Change nonlin_skip_rate to be conv_skip_rate.

This commit is contained in:
Daniel Povey 2022-12-15 19:25:21 +08:00
parent 37a8c30136
commit 1506b83c7b

View File

@ -399,7 +399,7 @@ class ZipformerEncoderLayer(nn.Module):
# to work correctly.
layer_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.05), default=0),
dynamic_skip_rate: FloatLike = ScheduledFloat((0.0, 0.2), (4000.0, 0.0), default=0),
nonlin_skip_rate: FloatLike = ScheduledFloat((0.0, 0.1), (20000, 0.0), default=0),
conv_skip_rate: FloatLike = ScheduledFloat((0.0, 0.1), (20000, 0.0), default=0),
const_attention_rate: FloatLike = ScheduledFloat((0.0, 0.25), (4000.0, 0.025), default=0),
bypass_min: FloatLike = ScheduledFloat((0.0, 0.75), (20000.0, 0.2), default=0),
bypass_max: FloatLike = 1.0,
@ -411,9 +411,9 @@ class ZipformerEncoderLayer(nn.Module):
self.layer_skip_rate = copy.deepcopy(layer_skip_rate)
# skip probability for dynamic modules (meaning: anything but feedforward).
self.dynamic_skip_rate = copy.deepcopy(dynamic_skip_rate)
# an additional skip probability that applies to NoninAttentionModule to stop it from
# an additional skip probability that applies to ConvModule to stop it from
# contributing too much early on.
self.nonlin_skip_rate = copy.deepcopy(nonlin_skip_rate)
self.conv_skip_rate = copy.deepcopy(conv_skip_rate)
# min and max for self.bypass_scale, applied with probability 0.5 to avoid grads
# ever becoming zero.
@ -541,7 +541,7 @@ class ZipformerEncoderLayer(nn.Module):
selected_attn_weights = selected_attn_weights * (1.0 / selected_attn_weights.sum(dim=-1, keepdim=True))
selected_attn_weights = selected_attn_weights.expand(2, -1, -1, -1)
if torch.jit.is_scripting() or (use_self_attn and random.random() >= float(self.nonlin_skip_rate)):
if torch.jit.is_scripting() or use_self_attn:
src = src + self.nonlin_attention_module(src,
selected_attn_weights[0:1])
@ -555,7 +555,7 @@ class ZipformerEncoderLayer(nn.Module):
src = src + self.self_attn(
src, attn_weights)
if torch.jit.is_scripting() or random.random() >= dynamic_skip_rate:
if torch.jit.is_scripting() or random.random() >= dynamic_skip_rate + float(self.conv_skip_rate):
src = src + self.conv_module(src, src_key_padding_mask=src_key_padding_mask)
src = src + self.feed_forward2(src)