|
self._vocabulary = set()
|
||||||
|
if unk is None:
|
||||||
|
self._unk = self.UNK
|
||||||
|
|
||||||
|
if path is not None:
|
||||||
|
self.loadf(path, encoding)
|
||||||
|
|
||||||
|
def __contains__(self, ngram):
|
||||||
|
h = ngram[:-1] # h is a tuple
|
||||||
|
w = ngram[-1] # w is a string/word
|
||||||
|
return h in self._ngrams[len(h)] and w in self._ngrams[len(h)][h]
|
||||||
|
|
||||||
|
def contains_word(self, word):
|
||||||
|
self._check_word(word)
|
||||||
|
return word in self._vocabulary
|
||||||
|
|
||||||
|
def add_count(self, order, count):
|
||||||
|
self._counts[order] = count
|
||||||
|
self._ngrams[order - 1] = defaultdict(Context)
|
||||||
|
|
||||||
|
def update_counts(self):
|
||||||
|
for order in range(1, self.order() + 1):
|
||||||
|
count = sum(
|
||||||
|
[len(wlist) for _, wlist in self._ngrams[order - 1].items()])
|
||||||
|
if count > 0:
|
||||||
|
self._counts[order] = count
|
||||||
|
|
||||||
|
def add_entry(self, ngram, p, bo=None, order=None):
|
||||||
|
# Note: ngram is a tuple of strings, e.g. ("w1", "w2", "w3")
|
||||||
|
h = ngram[:-1] # h is a tuple
|
||||||
|
w = ngram[-1] # w is a string/word
|
||||||
|
|
||||||
|
# Note that p and bo here are in fact in the log domain (self.base = 10)
|
||||||
|
h_context = self._ngrams[len(h)][h]
|
||||||
|
h_context[w] = p
|
||||||
|
if bo is not None:
|
||||||
|
self._ngrams[len(ngram)][ngram].log_bo = bo
|
||||||
|
|
||||||
|
for word in ngram:
|
||||||
|
self._vocabulary.add(word)
|
||||||
|
|
||||||
|
def counts(self):
|
||||||
|
return sorted(self._counts.items())
|
||||||
|
|
||||||
|
def order(self):
|
||||||
|
return max(self._counts.keys(), default=None)
|
||||||
|
|
||||||
|
def vocabulary(self, sort=True):
|
||||||
|
if sort:
|
||||||
|
return sorted(self._vocabulary)
|
||||||
|
else:
|
||||||
|
return self._vocabulary
|
||||||
|
|
||||||
|
def _entries(self, order):
|
||||||
|
return (self._entry(h, w)
|
||||||
|
for h, wlist in self._ngrams[order - 1].items() for w in wlist)
|
||||||
|
|
||||||
|
def _entry(self, h, w):
|
||||||
|
# return the entry for the ngram (h, w)
|
||||||
|
ngram = h + (w, )
|
||||||
|
log_p = self._ngrams[len(h)][h][w]
|
||||||
|
log_bo = self._log_bo(ngram)
|
||||||
|
if log_bo is not None:
|
||||||
|
return round(log_p, self.FLOAT_NDIGITS), ngram, round(
|
||||||
|
log_bo, self.FLOAT_NDIGITS)
|
||||||
|
else:
|
||||||
|
return round(log_p, self.FLOAT_NDIGITS), ngram
|
||||||
|
|
||||||
|
def _log_bo(self, ngram):
|
||||||
|
if len(ngram) in self._ngrams and ngram in self._ngrams[len(ngram)]:
|
||||||
|
return self._ngrams[len(ngram)][ngram].log_bo
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
def _log_p(self, ngram):
|
||||||
|
h = ngram[:-1] # h is a tuple
|
||||||
|
w = ngram[-1] # w is a string/word
|
||||||
|
if h in self._ngrams[len(h)] and w in self._ngrams[len(h)][h]:
|
||||||
|
return self._ngrams[len(h)][h][w]
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
def log_p_raw(self, ngram):
|
||||||
|
log_p = self._log_p(ngram)
|
||||||
|
if log_p is not None:
|
||||||
|
return log_p
|
||||||
|
else:
|
||||||
|
if len(ngram) == 1:
|
||||||
|
raise KeyError
|
||||||
|
else:
|
||||||
|
log_bo = self._log_bo(ngram[:-1])
|
||||||
|
if log_bo is None:
|
||||||
|
log_bo = 0
|
||||||
|
return log_bo + self.log_p_raw(ngram[1:])
|
||||||
|
|
||||||
|
def log_joint_prob(self, sequence):
|
||||||
|
# Compute the joint prob of the sequence based on the chain rule
|
||||||
|
# Note that sequence should be a tuple of strings
|
||||||
|
#
|
||||||
|
# Reference:
|
||||||
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/lm/src/LM.cc#L527
|
||||||
|
|
||||||
|
log_joint_p = 0
|
||||||
|
seq = sequence
|
||||||
|
while len(seq) > 0:
|
||||||
|
log_joint_p += self.log_p_raw(seq)
|
||||||
|
seq = seq[:-1]
|
||||||
|
|
||||||
|
# If we're computing the marginal probability of the unigram
|
||||||
|
# <s> context we have to look up </s> instead since the former
|
||||||
|
# has prob = 0.
|
||||||
|
if len(seq) == 1 and seq[0] == self.SOS:
|
||||||
|
seq = (self.EOS, )
|
||||||
|
|
||||||
|
return log_joint_p
|
||||||
|
|
||||||
|
def set_new_context(self, h):
|
||||||
|
old_context = self._ngrams[len(h)][h]
|
||||||
|
self._ngrams[len(h)][h] = Context()
|
||||||
|
return old_context
|
||||||
|
|
||||||
|
def log_p(self, ngram):
|
||||||
|
words = self._check_input(ngram)
|
||||||
|
if self._unk:
|
||||||
|
words = self._replace_unks(words)
|
||||||
|
return self.log_p_raw(words)
|
||||||
|
|
||||||
|
def log_s(self, sentence, sos=SOS, eos=EOS):
|
||||||
|
words = self._check_input(sentence)
|
||||||
|
if self._unk:
|
||||||
|
words = self._replace_unks(words)
|
||||||
|
if sos:
|
||||||
|
words = (sos, ) + words
|
||||||
|
if eos:
|
||||||
|
words = words + (eos, )
|
||||||
|
result = sum(
|
||||||
|
self.log_p_raw(words[:i]) for i in range(1,
|
||||||
|
len(words) + 1))
|
||||||
|
if sos:
|
||||||
|
result = result - self.log_p_raw(words[:1])
|
||||||
|
return result
|
||||||
|
|
||||||
|
def p(self, ngram):
|
||||||
|
return self.base**self.log_p(ngram)
|
||||||
|
|
||||||
|
def s(self, sentence):
|
||||||
|
return self.base**self.log_s(sentence)
|
||||||
|
|
||||||
|
def write(self, fp):
|
||||||
|
fp.write('\n\\data\\\n')
|
||||||
|
for order, count in self.counts():
|
||||||
|
fp.write('ngram {}={}\n'.format(order, count))
|
||||||
|
fp.write('\n')
|
||||||
|
for order, _ in self.counts():
|
||||||
|
fp.write('\\{}-grams:\n'.format(order))
|
||||||
|
for e in self._entries(order):
|
||||||
|
prob = e[0]
|
||||||
|
ngram = ' '.join(e[1])
|
||||||
|
if len(e) == 2:
|
||||||
|
fp.write('{}\t{}\n'.format(prob, ngram))
|
||||||
|
elif len(e) == 3:
|
||||||
|
backoff = e[2]
|
||||||
|
fp.write('{}\t{}\t{}\n'.format(prob, ngram, backoff))
|
||||||
|
else:
|
||||||
|
raise ValueError
|
||||||
|
fp.write('\n')
|
||||||
|
fp.write('\\end\\\n')
|
||||||
|
|
||||||
|
|
||||||
|
class ArpaParser:
|
||||||
|
"""
|
||||||
|
This is a class that implement a parser of an arpa file
|
||||||
|
"""
|
||||||
|
@unique
|
||||||
|
class State(Enum):
|
||||||
|
DATA = 1
|
||||||
|
COUNT = 2
|
||||||
|
HEADER = 3
|
||||||
|
ENTRY = 4
|
||||||
|
|
||||||
|
re_count = re.compile(r'^ngram (\d+)=(\d+)$')
|
||||||
|
re_header = re.compile(r'^\\(\d+)-grams:$')
|
||||||
|
re_entry = re.compile('^(-?\\d+(\\.\\d+)?([eE]-?\\d+)?)'
