Remove nonlin_skip_rate, introduce conv_skip_rate.

This commit is contained in:
Daniel Povey 2022-12-15 19:27:29 +08:00
parent 1506b83c7b
commit 864ff96322

View File

@ -398,8 +398,8 @@ class ZipformerEncoderLayer(nn.Module):
# treating batch_index == 0.0 specially is just to get scan_pessimistic_batches_for_oom()
# to work correctly.
layer_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.05), default=0),
dynamic_skip_rate: FloatLike = ScheduledFloat((0.0, 0.2), (4000.0, 0.0), default=0),
conv_skip_rate: FloatLike = ScheduledFloat((0.0, 0.1), (20000, 0.0), default=0),
attention_skip_rate: FloatLike = ScheduledFloat((0.0, 0.2), (4000.0, 0.0), default=0),
conv_skip_rate: FloatLike = ScheduledFloat((0.0, 0.2), (16000, 0.0), default=0),
const_attention_rate: FloatLike = ScheduledFloat((0.0, 0.25), (4000.0, 0.025), default=0),
bypass_min: FloatLike = ScheduledFloat((0.0, 0.75), (20000.0, 0.2), default=0),
bypass_max: FloatLike = 1.0,
@ -410,7 +410,7 @@ class ZipformerEncoderLayer(nn.Module):
# probability of skipping the entire layer.
self.layer_skip_rate = copy.deepcopy(layer_skip_rate)
# skip probability for dynamic modules (meaning: anything but feedforward).
self.dynamic_skip_rate = copy.deepcopy(dynamic_skip_rate)
self.attention_skip_rate = copy.deepcopy(attention_skip_rate)
# an additional skip probability that applies to ConvModule to stop it from
# contributing too much early on.
self.conv_skip_rate = copy.deepcopy(conv_skip_rate)
@ -507,7 +507,7 @@ class ZipformerEncoderLayer(nn.Module):
src_orig = src
# dropout rate for non-feedforward submodules
dynamic_skip_rate = float(self.dynamic_skip_rate) if self.training else 0.0
attention_skip_rate = float(self.attention_skip_rate) if self.training else 0.0
# attn_weights: (num_heads, batch_size, seq_len, seq_len)
if self.self_attn_weights is not None:
@ -528,7 +528,7 @@ class ZipformerEncoderLayer(nn.Module):
# skip the layer
return src, attn_weights
use_self_attn = (random.random() >= dynamic_skip_rate)
use_self_attn = (random.random() >= attention_skip_rate)
if use_self_attn:
selected_attn_weights = attn_weights[head_offset:head_offset+2]
if random.random() < float(self.const_attention_rate):
@ -555,7 +555,7 @@ class ZipformerEncoderLayer(nn.Module):
src = src + self.self_attn(
src, attn_weights)
if torch.jit.is_scripting() or random.random() >= dynamic_skip_rate + float(self.conv_skip_rate):
if torch.jit.is_scripting() or random.random() >= float(self.conv_skip_rate):
src = src + self.conv_module(src, src_key_padding_mask=src_key_padding_mask)
src = src + self.feed_forward2(src)