mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 10:16:14 +00:00
init commit
This commit is contained in:
parent
ae61bd4090
commit
821ec9db13
@ -360,7 +360,7 @@ if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
||||
fi
|
||||
|
||||
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||
log "Stage 11: Train RNN LM model"
|
||||
log "Stage 12: Train RNN LM model"
|
||||
python ../../../icefall/rnn_lm/train.py \
|
||||
--start-epoch 0 \
|
||||
--world-size 1 \
|
||||
|
1
egs/mdcc/ASR/local/compile_hlg.py
Symbolic link
1
egs/mdcc/ASR/local/compile_hlg.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/compile_hlg.py
|
1
egs/mdcc/ASR/local/compile_hlg_using_openfst.py
Symbolic link
1
egs/mdcc/ASR/local/compile_hlg_using_openfst.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/compile_hlg_using_openfst.py
|
1
egs/mdcc/ASR/local/compile_lg.py
Symbolic link
1
egs/mdcc/ASR/local/compile_lg.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/compile_lg.py
|
157
egs/mdcc/ASR/local/compute_fbank_mdcc.py
Executable file
157
egs/mdcc/ASR/local/compute_fbank_mdcc.py
Executable file
@ -0,0 +1,157 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the aishell dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_mdcc(
|
||||
num_mel_bins: int = 80,
|
||||
perturb_speed: bool = False,
|
||||
whisper_fbank: bool = False,
|
||||
output_dir: str = "data/fbank",
|
||||
):
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path(output_dir)
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
|
||||
dataset_parts = (
|
||||
"train",
|
||||
"valid",
|
||||
"test",
|
||||
)
|
||||
prefix = "mdcc"
|
||||
suffix = "jsonl.gz"
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts,
|
||||
output_dir=src_dir,
|
||||
prefix=prefix,
|
||||
suffix=suffix,
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
assert len(manifests) == len(dataset_parts), (
|
||||
len(manifests),
|
||||
len(dataset_parts),
|
||||
list(manifests.keys()),
|
||||
dataset_parts,
|
||||
)
|
||||
if whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=num_mel_bins, device="cuda")
|
||||
)
|
||||
else:
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
|
||||
logging.info(f"{partition} already exists - skipping.")
|
||||
continue
|
||||
logging.info(f"Processing {partition}")
|
||||
cut_set = CutSet.from_manifests(
|
||||
recordings=m["recordings"],
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
if "train" in partition and perturb_speed:
|
||||
logging.info("Doing speed perturb")
|
||||
cut_set = (
|
||||
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||
)
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
||||
# when an executor is specified, make more partitions
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--num-mel-bins",
|
||||
type=int,
|
||||
default=80,
|
||||
help="""The number of mel bins for Fbank""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--perturb-speed",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=str,
|
||||
default="data/fbank",
|
||||
help="Output directory. Default: data/fbank.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
args = get_args()
|
||||
compute_fbank_mdcc(
|
||||
num_mel_bins=args.num_mel_bins,
|
||||
perturb_speed=args.perturb_speed,
|
||||
whisper_fbank=args.whisper_fbank,
|
||||
output_dir=args.output_dir,
|
||||
)
|
1
egs/mdcc/ASR/local/prepare_char.py
Symbolic link
1
egs/mdcc/ASR/local/prepare_char.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/local/prepare_char.py
|
1
egs/mdcc/ASR/local/prepare_char_lm_training_data.py
Symbolic link
1
egs/mdcc/ASR/local/prepare_char_lm_training_data.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/local/prepare_char_lm_training_data.py
|
1
egs/mdcc/ASR/local/prepare_lang.py
Symbolic link
1
