mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 17:42:21 +00:00
628 lines
21 KiB
Python
628 lines
21 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2021 Johns Hopkins University (Author: Ruizhe Huang)
|
|
# Apache 2.0.
|
|
|
|
# This is an implementation of ``Entropy-based Pruning of Backoff Language Models''
|
|
# in the same way as SRILM.
|
|
|
|
################################################
|
|
# Useful links/References:
|
|
################################################
|
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/lm/src/NgramLM.cc#L2330
|
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/lm/src/NgramLM.cc#L2124
|
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/lm/src/LM.cc#L527
|
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/flm/src/FNgramLM.cc#L2124
|
|
# https://github.com/sfischer13/python-arpa
|
|
|
|
################################################
|
|
# How to use:
|
|
################################################
|
|
# python3 ngram_entropy_pruning.py -threshold $threshold -lm $input_lm -write-lm $pruned_lm
|
|
|
|
################################################
|
|
# SRILM commands:
|
|
################################################
|
|
# to_prune_lm=egs/swbd/s5c/data/local/lm/sw1.o3g.kn.gz
|
|
# vocab=egs/swbd/s5c/data/local/lm/wordlist
|
|
# order=3
|
|
# oov_symbol="<unk>"
|
|
# threshold=4.7e-5
|
|
# pruned_lm=temp.${threshold}.gz
|
|
# ngram -unk -map-unk "$oov_symbol" -vocab $vocab -order $order -prune ${threshold} -lm ${to_prune_lm} -write-lm ${pruned_lm}
|
|
#
|
|
# lm=
|
|
# ngram -unk -lm $lm -ppl heldout
|
|
# ngram -unk -lm $lm -ppl heldout -debug 3
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
|
|
import gzip
|
|
from io import StringIO
|
|
from collections import OrderedDict
|
|
from collections import defaultdict
|
|
from enum import Enum, unique
|
|
import re
|
|
|
|
parser = argparse.ArgumentParser(description="""
|
|
Prune an n-gram language model based on the relative entropy
|
|
between the original and the pruned model, based on Andreas Stolcke's paper.
|
|
An n-gram entry is removed, if the removal causes (training set) perplexity
|
|
of the model to increase by less than threshold relative.
|
|
|
|
The command takes an arpa file and a pruning threshold as input,
|
|
and outputs a pruned arpa file.
|
|
""")
|
|
parser.add_argument("-threshold",
|
|
type=float,
|
|
default=1e-6,
|
|
help="Order of n-gram")
|
|
parser.add_argument("-lm",
|
|
type=str,
|
|
default=None,
|
|
help="Path to the input arpa file")
|
|
parser.add_argument("-write-lm",
|
|
type=str,
|
|
default=None,
|
|
help="Path to output arpa file after pruning")
|
|
parser.add_argument("-minorder",
|
|
type=int,
|
|
default=1,
|
|
help="The minorder parameter limits pruning to "
|
|
"ngrams of that length and above.")
|
|
parser.add_argument("-encoding",
|
|
type=str,
|
|
default="utf-8",
|
|
help="Encoding of the arpa file")
|
|
parser.add_argument("-verbose",
|
|
type=int,
|
|
default=2,
|
|
choices=[0, 1, 2, 3, 4, 5],
|
|
help="Verbose level, where "
|
|
"0 is most noisy; "
|
|
"5 is most silent")
|
|
args = parser.parse_args()
|
|
|
|
default_encoding = args.encoding
|
|
logging.basicConfig(
|
|
format=
|
|
"%(asctime)s — %(levelname)s — %(funcName)s:%(lineno)d — %(message)s",
|
|
level=args.verbose * 10)
|
|
|
|
|
|
class Context(dict):
|
|
"""
|
|
This class stores data for a context h.
|
|
It behaves like a python dict object, except that it has several
|
|
additional attributes.
|
|
"""
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.log_bo = None
|
|
|
|
|
|
class Arpa:
|
|
"""
|
|
This is a class that implement the data structure of an APRA LM.