|
||||||
|
'\t'
|
||||||
|
'(\\S+( \\S+)*)'
|
||||||
|
'(\t((-?\\d+(\\.\\d+)?)([eE]-?\\d+)?))?$')
|
||||||
|
|
||||||
|
def _parse(self, fp):
|
||||||
|
self._result = []
|
||||||
|
self._state = self.State.DATA
|
||||||
|
self._tmp_model = None
|
||||||
|
self._tmp_order = None
|
||||||
|
for line in fp:
|
||||||
|
line = line.strip()
|
||||||
|
if self._state == self.State.DATA:
|
||||||
|
self._data(line)
|
||||||
|
elif self._state == self.State.COUNT:
|
||||||
|
self._count(line)
|
||||||
|
elif self._state == self.State.HEADER:
|
||||||
|
self._header(line)
|
||||||
|
elif self._state == self.State.ENTRY:
|
||||||
|
self._entry(line)
|
||||||
|
if self._state != self.State.DATA:
|
||||||
|
raise Exception(line)
|
||||||
|
return self._result
|
||||||
|
|
||||||
|
def _data(self, line):
|
||||||
|
if line == '\\data\\':
|
||||||
|
self._state = self.State.COUNT
|
||||||
|
self._tmp_model = Arpa()
|
||||||
|
else:
|
||||||
|
pass # skip comment line
|
||||||
|
|
||||||
|
def _count(self, line):
|
||||||
|
match = self.re_count.match(line)
|
||||||
|
if match:
|
||||||
|
order = match.group(1)
|
||||||
|
count = match.group(2)
|
||||||
|
self._tmp_model.add_count(int(order), int(count))
|
||||||
|
elif not line:
|
||||||
|
self._state = self.State.HEADER # there are no counts
|
||||||
|
else:
|
||||||
|
raise Exception(line)
|
||||||
|
|
||||||
|
def _header(self, line):
|
||||||
|
match = self.re_header.match(line)
|
||||||
|
if match:
|
||||||
|
self._state = self.State.ENTRY
|
||||||
|
self._tmp_order = int(match.group(1))
|
||||||
|
elif line == '\\end\\':
|
||||||
|
self._result.append(self._tmp_model)
|
||||||
|
self._state = self.State.DATA
|
||||||
|
self._tmp_model = None
|
||||||
|
self._tmp_order = None
|
||||||
|
elif not line:
|
||||||
|
pass # skip empty line
|
||||||
|
else:
|
||||||
|
raise Exception(line)
|
||||||
|
|
||||||
|
def _entry(self, line):
|
||||||
|
match = self.re_entry.match(line)
|
||||||
|
if match:
|
||||||
|
p = self._float_or_int(match.group(1))
|
||||||
|
ngram = tuple(match.group(4).split(' '))
|
||||||
|
bo_match = match.group(7)
|
||||||
|
bo = self._float_or_int(bo_match) if bo_match else None
|
||||||
|
self._tmp_model.add_entry(ngram, p, bo, self._tmp_order)
|
||||||
|
elif not line:
|
||||||
|
self._state = self.State.HEADER # last entry
|
||||||
|
else:
|
||||||
|
raise Exception(line)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _float_or_int(s):
|
||||||
|
f = float(s)
|
||||||
|
i = int(f)
|
||||||
|
if str(i) == s: # don't drop trailing ".0"
|
||||||
|
return i
|
||||||
|
else:
|
||||||
|
return f
|
||||||
|
|
||||||
|
def load(self, fp):
|
||||||
|
"""Deserialize fp (a file-like object) to a Python object."""
|
||||||
|
return self._parse(fp)
|
||||||
|
|
||||||
|
def loadf(self, path, encoding=None):
|
||||||
|
"""Deserialize path (.arpa, .gz) to a Python object."""
|
||||||
|
path = str(path)
|
||||||
|
if path.endswith('.gz'):
|
||||||
|
with gzip.open(path, mode='rt', encoding=encoding) as f:
|
||||||
|
return self.load(f)
|
||||||
|
else:
|
||||||
|
with open(path, mode='rt', encoding=encoding) as f:
|
||||||
|
return self.load(f)
|
||||||
|
|
||||||
|
def loads(self, s):
|
||||||
|
"""Deserialize s (a str) to a Python object."""
|
||||||
|
with StringIO(s) as f:
|
||||||
|
return self.load(f)
|
||||||
|
|
||||||
|
def dump(self, obj, fp):
|
||||||
|
"""Serialize obj to fp (a file-like object) in ARPA format."""
|
||||||
|
obj.write(fp)
|
||||||
|
|
||||||
|
def dumpf(self, obj, path, encoding=None):
|
||||||
|
"""Serialize obj to path in ARPA format (.arpa, .gz)."""
|
||||||
|
path = str(path)
|
||||||
|
if path.endswith('.gz'):
|
||||||
|
with gzip.open(path, mode='wt', encoding=encoding) as f:
|
||||||
|
return self.dump(obj, f)
|
||||||
|
else:
|
||||||
|
with open(path, mode='wt', encoding=encoding) as f:
|
||||||
|
self.dump(obj, f)
|
||||||
|
|
||||||
|
def dumps(self, obj):
|
||||||
|
"""Serialize obj to an ARPA formatted str."""
|
||||||
|
with StringIO() as f:
|
||||||
|
self.dump(obj, f)
|
||||||
|
return f.getvalue()
|
||||||
|
|
||||||
|
|
||||||
|
def add_log_p(prev_log_sum, log_p, base):
|
||||||
|
return math.log(base**log_p + base**prev_log_sum, base)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_numerator_denominator(lm, h):
|
||||||
|
log_sum_seen_h = -math.inf
|
||||||
|
log_sum_seen_h_lower = -math.inf
|
||||||
|
base = lm.base
|
||||||
|
for w, log_p in lm._ngrams[len(h)][h].items():
|
||||||
|
log_sum_seen_h = add_log_p(log_sum_seen_h, log_p, base)
|
||||||
|
|
||||||
|
ngram = h + (w, )
|
||||||
|
log_p_lower = lm.log_p_raw(ngram[1:])
|
||||||
|
log_sum_seen_h_lower = add_log_p(log_sum_seen_h_lower, log_p_lower,
|
||||||
|
base)
|
||||||
|
|
||||||
|
numerator = 1.0 - base**log_sum_seen_h
|
||||||
|
denominator = 1.0 - base**log_sum_seen_h_lower
|
||||||
|
return numerator, denominator
|
||||||
|
|
||||||
|
|
||||||
|
def prune(lm, threshold, minorder):
|
||||||
|
# Reference:
|
||||||
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/lm/src/NgramLM.cc#L2330
|
||||||
|
|
||||||
|
for i in range(lm.order(), max(minorder - 1, 1),
|
||||||
|
-1): # i is the order of the ngram (h, w)
|
||||||
|
logging.info("processing %d-grams ..." % i)
|
||||||
|
count_pruned_ngrams = 0
|
||||||
|
|
||||||
|
h_dict = lm._ngrams[i - 1]
|
||||||
|
for h in list(h_dict.keys()):
|
||||||
|
# old backoff weight, BOW(h)
|
||||||
|
log_bow = lm._log_bo(h)
|
||||||
|
if log_bow is None:
|
||||||
|
log_bow = 0
|
||||||
|
|
||||||
|
# Compute numerator and denominator of the backoff weight,
|
||||||
|
# so that we can quickly compute the BOW adjustment due to
|
||||||
|
# leaving out one prob.
|
||||||
|
numerator, denominator = compute_numerator_denominator(lm, h)
|
||||||
|
|
||||||
|
# assert abs(math.log(numerator, lm.base) - math.log(denominator, lm.base) - h_dict[h].log_bo) < 1e-5
|
||||||
|
|
||||||
|
# Compute the marginal probability of the context, P(h)
|
||||||
|
h_log_p = lm.log_joint_prob(h)
|
||||||
|
|
||||||
|
all_pruned = True
|
||||||
|
pruned_w_set = set()
|
||||||
|
|
||||||
|
for w, log_p in h_dict[h].items():
|
||||||
|
ngram = h + (w, )
|
||||||
|
|
||||||
|
# lower-order estimate for ngramProb, P(w|h')
|
||||||
|
backoff_prob = lm.log_p_raw(ngram[1:])
|
||||||
|
|
||||||
|
# Compute BOW after removing ngram, BOW'(h)
|
||||||
|
new_log_bow = math.log(numerator + lm.base ** log_p, lm.base) - \
|
||||||
|
math.log(denominator + lm.base ** backoff_prob, lm.base)
|
||||||
|
|
||||||
|
# Compute change in entropy due to removal of ngram
|
||||||
|
delta_prob = backoff_prob + new_log_bow - log_p
|
||||||
|
delta_entropy = - (lm.base ** h_log_p) * \
|
||||||
|
((lm.base ** log_p) * delta_prob +
|
||||||
|
numerator * (new_log_bow - log_bow))
|
||||||
|
|
||||||
|
# compute relative change in model (training set) perplexity
|
||||||
|
perp_change = lm.base**delta_entropy - 1.0
|
||||||
|
|
||||||
|
pruned = threshold > 0 and perp_change < threshold
|
||||||
|
|
||||||
|
# Make sure we don't prune ngrams whose backoff nodes are needed
|
||||||
|
if pruned and \
|
||||||
|
len(ngram) in lm._ngrams and \
|
||||||
|
len(lm._ngrams[len(ngram)][ngram]) > 0:
|
||||||
|
pruned = False
|
||||||
|
|
||||||
|
logging.debug("CONTEXT " + str(h) + " WORD " + w +
|
||||||
|
" CONTEXTPROB %f " % h_log_p +
|
||||||
|
" OLDPROB %f " % log_p + " NEWPROB %f " %
|
||||||
|
(backoff_prob + new_log_bow) +
|
||||||
|
" DELTA-H %f " % delta_entropy +
|
||||||
|
" DELTA-LOGP %f " % delta_prob +
|
||||||
|
" PPL-CHANGE %f " % perp_change + " PRUNED " +
|
||||||
|
str(pruned))
|
||||||
|
|
||||||
|
if pruned:
|
||||||
|
pruned_w_set.add(w)
|
||||||
|
count_pruned_ngrams += 1
|
||||||
|
else:
|
||||||
|
all_pruned = False
|
||||||
|
|
||||||
|
# If we removed all ngrams for this context we can
|
||||||
|
# remove the context itself, but only if the present
|
||||||
|
# context is not a prefix to a longer one.
|
||||||
|
if all_pruned and len(pruned_w_set) == len(h_dict[h]):
|
||||||
|
del h_dict[
|
||||||
|
h] # this context h is no longer needed, as its ngram prob is stored at its own context h'
|
||||||
|
elif len(pruned_w_set) > 0:
|
||||||
|
# The pruning for this context h is actually done here
|
||||||
|
old_context = lm.set_new_context(h)
|
||||||
|
|
||||||
|
for w, p_w in old_context.items():
|
||||||
|
if w not in pruned_w_set:
|
||||||
|
lm.add_entry(
|
||||||
|
h + (w, ),
|
||||||
|
p_w) # the entry hw is stored at the context h
|
||||||
|
|
||||||
|
# We need to recompute the back-off weight, but
|
||||||
|
# this can only be done after completing the pruning
|
||||||
|
# of the lower-order ngrams.
|
||||||
|
# Reference:
|
||||||
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/flm/src/FNgramLM.cc#L2124
|
||||||
|
|
||||||
|
logging.info("pruned %d %d-grams" % (count_pruned_ngrams, i))
|
||||||
|
|
||||||
|
# recompute backoff weights
|
||||||
|
for i in range(max(minorder - 1, 1) + 1,
|
||||||
|
lm.order() +
|
||||||
|
1): # be careful of this order: from low- to high-order
|
||||||
|
for h in lm._ngrams[i - 1]:
|
||||||
|
numerator, denominator = compute_numerator_denominator(lm, h)
|
||||||
|
new_log_bow = math.log(numerator, lm.base) - math.log(
|
||||||
|
denominator, lm.base)
|
||||||
|
lm._ngrams[len(h)][h].log_bo = new_log_bow
|
||||||
|
|
||||||
|
# update counts
|
||||||
|
lm.update_counts()
|
||||||
|
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
|
def check_h_is_valid(lm, h):
|
||||||
|
sum_under_h = sum(
|
||||||
|
[lm.base**lm.log_p_raw(h + (w, )) for w in lm.vocabulary(sort=False)])
|
||||||
|
if abs(sum_under_h - 1.0) > 1e-6:
|
||||||
|
logging.info("warning: %s %f" % (str(h), sum_under_h))
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def validate_lm(lm):
|
||||||
|
# sanity check if the conditional probability sums to one under each context h
|
||||||
|
for i in range(lm.order(), 0, -1): # i is the order of the ngram (h, w)
|
||||||
|
logging.info("validating %d-grams ..." % i)
|
||||||
|
h_dict = lm._ngrams[i - 1]
|
||||||
|
for h in h_dict.keys():
|
||||||
|
check_h_is_valid(lm, h)
|
||||||
|
|
||||||
|
|
||||||
|
def compare_two_apras(path1, path2):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# load an arpa file
|
||||||
|
logging.info("Loading the arpa file from %s" % args.lm)
|
||||||
|
parser = ArpaParser()
|
||||||
|
models = parser.loadf(args.lm, encoding=default_encoding)
|
||||||
|
lm = models[0] # ARPA files may contain several models.
|
||||||
|
logging.info("Stats before pruning:")
|
||||||
|
for i, cnt in lm.counts():
|
||||||
|
logging.info("ngram %d=%d" % (i, cnt))
|
||||||
|
|
||||||
|
# prune it, the language model will be modified in-place
|
||||||
|
logging.info("Start pruning the model with threshold=%.3E..." %
|
||||||
|
args.threshold)
|
||||||
|
prune(lm, args.threshold, args.minorder)
|
||||||
|
|
||||||
|
# validate_lm(lm)
|
||||||
|
|
||||||
|
# write the arpa language model to a file
|
||||||
|
logging.info("Stats after pruning:")
|
||||||
|
for i, cnt in lm.counts():
|
||||||
|
logging.info("ngram %d=%d" % (i, cnt))
|
||||||
|
logging.info("Saving the pruned arpa file to %s" % args.write_lm)
|
||||||
|
parser.dumpf(lm, args.write_lm, encoding=default_encoding)
|
||||||
|
logging.info("Done.")
|
@ -143,7 +143,71 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||||
log "Stage 7: Prepare G"
|
log "Stage 7: Prepare bigram P"
|
||||||
|
if [ ! -f data/lang_bpe/corpus.txt ]; then
|
||||||
|
./local/convert_transcript_to_corpus.py \
|
||||||
|
--lexicon data/lang_bpe/lexicon.txt \
|
||||||
|
--transcript data/lang_bpe/train.txt \
|
||||||
|
--oov "<UNK>" \
|
||||||
|
> data/lang_bpe/corpus.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/lang_bpe/P.arpa ]; then
|
||||||
|
./shared/make_kn_lm.py \
|
||||||
|
-ngram-order 2 \
|
||||||
|
-text data/lang_bpe/corpus.txt \
|
||||||
|
-lm data/lang_bpe/P.arpa
|
||||||
|
fi
|
||||||
|
|
||||||
|
# TODO: Use egs/wsj/s5/utils/lang/ngram_entropy_pruning.py
|
||||||
|
# from kaldi to prune P if it causes OOM later
|
||||||
|
|
||||||
|
if [ ! -f data/lang_bpe/P-no-prune.fst.txt ]; then
|
||||||
|
python3 -m kaldilm \
|
||||||
|
--read-symbol-table="data/lang_bpe/tokens.txt" \
|
||||||
|
--disambig-symbol='#0' \
|
||||||
|
--max-order=2 \
|
||||||
|
data/lang_bpe/P.arpa > data/lang_bpe/P-no-prune.fst.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
thresholds=(
|
||||||
|
1e-6
|
||||||
|
1e-7
|
||||||
|
)
|
||||||
|
for threshold in ${thresholds[@]}; do
|
||||||
|
if [ ! -f data/lang_bpe/P-pruned.${threshold}.arpa ]; then
|
||||||
|
python3 ./local/ngram_entropy_pruning.py \
|
||||||
|
-threshold $threshold \
|
||||||
|
-lm data/lang_bpe/P.arpa \
|
||||||
|
-write-lm data/lang_bpe/P-pruned.${threshold}.arpa
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f data/lang_bpe/P-pruned.${threshold}.fst.txt ]; then
|
||||||
|
python3 -m kaldilm \
|
||||||
|
--read-symbol-table="data/lang_bpe/tokens.txt" \
|
||||||
|
--disambig-symbol='#0' \
|
||||||
|
--max-order=2 \
|
||||||
|
data/lang_bpe/P-pruned.${threshold}.arpa > data/lang_bpe/P-pruned.${threshold}.fst.txt
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
|
||||||
|
if [ ! -f data/lang_bpe/P-uni.fst.txt ]; then
|
||||||
|
python3 -m kaldilm \
|
||||||
|
--read-symbol-table="data/lang_bpe/tokens.txt" \
|
||||||
|
--disambig-symbol='#0' \
|
||||||
|
--max-order=1 \
|
||||||
|
data/lang_bpe/P.arpa > data/lang_bpe/P-uni.fst.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
( cd data/lang_bpe;
|
||||||
|
# ln -sfv P-pruned.1e-6.fst.txt P.fst.txt
|
||||||
|
ln -sfv P-no-prune.fst.txt P.fst.txt
|
||||||
|
)
|
||||||
|
rm -fv data/lang_bpe/P.pt data/lang_bpe/ctc_topo_P.pt
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||||
|
log "Stage 8: Prepare G"
|
||||||
# We assume you have install kaldilm, if not, please install
|
# We assume you have install kaldilm, if not, please install
|
||||||
# it using: pip install kaldilm
|
# it using: pip install kaldilm
|
||||||
|
|
||||||
@ -167,7 +231,7 @@ if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||||
log "Stage 8: Compile HLG"
|
log "Stage 9: Compile HLG"
|
||||||
python3 ./local/compile_hlg.py
|
python3 ./local/compile_hlg.py
|
||||||
fi
|
fi
|
||||||
|
@ -17,10 +17,14 @@ class BpeCtcTrainingGraphCompiler(object):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
lang_dir:
|
lang_dir:
|
||||||
This directory is expected to contain the following files:
|
This directory is expected to contain the following files::
|
||||||
|
|
||||||
- bpe.model
|
- bpe.model
|
||||||
- words.txt
|
- words.txt
|
||||||
|
|
||||||
|
The above files are produced by the script `prepare.sh`. You
|
||||||
|
should have run that before running the training code.