egs/mdcc/ASR/local/prepare_lang.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/local/prepare_lang.py
|
124
egs/mdcc/ASR/local/preprocess_mdcc.py
Normal file
124
egs/mdcc/ASR/local/preprocess_mdcc.py
Normal file
@ -0,0 +1,124 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2024 Xiaomi Corp. (authors: Zengrui Jin)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script takes a text file "data/lang_char/text" as input, the file consist of
|
||||
lines each containing a transcript, applies text norm and generates the following
|
||||
files in the directory "data/lang_char":
|
||||
- text_norm
|
||||
- words.txt
|
||||
- words_no_ids.txt
|
||||
- text_words_segmentation
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import pycantonese
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Prepare char lexicon",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-file",
|
||||
"-i",
|
||||
default="data/lang_char/text",
|
||||
type=str,
|
||||
help="The input text file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
"-o",
|
||||
default="data/lang_char",
|
||||
type=str,
|
||||
help="The output directory",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_norm_lines(lines: List[str]) -> List[str]:
|
||||
def _text_norm(text: str) -> str:
|
||||
# to cope with the protocol for transcription:
|
||||
# When taking notes, the annotators adhere to the following guidelines:
|
||||
# 1) If the audio contains pure music, the annotators mark the label
|
||||
# "(music)" in the file name of its transcript. 2) If the utterance
|
||||
# contains one or several sentences with background music or noise, the
|
||||
# annotators mark the label "(music)" before each sentence in the transcript.
|
||||
# 3) The annotators use {} symbols to enclose words they are uncertain
|
||||
# about, for example, {梁佳佳},我是{}人.
|
||||
return (
|
||||
text.strip()
|
||||
.replace("(music)", "")
|
||||
.replace("(music", "")
|
||||
.replace("{", "")
|
||||
.replace("}", "")
|
||||
)
|
||||
|
||||
return [_text_norm(line) for line in lines]
|
||||
|
||||
|
||||
def get_word_segments(lines: List[str]) -> List[str]:
|
||||
return [
|
||||
" ".join(pycantonese.segment(line)) + "\n"
|
||||
for line in tqdm(lines, desc="Segmenting lines")
|
||||
]
|
||||
|
||||
|
||||
def get_words(lines: List[str]) -> List[str]:
|
||||
words = set()
|
||||
for line in tqdm(lines, desc="Getting words"):
|
||||
words.update(pycantonese.segment(line))
|
||||
return list(words)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
input_file = Path(args.input_file)
|
||||
output_dir = Path(args.output_dir)
|
||||
|
||||
assert output_dir.is_dir(), f"{output_dir} does not exist"
|
||||
assert input_file.is_file(), f"{input_file} does not exist"
|
||||
|
||||
lines = input_file.read_text(encoding="utf-8").strip().split("\n")
|
||||
|
||||
norm_lines = get_norm_lines(lines)
|
||||
with open(output_dir / "text_norm", "w+", encoding="utf-8") as f:
|
||||
f.writelines([line + "\n" for line in norm_lines])
|
||||
|
||||
words = get_words(norm_lines)
|
||||
with open(output_dir / "words_no_ids.txt", "w+", encoding="utf-8") as f:
|
||||
f.writelines([word + "\n" for word in sorted(words)])
|
||||
|
||||
words = (
|
||||
["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>"]
|
||||
+ sorted(words)
|
||||
+ ["#0", "<s>", "<\s>"]
|
||||
)
|
||||
|
||||
with open(output_dir / "words.txt", "w+", encoding="utf-8") as f:
|
||||
f.writelines([f"{word} {i}\n" for i, word in enumerate(words)])
|
||||
|
||||
text_words_segments = get_word_segments(norm_lines)
|
||||
with open(output_dir / "text_words_segmentation", "w+", encoding="utf-8") as f:
|
||||
f.writelines(text_words_segments)
|
86
egs/mdcc/ASR/local/text2segments.py
Normal file
86
egs/mdcc/ASR/local/text2segments.py
Normal file
@ -0,0 +1,86 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