|
|
It (as well as some other classes) is modified based on the library
|
|
by Stefan Fischer:
|
|
https://github.com/sfischer13/python-arpa
|
|
"""
|
|
|
|
UNK = '<unk>'
|
|
SOS = '<s>'
|
|
EOS = '</s>'
|
|
FLOAT_NDIGITS = 7
|
|
base = 10
|
|
|
|
@staticmethod
|
|
def _check_input(my_input):
|
|
if not my_input:
|
|
raise ValueError
|
|
elif isinstance(my_input, tuple):
|
|
return my_input
|
|
elif isinstance(my_input, list):
|
|
return tuple(my_input)
|
|
elif isinstance(my_input, str):
|
|
return tuple(my_input.strip().split(' '))
|
|
else:
|
|
raise ValueError
|
|
|
|
@staticmethod
|
|
def _check_word(input_word):
|
|
if not isinstance(input_word, str):
|
|
raise ValueError
|
|
if ' ' in input_word:
|
|
raise ValueError
|
|
|
|
def _replace_unks(self, words):
|
|
return tuple((w if w in self else self._unk) for w in words)
|
|
|
|
def __init__(self, path=None, encoding=None, unk=None):
|
|
self._counts = OrderedDict()
|
|
self._ngrams = OrderedDict(
|
|
) # Use self._ngrams[len(h)][h][w] for saving the entry of (h,w)
|
|
self._vocabulary = set()
|
|
if unk is None:
|
|
self._unk = self.UNK
|
|
|
|
if path is not None:
|
|
self.loadf(path, encoding)
|
|
|
|
def __contains__(self, ngram):
|
|
h = ngram[:-1] # h is a tuple
|
|
w = ngram[-1] # w is a string/word
|
|
return h in self._ngrams[len(h)] and w in self._ngrams[len(h)][h]
|
|
|
|
def contains_word(self, word):
|
|
self._check_word(word)
|
|
return word in self._vocabulary
|
|
|
|
def add_count(self, order, count):
|
|
self._counts[order] = count
|
|
self._ngrams[order - 1] = defaultdict(Context)
|
|
|
|
def update_counts(self):
|
|
for order in range(1, self.order() + 1):
|
|
count = sum(
|
|
[len(wlist) for _, wlist in self._ngrams[order - 1].items()])
|
|
if count > 0:
|
|
self._counts[order] = count
|
|
|
|
def add_entry(self, ngram, p, bo=None, order=None):
|
|
# Note: ngram is a tuple of strings, e.g. ("w1", "w2", "w3")
|
|
h = ngram[:-1] # h is a tuple
|
|
w = ngram[-1] # w is a string/word
|
|
|
|
# Note that p and bo here are in fact in the log domain (self.base = 10)
|
|
h_context = self._ngrams[len(h)][h]
|
|
h_context[w] = p
|
|
if bo is not None:
|
|
self._ngrams[len(ngram)][ngram].log_bo = bo
|
|
|
|
for word in ngram:
|
|
self._vocabulary.add(word)
|
|
|
|
def counts(self):
|
|
return sorted(self._counts.items())
|
|
|
|
def order(self):
|
|
return max(self._counts.keys(), default=None)
|
|
|
|
def vocabulary(self, sort=True):
|
|
if sort:
|
|
return sorted(self._vocabulary)
|
|
else:
|
|
return self._vocabulary
|
|
|
|
def _entries(self, order):
|
|
return (self._entry(h, w)
|
|
for h, wlist in self._ngrams[order - 1].items() for w in wlist)
|
|
|
|
def _entry(self, h, w):
|
|
# return the entry for the ngram (h, w)
|
|
ngram = h + (w, )
|
|
log_p = self._ngrams[len(h)][h][w]
|
|
log_bo = self._log_bo(ngram)
|
|
if log_bo is not None:
|
|
return round(log_p, self.FLOAT_NDIGITS), ngram, round(
|
|
log_bo, self.FLOAT_NDIGITS)
|
|
else:
|
|
return round(log_p, self.FLOAT_NDIGITS), ngram
|
|
|
|
def _log_bo(self, ngram):
|
|