|
||||||
|
|
||||||
device:
|
device:
|
||||||
It indicates CPU or CUDA.
|
It indicates CPU or CUDA.
|
||||||
sos_token:
|
sos_token:
|
||||||
@ -57,7 +61,9 @@ class BpeCtcTrainingGraphCompiler(object):
|
|||||||
return self.sp.encode(texts, out_type=int)
|
return self.sp.encode(texts, out_type=int)
|
||||||
|
|
||||||
def compile(
|
def compile(
|
||||||
self, piece_ids: List[List[int]], modified: bool = False,
|
self,
|
||||||
|
piece_ids: List[List[int]],
|
||||||
|
modified: bool = False,
|
||||||
) -> k2.Fsa:
|
) -> k2.Fsa:
|
||||||
"""Build a ctc graph from a list-of-list piece IDs.
|
"""Build a ctc graph from a list-of-list piece IDs.
|
||||||
|
|
||||||
|
178
icefall/bpe_mmi_graph_compiler.py
Normal file
178
icefall/bpe_mmi_graph_compiler.py
Normal file
@ -0,0 +1,178 @@
|
|||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Tuple, Union
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
|
||||||
|
|
||||||
|
class BpeMmiTrainingGraphCompiler(object):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
lang_dir: Path,
|
||||||
|
device: Union[str, torch.device] = "cpu",
|
||||||
|
sos_token: str = "<sos/eos>",
|
||||||
|
eos_token: str = "<sos/eos>",
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lang_dir:
|
||||||
|
Path to the lang directory. It is expected to contain the
|
||||||
|
following files::
|
||||||
|
|
||||||
|
- tokens.txt
|
||||||
|
- words.txt
|
||||||
|
- bpe.model
|
||||||
|
- P.fst.txt
|
||||||
|
|
||||||
|
The above files are generated by the script `prepare.sh`. You
|
||||||
|
should have run it before running the training code.
|
||||||
|
|
||||||
|
device:
|
||||||
|
It indicates CPU or CUDA.
|
||||||
|
sos_token:
|
||||||
|
The word piece that represents sos.
|
||||||
|
eos_token:
|
||||||
|
The word piece that represents eos.
|
||||||
|
"""
|
||||||
|
self.lang_dir = Path(lang_dir)
|
||||||
|
self.lexicon = Lexicon(lang_dir)
|
||||||
|
self.device = device
|
||||||
|
self.load_sentence_piece_model()
|
||||||
|
self.build_ctc_topo_P()
|
||||||
|
|
||||||
|
self.sos_id = self.sp.piece_to_id(sos_token)
|
||||||
|
self.eos_id = self.sp.piece_to_id(eos_token)
|
||||||
|
|
||||||
|
assert self.sos_id != self.sp.unk_id()
|
||||||
|
assert self.eos_id != self.sp.unk_id()
|
||||||
|
|
||||||
|
def load_sentence_piece_model(self) -> None:
|
||||||
|
"""Load the pre-trained sentencepiece model
|
||||||
|
from self.lang_dir/bpe.model.
|
||||||
|
"""
|
||||||
|
model_file = self.lang_dir / "bpe.model"
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(str(model_file))
|
||||||
|
self.sp = sp
|
||||||
|
|
||||||
|
def build_ctc_topo_P(self):
|
||||||
|
"""Built ctc_topo_P, the composition result of
|
||||||
|
ctc_topo and P, where P is a pre-trained bigram
|
||||||
|
word piece LM.
|
||||||
|
"""
|
||||||
|
# Note: there is no need to save a pre-compiled P and ctc_topo
|
||||||
|
# as it is very fast to generate them.
|
||||||
|
logging.info(f"Loading P from {self.lang_dir/'P.fst.txt'}")
|
||||||
|
with open(self.lang_dir / "P.fst.txt") as f:
|
||||||
|
# P is not an acceptor because there is
|
||||||
|
# a back-off state, whose incoming arcs
|
||||||
|
# have label #0 and aux_label 0 (i.e., <eps>).
|
||||||
|
P = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||||
|
|
||||||
|
first_token_disambig_id = self.lexicon.token_table["#0"]
|
||||||
|
|
||||||
|
# P.aux_labels is not needed in later computations, so
|
||||||
|
# remove it here.
|
||||||
|
del P.aux_labels
|
||||||
|
# CAUTION: The following line is crucial.
|
||||||
|
# Arcs entering the back-off state have label equal to #0.
|
||||||
|
# We have to change it to 0 here.
|
||||||
|
P.labels[P.labels >= first_token_disambig_id] = 0
|
||||||
|
|
||||||
|
P = k2.remove_epsilon(P)
|
||||||
|
P = k2.arc_sort(P)
|
||||||
|
P = P.to(self.device)
|
||||||
|
# Add epsilon self-loops to P because we want the
|
||||||
|
# following operation "k2.intersect" to run on GPU.
|
||||||
|
P_with_self_loops = k2.add_epsilon_self_loops(P)
|
||||||
|
|
||||||
|
max_token_id = max(self.lexicon.tokens)
|
||||||
|
logging.info(
|
||||||
|
f"Building modified ctc_topo. max_token_id: {max_token_id}"
|
||||||
|
)
|
||||||
|
# CAUTION: We have to use a modifed version of CTC topo.
|
||||||
|
# Otherwise, the resulting ctc_topo_P is so large that it gets
|
||||||
|
# stuck in k2.intersect_dense_pruned() or it gets OOM in
|
||||||
|
# k2.intersect_dense()
|
||||||
|
ctc_topo = k2.ctc_topo(max_token_id, modified=True, device=self.device)
|
||||||
|
|
||||||
|
ctc_topo_inv = k2.arc_sort(ctc_topo.invert_())
|
||||||
|
|
||||||
|
logging.info("Building ctc_topo_P")
|
||||||
|
ctc_topo_P = k2.intersect(
|
||||||
|
ctc_topo_inv, P_with_self_loops, treat_epsilons_specially=False
|
||||||
|
).invert()
|
||||||
|
|
||||||
|
self.ctc_topo_P = k2.arc_sort(ctc_topo_P)
|
||||||
|
|
||||||
|
def texts_to_ids(self, texts: List[str]) -> List[List[int]]:
|
||||||
|
"""Convert a list of texts to a list-of-list of piece IDs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts:
|
||||||
|
A list of transcripts. Within a transcript words are
|
||||||
|
separated by spaces. An example input is::
|
||||||
|
|
||||||
|
['HELLO ICEFALL', 'HELLO k2']
|
||||||
|
Returns:
|
||||||
|
Return a list-of-list of piece IDs.
|
||||||
|
"""
|
||||||
|
return self.sp.encode(texts, out_type=int)
|
||||||
|
|
||||||
|
def compile(
|
||||||
|
self, texts: List[str], replicate_den: bool = True
|
||||||
|
) -> Tuple[k2.Fsa, k2.Fsa]:
|
||||||
|
"""Create numerator and denominator graphs from transcripts.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts:
|
||||||
|
A list of transcripts. Within a transcript words are
|
||||||
|
separated by spaces. An example input is::
|
||||||
|
|
||||||
|
["HELLO icefall", "HALLO WELT"]
|
||||||
|
|
||||||
|
replicate_den:
|
||||||
|
If True, the returned den_graph is replicated to match the number
|
||||||
|
of FSAs in the returned num_graph; if False, the returned den_graph
|
||||||
|
contains only a single FSA
|
||||||
|
Returns:
|
||||||
|
A tuple (num_graphs, den_graphs), where
|
||||||
|
|
||||||
|
- `num_graphs` is the numerator graph. It is an FsaVec with
|
||||||
|
shape `(len(texts), None, None)`.