|
||||
# 2022 Xiaomi Corp. (authors: Weiji Zhuang)
|
||||
# 2024 Xiaomi Corp. (authors: Zengrui Jin)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This script takes as input "text", which refers to the transcript file for
|
||||
MDCC:
|
||||
- text
|
||||
and generates the output file text_word_segmentation which is implemented
|
||||
with word segmenting:
|
||||
- text_words_segmentation
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from typing import List
|
||||
|
||||
import pycantonese
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Cantonese Word Segmentation for text",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-file",
|
||||
"-i",
|
||||
default="data/lang_char/text",
|
||||
type=str,
|
||||
help="the input text file for MDCC",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-file",
|
||||
"-o",
|
||||
default="data/lang_char/text_words_segmentation",
|
||||
type=str,
|
||||
help="the text implemented with words segmenting for MDCC",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_word_segments(lines: List[str]) -> List[str]:
|
||||
return [
|
||||
" ".join(pycantonese.segment(line)) + "\n"
|
||||
for line in tqdm(lines, desc="Segmenting lines")
|
||||
]
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
input_file = args.input_file
|
||||
output_file = args.output_file
|
||||
|
||||
with open(input_file, "r", encoding="utf-8") as fr:
|
||||
lines = fr.readlines()
|
||||
|
||||
new_lines = get_word_segments(lines)
|
||||
|
||||
with open(output_file, "w", encoding="utf-8") as fw:
|
||||
fw.writelines(new_lines)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/mdcc/ASR/local/text2token.py
Symbolic link
1
egs/mdcc/ASR/local/text2token.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aidatatang_200zh/ASR/local/text2token.py
|
304
egs/mdcc/ASR/prepare.sh
Normal file
304
egs/mdcc/ASR/prepare.sh
Normal file
@ -0,0 +1,304 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
perturb_speed=true
|
||||
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
#
|
||||
# - $dl_dir/mdcc
|
||||
# |-- README.md
|
||||
# |-- audio/
|
||||
# |-- clip_info_rthk.csv
|
||||
# |-- cnt_asr_metadata_full.csv
|
||||
# |-- cnt_asr_test_metadata.csv
|
||||
# |-- cnt_asr_train_metadata.csv
|
||||
# |-- cnt_asr_valid_metadata.csv
|
||||
# |-- data_statistic.py
|
||||
# |-- length
|
||||
# |-- podcast_447_2021.csv
|
||||
# |-- test.txt
|
||||
# |-- transcription/
|
||||
# `-- words_length
|
||||
# You can download them from:
|
||||
# https://drive.google.com/file/d/1epfYMMhXdBKA6nxPgUugb2Uj4DllSxkn/view?usp=drive_link
|
||||
#
|
||||
# - $dl_dir/musan
|
||||
# This directory contains the following directories downloaded from
|
||||
# http://www.openslr.org/17/
|
||||
#
|
||||
# - music
|
||||
# - noise
|
||||
# - speech
|
||||
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "stage 0: Download data"
|
||||
|
||||
# If you have pre-downloaded it to /path/to/mdcc,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/mdcc $dl_dir/mdcc
|
||||
#
|
||||
# The directory structure is
|
||||
# mdcc/
|
||||
# |-- README.md
|
||||
# |-- audio/
|
||||
# |-- clip_info_rthk.csv
|
||||
# |-- cnt_asr_metadata_full.csv
|
||||
# |-- cnt_asr_test_metadata.csv
|
||||
# |-- cnt_asr_train_metadata.csv
|
||||
# |-- cnt_asr_valid_metadata.csv
|
||||
# |-- data_statistic.py
|
||||
# |-- length
|
||||
# |-- podcast_447_2021.csv
|
||||
# |-- test.txt
|
||||
# |-- transcription/
|
||||
# `-- words_length
|
||||
|
||||
if [ ! -d $dl_dir/mdcc/audio ]; then
|
||||
lhotse download mdcc $dl_dir
|
||||
|
||||
# this will download and unzip dataset.zip to $dl_dir/
|
||||
|
||||
mv $dl_dir/dataset $dl_dir/mdcc
|
||||
fi
|
||||
|
||||
# If you have pre-downloaded it to /path/to/musan,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/musan $dl_dir/musan
|