if len(ngram) in self._ngrams and ngram in self._ngrams[len(ngram)]:
|
|
return self._ngrams[len(ngram)][ngram].log_bo
|
|
else:
|
|
return None
|
|
|
|
def _log_p(self, ngram):
|
|
h = ngram[:-1] # h is a tuple
|
|
w = ngram[-1] # w is a string/word
|
|
if h in self._ngrams[len(h)] and w in self._ngrams[len(h)][h]:
|
|
return self._ngrams[len(h)][h][w]
|
|
else:
|
|
return None
|
|
|
|
def log_p_raw(self, ngram):
|
|
log_p = self._log_p(ngram)
|
|
if log_p is not None:
|
|
return log_p
|
|
else:
|
|
if len(ngram) == 1:
|
|
raise KeyError
|
|
else:
|
|
log_bo = self._log_bo(ngram[:-1])
|
|
if log_bo is None:
|
|
log_bo = 0
|
|
return log_bo + self.log_p_raw(ngram[1:])
|
|
|
|
def log_joint_prob(self, sequence):
|
|
# Compute the joint prob of the sequence based on the chain rule
|
|
# Note that sequence should be a tuple of strings
|
|
#
|
|
# Reference:
|
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/lm/src/LM.cc#L527
|
|
|
|
log_joint_p = 0
|
|
seq = sequence
|
|
while len(seq) > 0:
|
|
log_joint_p += self.log_p_raw(seq)
|
|
seq = seq[:-1]
|
|
|
|
# If we're computing the marginal probability of the unigram
|
|
# <s> context we have to look up </s> instead since the former
|
|
# has prob = 0.
|
|
if len(seq) == 1 and seq[0] == self.SOS:
|
|
seq = (self.EOS, )
|
|
|
|
return log_joint_p
|
|
|
|
def set_new_context(self, h):
|
|
old_context = self._ngrams[len(h)][h]
|
|
self._ngrams[len(h)][h] = Context()
|
|
return old_context
|
|
|
|
def log_p(self, ngram):
|
|
words = self._check_input(ngram)
|
|
if self._unk:
|
|
words = self._replace_unks(words)
|
|
return self.log_p_raw(words)
|
|
|
|
def log_s(self, sentence, sos=SOS, eos=EOS):
|
|
words = self._check_input(sentence)
|
|
if self._unk:
|
|
words = self._replace_unks(words)
|
|
if sos:
|
|
words = (sos, ) + words
|
|
if eos:
|
|
words = words + (eos, )
|
|
result = sum(
|
|
self.log_p_raw(words[:i]) for i in range(1,
|
|
len(words) + 1))
|
|
if sos:
|
|
result = result - self.log_p_raw(words[:1])
|
|
return result
|
|
|
|
def p(self, ngram):
|
|
return self.base**self.log_p(ngram)
|
|
|
|
def s(self, sentence):
|
|
return self.base**self.log_s(sentence)
|
|
|
|
def write(self, fp):
|
|
fp.write('\n\\data\\\n')
|
|
for order, count in self.counts():
|
|
fp.write('ngram {}={}\n'.format(order, count))
|
|
fp.write('\n')
|
|
for order, _ in self.counts():
|
|
fp.write('\\{}-grams:\n'.format(order))
|
|
for e in self._entries(order):
|
|
prob = e[0]
|
|
ngram = ' '.join(e[1])
|
|
if len(e) == 2:
|
|
fp.write('{}\t{}\n'.format(prob, ngram))
|
|
elif len(e) == 3:
|
|
backoff = e[2]
|
|
fp.write('{}\t{}\t{}\n'.format(prob, ngram, backoff))
|
|
else:
|
|
raise ValueError
|
|
fp.write('\n')
|
|
fp.write('\\end\\\n')
|
|
|
|
|
|
class ArpaParser:
|
|
"""
|
|
This is a class that implement a parser of an arpa file
|
|
"""
|
|
@unique
|
|
class State(Enum):
|
|
DATA = 1
|
|
COUNT = 2
|
|
HEADER = 3
|
|
ENTRY = 4
|
|
|
|
re_count = re.compile(r'^ngram (\d+)=(\d+)$')
|
|
re_header = re.compile(r'^\\(\d+)-grams:$')
|
|
re_entry = re.compile('^(-?\\d+(\\.\\d+)?([eE]-?\\d+)?)'