|
||||||
|
|
||||||
|
- `den_graphs` is the denominator graph. It is an FsaVec with the
|
||||||
|
same shape of the `num_graph` if replicate_den is True;
|
||||||
|
otherwise, it is an FsaVec containing only a single FSA.
|
||||||
|
"""
|
||||||
|
token_ids = self.texts_to_ids(texts)
|
||||||
|
token_fsas = k2.linear_fsa(token_ids, device=self.device)
|
||||||
|
|
||||||
|
token_fsas_with_self_loops = k2.add_epsilon_self_loops(token_fsas)
|
||||||
|
|
||||||
|
# NOTE: Use treat_epsilons_specially=False so that k2.compose
|
||||||
|
# can be run on GPU
|
||||||
|
num_graphs = k2.compose(
|
||||||
|
self.ctc_topo_P,
|
||||||
|
token_fsas_with_self_loops,
|
||||||
|
treat_epsilons_specially=False,
|
||||||
|
)
|
||||||
|
# num_graphs may not be connected and
|
||||||
|
# not be topologically sorted after k2.compose
|
||||||
|
num_graphs = k2.connect(num_graphs)
|
||||||
|
num_graphs = k2.top_sort(num_graphs)
|
||||||
|
|
||||||
|
ctc_topo_P_vec = k2.create_fsa_vec([self.ctc_topo_P.detach()])
|
||||||
|
if replicate_den:
|
||||||
|
indexes = torch.zeros(
|
||||||
|
len(texts), dtype=torch.int32, device=self.device
|
||||||
|
)
|
||||||
|
den_graphs = k2.index_fsa(ctc_topo_P_vec, indexes)
|
||||||
|
else:
|
||||||
|
den_graphs = ctc_topo_P_vec
|
||||||
|
|
||||||
|
return num_graphs, den_graphs
|
@ -78,11 +78,13 @@ class Lexicon(object):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
lang_dir:
|
lang_dir:
|
||||||
Path to the lang director. It is expected to contain the following
|
Path to the lang directory. It is expected to contain the following
|
||||||
files:
|
files::
|
||||||
|
|
||||||
- tokens.txt
|
- tokens.txt
|
||||||
- words.txt
|
- words.txt
|
||||||
- L.pt
|
- L.pt
|
||||||
|
|
||||||
The above files are produced by the script `prepare.sh`. You
|
The above files are produced by the script `prepare.sh`. You
|
||||||
should have run that before running the training code.
|
should have run that before running the training code.
|
||||||
disambig_pattern:
|
disambig_pattern:
|
||||||
|
222
icefall/mmi.py
Normal file
222
icefall/mmi.py
Normal file
@ -0,0 +1,222 @@
|
|||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
from icefall.bpe_mmi_graph_compiler import BpeMmiTrainingGraphCompiler
|
||||||
|
|
||||||
|
|
||||||
|
def _compute_mmi_loss_exact_optimized(
|
||||||
|
dense_fsa_vec: k2.DenseFsaVec,
|
||||||
|
texts: List[str],
|
||||||
|
graph_compiler: BpeMmiTrainingGraphCompiler,
|
||||||
|
den_scale: float = 1.0,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
The function name contains `exact`, which means it uses a version of
|
||||||
|
intersection without pruning.
|
||||||
|
|
||||||
|
`optimized` in the function name means this function is optimized
|
||||||
|
in that it calls k2.intersect_dense only once
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It is faster at the cost of using more memory.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dense_fsa_vec:
|
||||||
|
It contains the neural network output.
|
||||||
|
texts:
|
||||||
|
The transcript. Each element consists of space(s) separated words.
|
||||||
|
graph_compiler:
|
||||||
|
Used to build num_graphs and den_graphs
|
||||||
|
den_scale:
|
||||||
|
The scale applied to the denominator tot_scores.
|
||||||
|
Returns:
|
||||||
|
Return a scalar loss. It is the sum over utterances in a batch,
|
||||||
|
without normalization.
|
||||||
|
"""
|
||||||
|
num_graphs, den_graphs = graph_compiler.compile(texts, replicate_den=False)
|
||||||
|
|
||||||
|
device = num_graphs.device
|
||||||
|
|
||||||
|
num_fsas = num_graphs.shape[0]
|
||||||
|
assert dense_fsa_vec.dim0() == num_fsas
|
||||||
|
|
||||||
|
assert den_graphs.shape[0] == 1
|
||||||
|
|
||||||
|
# The motivation to concatenate num_graphs and den_graphs
|
||||||
|
# is to reduce the number of calls to k2.intersect_dense.
|
||||||
|
num_den_graphs = k2.cat([num_graphs, den_graphs])
|
||||||
|
|
||||||
|
# NOTE: The a_to_b_map in k2.intersect_dense must be sorted
|
||||||
|
# so the following reorders num_den_graphs.
|
||||||
|
#
|
||||||
|
# The following code computes a_to_b_map
|
||||||
|
|
||||||
|
# [0, 1, 2, ... ]
|
||||||
|
num_graphs_indexes = torch.arange(num_fsas, dtype=torch.int32)
|
||||||
|
|
||||||
|
# [num_fsas, num_fsas, num_fsas, ... ]
|
||||||
|
den_graphs_indexes = torch.tensor([num_fsas] * num_fsas, dtype=torch.int32)
|
||||||
|
|
||||||
|
# [0, num_fsas, 1, num_fsas, 2, num_fsas, ... ]
|
||||||
|
num_den_graphs_indexes = (
|
||||||
|
torch.stack([num_graphs_indexes, den_graphs_indexes])
|
||||||
|
.t()
|
||||||
|
.reshape(-1)
|
||||||
|
.to(device)
|
||||||
|
)
|
||||||
|
|
||||||
|
num_den_reordered_graphs = k2.index(num_den_graphs, num_den_graphs_indexes)
|
||||||
|
|
||||||
|
# [[0, 1, 2, ...]]
|
||||||
|
a_to_b_map = torch.arange(num_fsas, dtype=torch.int32).reshape(1, -1)
|
||||||
|
|
||||||
|
# [[0, 1, 2, ...]] -> [0, 0, 1, 1, 2, 2, ... ]
|
||||||
|
a_to_b_map = a_to_b_map.repeat(2, 1).t().reshape(-1).to(device)
|
||||||
|
|
||||||
|
num_den_lats = k2.intersect_dense(
|
||||||
|
num_den_reordered_graphs,
|
||||||
|
dense_fsa_vec,
|
||||||
|
output_beam=10.0,
|
||||||
|
a_to_b_map=a_to_b_map,
|
||||||
|
)
|
||||||
|
|
||||||
|
num_den_tot_scores = num_den_lats.get_tot_scores(
|
||||||
|
log_semiring=True, use_double_scores=True
|
||||||
|
)
|
||||||
|
|
||||||
|
num_tot_scores = num_den_tot_scores[::2]
|
||||||
|
den_tot_scores = num_den_tot_scores[1::2]
|
||||||
|
|
||||||
|
tot_scores = num_tot_scores - den_scale * den_tot_scores
|
||||||
|
loss = -1 * tot_scores.sum()
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
def _compute_mmi_loss_exact_non_optimized(
|
||||||
|
dense_fsa_vec: k2.DenseFsaVec,
|
||||||
|
texts: List[str],
|
||||||
|
graph_compiler: BpeMmiTrainingGraphCompiler,
|
||||||
|
den_scale: float = 1.0,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
See :func:`_compute_mmi_loss_exact_optimized` for the meaning
|
||||||
|
of the arguments.
|
||||||
|
|
||||||
|
It's more readable, though it invokes k2.intersect_dense twice.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It uses less memory at the cost of speed. It is slower.
|
||||||
|
"""
|
||||||
|
num_graphs, den_graphs = graph_compiler.compile(texts, replicate_den=True)
|
||||||
|
|
||||||
|
# TODO: pass output_beam as function argument
|
||||||
|
num_lats = k2.intersect_dense(num_graphs, dense_fsa_vec, output_beam=10.0)
|
||||||
|
den_lats = k2.intersect_dense(den_graphs, dense_fsa_vec, output_beam=10.0)
|
||||||
|
|
||||||
|
num_tot_scores = num_lats.get_tot_scores(
|
||||||
|
log_semiring=True, use_double_scores=True
|
||||||
|
)
|
||||||
|
|
||||||
|
den_tot_scores = den_lats.get_tot_scores(
|
||||||
|
log_semiring=True, use_double_scores=True
|
||||||
|
)
|
||||||
|
|
||||||
|
tot_scores = num_tot_scores - den_scale * den_tot_scores
|
||||||
|
|
||||||
|
loss = -1 * tot_scores.sum()
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
def _compute_mmi_loss_pruned(
|
||||||
|
dense_fsa_vec: k2.DenseFsaVec,
|
||||||
|
texts: List[str],
|
||||||
|
graph_compiler: BpeMmiTrainingGraphCompiler,
|
||||||
|
den_scale: float = 1.0,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
See :func:`_compute_mmi_loss_exact_optimized` for the meaning
|
||||||
|
of the arguments.
|
||||||
|
|
||||||
|
`pruned` means it uses k2.intersect_dense_pruned
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It uses the least amount of memory, but the loss is not exact due
|
||||||
|
to pruning.
|
||||||
|
"""
|
||||||
|
num_graphs, den_graphs = graph_compiler.compile(texts, replicate_den=False)
|
||||||
|
|
||||||
|
num_lats = k2.intersect_dense(num_graphs, dense_fsa_vec, output_beam=10.0)
|
||||||
|
|
||||||
|
# the values for search_beam/output_beam/min_active_states/max_active_states
|
||||||
|
# are not tuned. You may want to tune them.
|
||||||
|
den_lats = k2.intersect_dense_pruned(
|
||||||
|
den_graphs,
|
||||||
|
dense_fsa_vec,
|
||||||
|
search_beam=20.0,
|
||||||
|
output_beam=8.0,
|
||||||
|
min_active_states=30,
|
||||||
|
max_active_states=10000,
|
||||||
|
)
|
||||||
|
|
||||||
|
num_tot_scores = num_lats.get_tot_scores(
|
||||||
|
log_semiring=True, use_double_scores=True
|
||||||
|
)
|
||||||
|
|
||||||
|
den_tot_scores = den_lats.get_tot_scores(
|
||||||
|
log_semiring=True, use_double_scores=True
|
||||||
|
)
|
||||||
|
|
||||||
|
tot_scores = num_tot_scores - den_scale * den_tot_scores
|
||||||
|
|
||||||
|
loss = -1 * tot_scores.sum()
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class LFMMILoss(nn.Module):
|
||||||
|
"""
|
||||||
|
Computes Lattice-Free Maximum Mutual Information (LFMMI) loss.
|
||||||
|
|
||||||
|
TODO: more detailed description
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
graph_compiler: BpeMmiTrainingGraphCompiler,
|
||||||
|
use_pruned_intersect: bool = False,
|
||||||
|
den_scale: float = 1.0,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.graph_compiler = graph_compiler
|
||||||
|
self.den_scale = den_scale
|
||||||
|
self.use_pruned_intersect = use_pruned_intersect
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
dense_fsa_vec: k2.DenseFsaVec,
|
||||||
|
texts: List[str],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
dense_fsa_vec:
|
||||||
|
It contains the neural network output.
|
||||||
|
texts:
|
||||||
|
A list of strings. Each string contains space(s) separated words.
|
||||||
|
Returns:
|
||||||
|
Return a scalar loss. It is the sum over utterances in a batch,
|
||||||
|
without normalization.
|
||||||
|
"""
|
||||||
|
if self.use_pruned_intersect:
|
||||||
|
func = _compute_mmi_loss_pruned
|
||||||
|
else:
|
||||||
|
func = _compute_mmi_loss_exact_non_optimized
|
||||||
|
# func = _compute_mmi_loss_exact_optimized
|
||||||
|
|
||||||
|
return func(
|
||||||
|
dense_fsa_vec=dense_fsa_vec,
|
||||||
|
texts=texts,
|
||||||
|
graph_compiler=self.graph_compiler,
|
||||||
|
den_scale=self.den_scale,
|
||||||
|
)
|
377
icefall/shared/make_kn_lm.py
Executable file
377
icefall/shared/make_kn_lm.py
Executable file
@ -0,0 +1,377 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
# Copyright 2016 Johns Hopkins University (Author: Daniel Povey)
|
||||||
|
# 2018 Ruizhe Huang
|
||||||
|
# Apache 2.0.
|
||||||
|
|
||||||
|
# This is an implementation of computing Kneser-Ney smoothed language model
|
||||||
|
# in the same way as srilm. This is a back-off, unmodified version of
|
||||||
|
# Kneser-Ney smoothing, which produces the same results as the following
|
||||||
|
# command (as an example) of srilm:
|
||||||
|
#
|
||||||
|
# $ ngram-count -order 4 -kn-modify-counts-at-end -ukndiscount -gt1min 0 -gt2min 0 -gt3min 0 -gt4min 0 \
|
||||||
|
# -text corpus.txt -lm lm.arpa
|
||||||
|
#
|
||||||
|
# The data structure is based on: kaldi/egs/wsj/s5/utils/lang/make_phone_lm.py
|
||||||
|
# The smoothing algorithm is based on: http://www.speech.sri.com/projects/srilm/manpages/ngram-discount.7.html
|
||||||
|
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import io
|
||||||
|
import math
|
||||||
|
import argparse
|
||||||
|
from collections import Counter, defaultdict
|
||||||
|
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="""
|
||||||
|
Generate kneser-ney language model as arpa format. By default,
|
||||||
|
it will read the corpus from standard input, and output to standard output.
|
||||||
|
""")
|
||||||
|
parser.add_argument("-ngram-order", type=int, default=4, choices=[2, 3, 4, 5, 6, 7], help="Order of n-gram")
|
||||||
|
parser.add_argument("-text", type=str, default=None, help="Path to the corpus file")
|
||||||
|
parser.add_argument("-lm", type=str, default=None, help="Path to output arpa file for language models")
|
||||||
|
parser.add_argument("-verbose", type=int, default=0, choices=[0, 1, 2, 3, 4, 5], help="Verbose level")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
default_encoding = "latin-1" # For encoding-agnostic scripts, we assume byte stream as input.
|
||||||
|
# Need to be very careful about the use of strip() and split()
|
||||||
|
# in this case, because there is a latin-1 whitespace character
|
||||||
|
# (nbsp) which is part of the unicode encoding range.
|
||||||
|
# Ref: kaldi/egs/wsj/s5/utils/lang/bpe/prepend_words.py @ 69cd717
|
||||||
|
strip_chars = " \t\r\n"
|
||||||
|
whitespace = re.compile("[ \t]+")
|
||||||
|
|
||||||
|
|
||||||
|
class CountsForHistory:
|
||||||
|
# This class (which is more like a struct) stores the counts seen in a
|
||||||
|
# particular history-state. It is used inside class NgramCounts.
|
||||||
|
# It really does the job of a dict from int to float, but it also
|
||||||
|
# keeps track of the total count.
|
||||||
|
def __init__(self):
|
||||||
|
# The 'lambda: defaultdict(float)' is an anonymous function taking no
|
||||||
|
# arguments that returns a new defaultdict(float).
|
||||||
|
self.word_to_count = defaultdict(int)
|
||||||
|
self.word_to_context = defaultdict(set) # using a set to count the number of unique contexts
|
||||||
|
self.word_to_f = dict() # discounted probability
|
||||||
|
self.word_to_bow = dict() # back-off weight
|
||||||
|
self.total_count = 0
|
||||||
|
|
||||||
|
def words(self):
|
||||||
|
return self.word_to_count.keys()
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
# e.g. returns ' total=12: 3->4, 4->6, -1->2'
|
||||||
|
return ' total={0}: {1}'.format(
|
||||||
|
str(self.total_count),
|
||||||
|
', '.join(['{0} -> {1}'.format(word, count)
|
||||||
|
for word, count in self.word_to_count.items()]))
|
||||||
|
|
||||||
|
def add_count(self, predicted_word, context_word, count):
|
||||||
|
assert count >= 0
|
||||||
|
|
||||||
|
self.total_count += count
|
||||||
|
self.word_to_count[predicted_word] += count
|
||||||
|
if context_word is not None:
|
||||||
|
self.word_to_context[predicted_word].add(context_word)
|
||||||
|
|
||||||
|
|
||||||
|
class NgramCounts:
|
||||||
|
# A note on data-structure. Firstly, all words are represented as
|
||||||
|
# integers. We store n-gram counts as an array, indexed by (history-length
|
||||||
|
# == n-gram order minus one) (note: python calls arrays "lists") of dicts
|
||||||
|
# from histories to counts, where histories are arrays of integers and
|
||||||
|
# "counts" are dicts from integer to float. For instance, when
|
||||||
|
# accumulating the 4-gram count for the '8' in the sequence '5 6 7 8', we'd
|
||||||
|
# do as follows: self.counts[3][[5,6,7]][8] += 1.0 where the [3] indexes an
|
||||||
|
# array, the [[5,6,7]] indexes a dict, and the [8] indexes a dict.
|
||||||
|
def __init__(self, ngram_order, bos_symbol='<s>', eos_symbol='</s>'):
|
||||||
|
assert ngram_order >= 2
|
||||||
|
|
||||||
|
self.ngram_order = ngram_order
|
||||||
|
self.bos_symbol = bos_symbol
|
||||||
|
self.eos_symbol = eos_symbol
|
||||||
|
|
||||||
|
self.counts = []
|
||||||
|
for n in range(ngram_order):
|
||||||
|
self.counts.append(defaultdict(lambda: CountsForHistory()))
|
||||||
|
|
||||||
|
self.d = [] # list of discounting factor for each order of ngram
|
||||||
|
|
||||||
|
# adds a raw count (called while processing input data).
|
||||||
|
# Suppose we see the sequence '6 7 8 9' and ngram_order=4, 'history'
|
||||||
|
# would be (6,7,8) and 'predicted_word' would be 9; 'count' would be
|
||||||
|
# 1.
|
||||||
|
def add_count(self, history, predicted_word, context_word, count):
|
||||||
|
self.counts[len(history)][history].add_count(predicted_word, context_word, count)
|
||||||
|
|
||||||
|
# 'line' is a string containing a sequence of integer word-ids.
|
||||||
|
# This function adds the un-smoothed counts from this line of text.
|
||||||
|
def add_raw_counts_from_line(self, line):
|
||||||
|
if line == '':
|
||||||
|
words = [self.bos_symbol, self.eos_symbol]
|
||||||
|
else:
|
||||||
|
words = [self.bos_symbol] + whitespace.split(line) + [self.eos_symbol]
|
||||||
|
|
||||||
|
for i in range(len(words)):
|
||||||
|
for n in range(1, self.ngram_order+1):
|
||||||
|
if i + n > len(words):
|
||||||
|
break
|
||||||
|
ngram = words[i: i + n]
|
||||||
|
predicted_word = ngram[-1]
|
||||||
|
history = tuple(ngram[: -1])
|
||||||
|
if i == 0 or n == self.ngram_order:
|
||||||
|
context_word = None
|
||||||
|
else:
|
||||||
|
context_word = words[i-1]
|
||||||
|
|
||||||
|
self.add_count(history, predicted_word, context_word, 1)
|
||||||
|
|
||||||
|
def add_raw_counts_from_standard_input(self):
|
||||||
|
lines_processed = 0
|
||||||
|
infile = io.TextIOWrapper(sys.stdin.buffer, encoding=default_encoding) # byte stream as input
|
||||||
|
for line in infile:
|
||||||
|
line = line.strip(strip_chars)
|
||||||
|
self.add_raw_counts_from_line(line)
|
||||||
|
lines_processed += 1
|
||||||
|
if lines_processed == 0 or args.verbose > 0:
|
||||||
|
print("make_phone_lm.py: processed {0} lines of input".format(lines_processed), file=sys.stderr)
|
||||||
|
|
||||||
|
def add_raw_counts_from_file(self, filename):
|
||||||
|
lines_processed = 0
|
||||||
|
with open(filename, encoding=default_encoding) as fp:
|
||||||
|
for line in fp:
|
||||||
|
line = line.strip(strip_chars)
|
||||||
|
self.add_raw_counts_from_line(line)
|
||||||
|
lines_processed += 1
|
||||||
|
if lines_processed == 0 or args.verbose > 0:
|
||||||
|
print("make_phone_lm.py: processed {0} lines of input".format(lines_processed), file=sys.stderr)
|
||||||
|
|
||||||
|
def cal_discounting_constants(self):
|
||||||
|
# For each order N of N-grams, we calculate discounting constant D_N = n1_N / (n1_N + 2 * n2_N),
|
||||||
|
# where n1_N is the number of unique N-grams with count = 1 (counts-of-counts).
|
||||||
|
# This constant is used similarly to absolute discounting.
|
||||||
|
# Return value: d is a list of floats, where d[N+1] = D_N
|
||||||
|
|
||||||
|
self.d = [0] # for the lowest order, i.e., 1-gram, we do not need to discount, thus the constant is 0
|
||||||
|
# This is a special case: as we currently assumed having seen all vocabularies in the dictionary,
|
||||||
|
# but perhaps this is not the case for some other scenarios.
|
||||||
|
for n in range(1, self.ngram_order):
|
||||||
|
this_order_counts = self.counts[n]
|
||||||
|
n1 = 0
|
||||||
|
n2 = 0
|
||||||
|
for hist, counts_for_hist in this_order_counts.items():
|
||||||
|
stat = Counter(counts_for_hist.word_to_count.values())
|
||||||
|
n1 += stat[1]
|
||||||
|
n2 += stat[2]
|
||||||
|
assert n1 + 2 * n2 > 0
|
||||||
|
self.d.append(n1 * 1.0 / (n1 + 2 * n2))
|
||||||
|
|
||||||
|
def cal_f(self):
|
||||||
|
# f(a_z) is a probability distribution of word sequence a_z.
|
||||||
|
# Typically f(a_z) is discounted to be less than the ML estimate so we have
|
||||||
|
# some leftover probability for the z words unseen in the context (a_).
|
||||||
|
#
|
||||||
|
# f(a_z) = (c(a_z) - D0) / c(a_) ;; for highest order N-grams
|
||||||
|
# f(_z) = (n(*_z) - D1) / n(*_*) ;; for lower order N-grams
|
||||||
|
|
||||||
|
# highest order N-grams
|
||||||
|
n = self.ngram_order - 1
|
||||||
|
this_order_counts = self.counts[n]
|
||||||
|
for hist, counts_for_hist in this_order_counts.items():
|
||||||
|
for w, c in counts_for_hist.word_to_count.items():
|
||||||
|
counts_for_hist.word_to_f[w] = max((c - self.d[n]), 0) * 1.0 / counts_for_hist.total_count
|
||||||
|
|
||||||
|
# lower order N-grams
|
||||||
|
for n in range(0, self.ngram_order - 1):
|
||||||
|
this_order_counts = self.counts[n]
|
||||||
|
for hist, counts_for_hist in this_order_counts.items():
|
||||||
|
|
||||||
|
n_star_star = 0
|
||||||
|
for w in counts_for_hist.word_to_count.keys():
|
||||||
|
n_star_star += len(counts_for_hist.word_to_context[w])
|
||||||
|
|
||||||
|
if n_star_star != 0:
|
||||||
|
for w in counts_for_hist.word_to_count.keys():
|
||||||
|
n_star_z = len(counts_for_hist.word_to_context[w])
|
||||||
|
counts_for_hist.word_to_f[w] = max((n_star_z - self.d[n]), 0) * 1.0 / n_star_star
|
||||||
|
else: # patterns begin with <s>, they do not have "modified count", so use raw count instead
|
||||||
|
for w in counts_for_hist.word_to_count.keys():
|
||||||
|
n_star_z = counts_for_hist.word_to_count[w]
|
||||||
|
counts_for_hist.word_to_f[w] = max((n_star_z - self.d[n]), 0) * 1.0 / counts_for_hist.total_count
|
||||||
|
|
||||||
|
def cal_bow(self):
|
||||||
|
# Backoff weights are only necessary for ngrams which form a prefix of a longer ngram.
|
||||||
|
# Thus, two sorts of ngrams do not have a bow:
|
||||||
|
# 1) highest order ngram
|
||||||
|
# 2) ngrams ending in </s>
|
||||||
|
#
|
||||||
|
# bow(a_) = (1 - Sum_Z1 f(a_z)) / (1 - Sum_Z1 f(_z))
|
||||||
|
# Note that Z1 is the set of all words with c(a_z) > 0
|
||||||
|
|
||||||
|
# highest order N-grams
|
||||||
|
n = self.ngram_order - 1
|
||||||
|
this_order_counts = self.counts[n]
|
||||||
|
for hist, counts_for_hist in this_order_counts.items():
|
||||||
|
for w in counts_for_hist.word_to_count.keys():
|
||||||
|
counts_for_hist.word_to_bow[w] = None
|
||||||
|
|
||||||
|
# lower order N-grams
|
||||||
|
for n in range(0, self.ngram_order - 1):
|
||||||
|
this_order_counts = self.counts[n]
|
||||||
|
for hist, counts_for_hist in this_order_counts.items():
|
||||||
|
for w in counts_for_hist.word_to_count.keys():
|
||||||
|
if w == self.eos_symbol:
|
||||||
|
counts_for_hist.word_to_bow[w] = None
|
||||||
|
else:
|
||||||
|
a_ = hist + (w,)
|
||||||
|
|
||||||
|
assert len(a_) < self.ngram_order
|
||||||
|
assert a_ in self.counts[len(a_)].keys()
|
||||||
|
|
||||||
|
a_counts_for_hist = self.counts[len(a_)][a_]
|
||||||
|
|
||||||
|
sum_z1_f_a_z = 0
|
||||||
|
for u in a_counts_for_hist.word_to_count.keys():
|
||||||
|
sum_z1_f_a_z += a_counts_for_hist.word_to_f[u]
|
||||||
|
|
||||||
|
sum_z1_f_z = 0
|
||||||
|
_ = a_[1:]
|
||||||
|
_counts_for_hist = self.counts[len(_)][_]
|
||||||
|
for u in a_counts_for_hist.word_to_count.keys(): # Should be careful here: what is Z1
|
||||||
|
sum_z1_f_z += _counts_for_hist.word_to_f[u]
|
||||||
|
|
||||||
|
counts_for_hist.word_to_bow[w] = (1.0 - sum_z1_f_a_z) / (1.0 - sum_z1_f_z)
|
||||||
|
|
||||||
|
def print_raw_counts(self, info_string):