|
|
'\t'
|
|
'(\\S+( \\S+)*)'
|
|
'(\t((-?\\d+(\\.\\d+)?)([eE]-?\\d+)?))?$')
|
|
|
|
def _parse(self, fp):
|
|
self._result = []
|
|
self._state = self.State.DATA
|
|
self._tmp_model = None
|
|
self._tmp_order = None
|
|
for line in fp:
|
|
line = line.strip()
|
|
if self._state == self.State.DATA:
|
|
self._data(line)
|
|
elif self._state == self.State.COUNT:
|
|
self._count(line)
|
|
elif self._state == self.State.HEADER:
|
|
self._header(line)
|
|
elif self._state == self.State.ENTRY:
|
|
self._entry(line)
|
|
if self._state != self.State.DATA:
|
|
raise Exception(line)
|
|
return self._result
|
|
|
|
def _data(self, line):
|
|
if line == '\\data\\':
|
|
self._state = self.State.COUNT
|
|
self._tmp_model = Arpa()
|
|
else:
|
|
pass # skip comment line
|
|
|
|
def _count(self, line):
|
|
match = self.re_count.match(line)
|
|
if match:
|
|
order = match.group(1)
|
|
count = match.group(2)
|
|
self._tmp_model.add_count(int(order), int(count))
|
|
elif not line:
|
|
self._state = self.State.HEADER # there are no counts
|
|
else:
|
|
raise Exception(line)
|
|
|
|
def _header(self, line):
|
|
match = self.re_header.match(line)
|
|
if match:
|
|
self._state = self.State.ENTRY
|
|
self._tmp_order = int(match.group(1))
|
|
elif line == '\\end\\':
|
|
self._result.append(self._tmp_model)
|
|
self._state = self.State.DATA
|
|
self._tmp_model = None
|
|
self._tmp_order = None
|
|
elif not line:
|
|
pass # skip empty line
|
|
else:
|
|
raise Exception(line)
|
|
|
|
def _entry(self, line):
|
|
match = self.re_entry.match(line)
|
|
if match:
|
|
p = self._float_or_int(match.group(1))
|
|
ngram = tuple(match.group(4).split(' '))
|
|
bo_match = match.group(7)
|
|
bo = self._float_or_int(bo_match) if bo_match else None
|
|
self._tmp_model.add_entry(ngram, p, bo, self._tmp_order)
|
|
elif not line:
|
|
self._state = self.State.HEADER # last entry
|
|
else:
|
|
raise Exception(line)
|
|
|
|
@staticmethod
|
|
def _float_or_int(s):
|
|
f = float(s)
|
|
i = int(f)
|
|
if str(i) == s: # don't drop trailing ".0"
|
|
return i
|
|
else:
|
|
return f
|
|
|
|
def load(self, fp):
|
|
"""Deserialize fp (a file-like object) to a Python object."""
|
|
return self._parse(fp)
|
|
|
|
def loadf(self, path, encoding=None):
|
|
"""Deserialize path (.arpa, .gz) to a Python object."""
|
|
path = str(path)
|
|
if path.endswith('.gz'):
|
|
with gzip.open(path, mode='rt', encoding=encoding) as f:
|
|
return self.load(f)
|
|
else:
|
|
with open(path, mode='rt', encoding=encoding) as f:
|
|
return self.load(f)
|
|
|
|
def loads(self, s):
|
|
"""Deserialize s (a str) to a Python object."""
|
|
with StringIO(s) as f:
|
|
return self.load(f)
|
|
|
|
def dump(self, obj, fp):
|
|
"""Serialize obj to fp (a file-like object) in ARPA format."""
|
|
obj.write(fp)
|
|
|
|
def dumpf(self, obj, path, encoding=None):
|
|
"""Serialize obj to path in ARPA format (.arpa, .gz)."""
|
|
path = str(path)
|
|
if path.endswith('.gz'):
|
|
with gzip.open(path, mode='wt', encoding=encoding) as f:
|
|
return self.dump(obj, f)
|
|
else:
|
|
with open(path, mode='wt', encoding=encoding) as f:
|
|
self.dump(obj, f)
|
|
|
|
def dumps(self, obj):
|
|
"""Serialize obj to an ARPA formatted str."""