|
||||||
|
# these are useful for debug.
|
||||||
|
print(info_string)
|
||||||
|
res = []
|
||||||
|
for this_order_counts in self.counts:
|
||||||
|
for hist, counts_for_hist in this_order_counts.items():
|
||||||
|
for w in counts_for_hist.word_to_count.keys():
|
||||||
|
ngram = " ".join(hist) + " " + w
|
||||||
|
ngram = ngram.strip(strip_chars)
|
||||||
|
|
||||||
|
res.append("{0}\t{1}".format(ngram, counts_for_hist.word_to_count[w]))
|
||||||
|
res.sort(reverse=True)
|
||||||
|
for r in res:
|
||||||
|
print(r)
|
||||||
|
|
||||||
|
def print_modified_counts(self, info_string):
|
||||||
|
# these are useful for debug.
|
||||||
|
print(info_string)
|
||||||
|
res = []
|
||||||
|
for this_order_counts in self.counts:
|
||||||
|
for hist, counts_for_hist in this_order_counts.items():
|
||||||
|
for w in counts_for_hist.word_to_count.keys():
|
||||||
|
ngram = " ".join(hist) + " " + w
|
||||||
|
ngram = ngram.strip(strip_chars)
|
||||||
|
|
||||||
|
modified_count = len(counts_for_hist.word_to_context[w])
|
||||||
|
raw_count = counts_for_hist.word_to_count[w]
|
||||||
|
|
||||||
|
if modified_count == 0:
|
||||||
|
res.append("{0}\t{1}".format(ngram, raw_count))
|
||||||
|
else:
|
||||||
|
res.append("{0}\t{1}".format(ngram, modified_count))
|
||||||
|
res.sort(reverse=True)
|
||||||
|
for r in res:
|
||||||
|
print(r)
|
||||||
|
|
||||||
|
def print_f(self, info_string):
|
||||||
|
# these are useful for debug.
|
||||||
|
print(info_string)
|
||||||
|
res = []
|
||||||
|
for this_order_counts in self.counts:
|
||||||
|
for hist, counts_for_hist in this_order_counts.items():
|
||||||
|
for w in counts_for_hist.word_to_count.keys():
|
||||||
|
ngram = " ".join(hist) + " " + w
|
||||||
|
ngram = ngram.strip(strip_chars)
|
||||||
|
|
||||||
|
f = counts_for_hist.word_to_f[w]
|
||||||
|
if f == 0: # f(<s>) is always 0
|
||||||
|
f = 1e-99
|
||||||
|
|
||||||
|
res.append("{0}\t{1}".format(ngram, math.log(f, 10)))
|
||||||
|
res.sort(reverse=True)
|
||||||
|
for r in res:
|
||||||
|
print(r)
|
||||||
|
|
||||||
|
def print_f_and_bow(self, info_string):
|
||||||
|
# these are useful for debug.
|
||||||
|
print(info_string)
|
||||||
|
res = []
|
||||||
|
for this_order_counts in self.counts:
|
||||||
|
for hist, counts_for_hist in this_order_counts.items():
|
||||||
|
for w in counts_for_hist.word_to_count.keys():
|
||||||
|
ngram = " ".join(hist) + " " + w
|
||||||
|
ngram = ngram.strip(strip_chars)
|
||||||
|
|
||||||
|
f = counts_for_hist.word_to_f[w]
|
||||||
|
if f == 0: # f(<s>) is always 0
|
||||||
|
f = 1e-99
|
||||||
|
|
||||||
|
bow = counts_for_hist.word_to_bow[w]
|
||||||
|
if bow is None:
|
||||||
|
res.append("{1}\t{0}".format(ngram, math.log(f, 10)))
|
||||||
|
else:
|
||||||
|
res.append("{1}\t{0}\t{2}".format(ngram, math.log(f, 10), math.log(bow, 10)))
|
||||||
|
res.sort(reverse=True)
|
||||||
|
for r in res:
|
||||||
|
print(r)
|
||||||
|
|
||||||
|
def print_as_arpa(self, fout=io.TextIOWrapper(sys.stdout.buffer, encoding='latin-1')):
|
||||||
|
# print as ARPA format.
|
||||||
|
|
||||||
|
print('\\data\\', file=fout)
|
||||||
|
for hist_len in range(self.ngram_order):
|
||||||
|
# print the number of n-grams.
|
||||||
|
print('ngram {0}={1}'.format(
|
||||||
|
hist_len + 1,
|
||||||
|
sum([len(counts_for_hist.word_to_f) for counts_for_hist in self.counts[hist_len].values()])),
|
||||||
|
file=fout
|
||||||
|
)
|
||||||
|
|
||||||
|
print('', file=fout)
|
||||||
|
|
||||||
|
for hist_len in range(self.ngram_order):
|
||||||
|
print('\\{0}-grams:'.format(hist_len + 1), file=fout)
|
||||||
|
|
||||||
|
this_order_counts = self.counts[hist_len]
|
||||||
|
for hist, counts_for_hist in this_order_counts.items():
|
||||||
|
for word in counts_for_hist.word_to_count.keys():
|
||||||
|
ngram = hist + (word,)
|
||||||
|
prob = counts_for_hist.word_to_f[word]
|
||||||
|
bow = counts_for_hist.word_to_bow[word]
|
||||||
|
|
||||||
|
if prob == 0: # f(<s>) is always 0
|
||||||
|
prob = 1e-99
|
||||||
|
|
||||||
|
line = '{0}\t{1}'.format('%.7f' % math.log10(prob), ' '.join(ngram))
|
||||||
|
if bow is not None:
|
||||||
|
line += '\t{0}'.format('%.7f' % math.log10(bow))
|
||||||
|
print(line, file=fout)
|
||||||
|
print('', file=fout)
|
||||||
|
print('\\end\\', file=fout)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
ngram_counts = NgramCounts(args.ngram_order)
|
||||||
|
|
||||||
|
if args.text is None:
|
||||||
|
ngram_counts.add_raw_counts_from_standard_input()
|
||||||
|
else:
|
||||||
|
assert os.path.isfile(args.text)
|
||||||
|
ngram_counts.add_raw_counts_from_file(args.text)
|
||||||
|
|
||||||
|
ngram_counts.cal_discounting_constants()
|
||||||
|
ngram_counts.cal_f()
|
||||||
|
ngram_counts.cal_bow()
|
||||||
|
|
||||||
|
if args.lm is None:
|
||||||
|
ngram_counts.print_as_arpa()
|
||||||
|
else:
|
||||||
|
with open(args.lm, 'w', encoding=default_encoding) as f:
|
||||||
|
ngram_counts.print_as_arpa(fout=f)
|
30
test/test_bpe_mmi_graph_compiler.py
Normal file
30
test/test_bpe_mmi_graph_compiler.py
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import copy
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.bpe_mmi_graph_compiler import BpeMmiTrainingGraphCompiler
|
||||||
|
|
||||||
|
|
||||||
|
def test_bpe_mmi_graph_compiler():
|
||||||
|
lang_dir = Path("data/lang_bpe")
|
||||||
|
if lang_dir.is_dir() is False:
|
||||||
|
return
|
||||||
|
device = torch.device("cpu")
|
||||||
|
compiler = BpeMmiTrainingGraphCompiler(lang_dir, device=device)
|
||||||
|
|
||||||
|
texts = ["HELLO WORLD", "MMI TRAINING"]
|
||||||
|
|
||||||
|
num_graphs, den_graphs = compiler.compile(texts)
|
||||||
|
num_graphs.labels_sym = compiler.lexicon.token_table
|
||||||
|
num_graphs.aux_labels_sym = copy.deepcopy(compiler.lexicon.token_table)
|
||||||
|
num_graphs.aux_labels_sym._id2sym[0] = "<eps>"
|
||||||
|
num_graphs[0].draw("num_graphs_0.svg", title="HELLO WORLD")
|
||||||
|
num_graphs[1].draw("num_graphs_1.svg", title="HELLO WORLD")
|
||||||
|
print(den_graphs.shape)
|
||||||
|
print(den_graphs[0].shape)
|
||||||
|
print(den_graphs[0].num_arcs)
|
Loading…
x
Reference in New Issue
Block a user