|
|
with StringIO() as f:
|
|
self.dump(obj, f)
|
|
return f.getvalue()
|
|
|
|
|
|
def add_log_p(prev_log_sum, log_p, base):
|
|
return math.log(base**log_p + base**prev_log_sum, base)
|
|
|
|
|
|
def compute_numerator_denominator(lm, h):
|
|
log_sum_seen_h = -math.inf
|
|
log_sum_seen_h_lower = -math.inf
|
|
base = lm.base
|
|
for w, log_p in lm._ngrams[len(h)][h].items():
|
|
log_sum_seen_h = add_log_p(log_sum_seen_h, log_p, base)
|
|
|
|
ngram = h + (w, )
|
|
log_p_lower = lm.log_p_raw(ngram[1:])
|
|
log_sum_seen_h_lower = add_log_p(log_sum_seen_h_lower, log_p_lower,
|
|
base)
|
|
|
|
numerator = 1.0 - base**log_sum_seen_h
|
|
denominator = 1.0 - base**log_sum_seen_h_lower
|
|
return numerator, denominator
|
|
|
|
|
|
def prune(lm, threshold, minorder):
|
|
# Reference:
|
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/lm/src/NgramLM.cc#L2330
|
|
|
|
for i in range(lm.order(), max(minorder - 1, 1),
|
|
-1): # i is the order of the ngram (h, w)
|
|
logging.info("processing %d-grams ..." % i)
|
|
count_pruned_ngrams = 0
|
|
|
|
h_dict = lm._ngrams[i - 1]
|
|
for h in list(h_dict.keys()):
|
|
# old backoff weight, BOW(h)
|
|
log_bow = lm._log_bo(h)
|
|
if log_bow is None:
|
|
log_bow = 0
|
|
|
|
# Compute numerator and denominator of the backoff weight,
|
|
# so that we can quickly compute the BOW adjustment due to
|
|
# leaving out one prob.
|
|
numerator, denominator = compute_numerator_denominator(lm, h)
|
|
|
|
# assert abs(math.log(numerator, lm.base) - math.log(denominator, lm.base) - h_dict[h].log_bo) < 1e-5
|
|
|
|
# Compute the marginal probability of the context, P(h)
|
|
h_log_p = lm.log_joint_prob(h)
|
|
|
|
all_pruned = True
|
|
pruned_w_set = set()
|
|
|
|
for w, log_p in h_dict[h].items():
|
|
ngram = h + (w, )
|
|
|
|
# lower-order estimate for ngramProb, P(w|h')
|
|
backoff_prob = lm.log_p_raw(ngram[1:])
|
|
|
|
# Compute BOW after removing ngram, BOW'(h)
|
|
new_log_bow = math.log(numerator + lm.base ** log_p, lm.base) - \
|
|
math.log(denominator + lm.base ** backoff_prob, lm.base)
|
|
|
|
# Compute change in entropy due to removal of ngram
|
|
delta_prob = backoff_prob + new_log_bow - log_p
|
|
delta_entropy = - (lm.base ** h_log_p) * \
|
|
((lm.base ** log_p) * delta_prob +
|
|
numerator * (new_log_bow - log_bow))
|
|
|
|
# compute relative change in model (training set) perplexity
|
|
perp_change = lm.base**delta_entropy - 1.0
|
|
|
|
pruned = threshold > 0 and perp_change < threshold
|
|
|
|
# Make sure we don't prune ngrams whose backoff nodes are needed
|
|
if pruned and \
|
|
len(ngram) in lm._ngrams and \
|
|
len(lm._ngrams[len(ngram)][ngram]) > 0:
|
|
pruned = False
|
|
|
|
logging.debug("CONTEXT " + str(h) + " WORD " + w +
|
|
" CONTEXTPROB %f " % h_log_p +
|
|
" OLDPROB %f " % log_p + " NEWPROB %f " %
|
|
(backoff_prob + new_log_bow) +
|
|
" DELTA-H %f " % delta_entropy +
|
|
" DELTA-LOGP %f " % delta_prob +
|
|
" PPL-CHANGE %f " % perp_change + " PRUNED " +
|
|
str(pruned))
|
|
|
|
if pruned:
|
|
pruned_w_set.add(w)
|
|
count_pruned_ngrams += 1
|
|
else:
|
|
all_pruned = False
|
|
|
|
# If we removed all ngrams for this context we can
|
|
# remove the context itself, but only if the present
|
|
# context is not a prefix to a longer one.
|
|
if all_pruned and len(pruned_w_set) == len(h_dict[h]):
|
|
del h_dict[
|
|
h] # this context h is no longer needed, as its ngram prob is stored at its own context h'
|
|
elif len(pruned_w_set) > 0:
|
|
# The pruning for this context h is actually done here
|
|
old_context = lm.set_new_context(h)
|
|
|
|
for w, p_w in old_context.items():
|
|
if w not in pruned_w_set:
|
|
lm.add_entry(
|
|
h + (w, ),
|
|
p_w) # the entry hw is stored at the context h
|
|
|
|
# We need to recompute the back-off weight, but
|
|
# this can only be done after completing the pruning
|
|
# of the lower-order ngrams.
|
|
# Reference:
|
|
# https://github.com/BitSpeech/SRILM/blob/d571a4424fb0cf08b29fbfccfddd092ea969eae3/flm/src/FNgramLM.cc#L2124
|
|
|
|
logging.info("pruned %d %d-grams" % (count_pruned_ngrams, i))
|
|
|
|
# recompute backoff weights
|
|
for i in range(max(minorder - 1, 1) + 1,
|
|
lm.order() +
|
|
1): # be careful of this order: from low- to high-order
|
|
for h in lm._ngrams[i - 1]:
|
|
numerator, denominator = compute_numerator_denominator(lm, h)
|
|
new_log_bow = math.log(numerator, lm.base) - math.log(
|
|
denominator, lm.base)
|
|
lm._ngrams[len(h)][h].log_bo = new_log_bow
|
|
|
|
# update counts
|
|
lm.update_counts()
|
|
|
|
return
|
|
|
|
|
|
def check_h_is_valid(lm, h):
|
|
sum_under_h = sum(
|
|
[lm.base**lm.log_p_raw(h + (w, )) for w in lm.vocabulary(sort=False)])
|
|
if abs(sum_under_h - 1.0) > 1e-6:
|
|
logging.info("warning: %s %f" % (str(h), sum_under_h))
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
|
|
def validate_lm(lm):
|
|
# sanity check if the conditional probability sums to one under each context h
|
|
for i in range(lm.order(), 0, -1): # i is the order of the ngram (h, w)
|
|
logging.info("validating %d-grams ..." % i)
|
|
h_dict = lm._ngrams[i - 1]
|
|
for h in h_dict.keys():
|
|
check_h_is_valid(lm, h)
|
|
|
|
|
|
def compare_two_apras(path1, path2):
|
|
pass
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# load an arpa file
|
|
logging.info("Loading the arpa file from %s" % args.lm)
|
|
parser = ArpaParser()
|
|
models = parser.loadf(args.lm, encoding=default_encoding)
|
|
lm = models[0] # ARPA files may contain several models.
|
|
logging.info("Stats before pruning:")
|
|
for i, cnt in lm.counts():
|
|
logging.info("ngram %d=%d" % (i, cnt))
|
|
|
|
# prune it, the language model will be modified in-place
|
|
logging.info("Start pruning the model with threshold=%.3E..." %
|
|
args.threshold)
|
|
prune(lm, args.threshold, args.minorder)
|
|
|
|
# validate_lm(lm)
|
|
|
|
# write the arpa language model to a file
|
|
logging.info("Stats after pruning:")
|
|
for i, cnt in lm.counts():
|
|
logging.info("ngram %d=%d" % (i, cnt))
|
|
logging.info("Saving the pruned arpa file to %s" % args.write_lm)
|
|
parser.dumpf(lm, args.write_lm, encoding=default_encoding)
|
|
logging.info("Done.")
|