||||
#
|
||||
if [ ! -d $dl_dir/musan ]; then
|
||||
lhotse download musan $dl_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare MDCC manifest"
|
||||
# We assume that you have downloaded the MDCC corpus
|
||||
# to $dl_dir/mdcc
|
||||
if [ ! -f data/manifests/.mdcc_manifests.done ]; then
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare mdcc $dl_dir/mdcc data/manifests
|
||||
touch data/manifests/.mdcc_manifests.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare musan manifest"
|
||||
# We assume that you have downloaded the musan corpus
|
||||
# to data/musan
|
||||
if [ ! -f data/manifests/.musan_manifests.done ]; then
|
||||
log "It may take 6 minutes"
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare musan $dl_dir/musan data/manifests
|
||||
touch data/manifests/.musan_manifests.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Compute fbank for MDCC"
|
||||
if [ ! -f data/fbank/.mdcc.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_mdcc.py --perturb-speed ${perturb_speed}
|
||||
touch data/fbank/.mdcc.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute fbank for musan"
|
||||
if [ ! -f data/fbank/.msuan.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_musan.py
|
||||
touch data/fbank/.msuan.done
|
||||
fi
|
||||
fi
|
||||
|
||||
lang_char_dir=data/lang_char
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Prepare char based lang"
|
||||
mkdir -p $lang_char_dir
|
||||
|
||||
# Prepare text.
|
||||
# Note: in Linux, you can install jq with the following command:
|
||||
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
||||
# 2. chmod +x ./jq
|
||||
# 3. cp jq /usr/bin
|
||||
if [ ! -f $lang_char_dir/text ]; then
|
||||
gunzip -c data/manifests/mdcc_supervisions_train.jsonl.gz \
|
||||
|jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \
|
||||
> $lang_char_dir/train_text
|
||||
|
||||
cat $lang_char_dir/train_text > $lang_char_dir/text
|
||||
|
||||
gunzip -c data/manifests/mdcc_supervisions_test.jsonl.gz \
|
||||
|jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \
|
||||
> $lang_char_dir/valid_text
|
||||
|
||||
cat $lang_char_dir/valid_text >> $lang_char_dir/text
|
||||
|
||||
gunzip -c data/manifests/mdcc_supervisions_valid.jsonl.gz \
|
||||
|jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \
|
||||
> $lang_char_dir/test_text
|
||||
|
||||
cat $lang_char_dir/test_text >> $lang_char_dir/text
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
|
||||
./local/preprocess_mdcc.py --input-file $lang_char_dir/text \
|
||||
--output-dir $lang_char_dir
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_char_dir/tokens.txt ]; then
|
||||
./local/prepare_char.py --lang-dir $lang_char_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Prepare G"
|
||||
|
||||
mkdir -p data/lm
|
||||
|
||||
# Train LM on transcripts
|
||||
if [ ! -f data/lm/3-gram.unpruned.arpa ]; then
|
||||
python3 ./shared/make_kn_lm.py \
|
||||
-ngram-order 3 \
|
||||
-text $lang_char_dir/text_words_segmentation \
|
||||
-lm data/lm/3-gram.unpruned.arpa
|
||||
fi
|
||||
|
||||
# We assume you have installed kaldilm, if not, please install
|
||||
# it using: pip install kaldilm
|
||||
if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then
|
||||
# It is used in building HLG
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="$lang_char_dir/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=3 \
|
||||
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_char.fst.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_char_dir/HLG.fst ]; then
|
||||
./local/prepare_lang_fst.py \
|
||||
--lang-dir $lang_char_dir \
|
||||
--ngram-G ./data/lm/G_3_gram_char.fst.txt
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
log "Stage 7: Compile LG & HLG"
|
||||
|
||||
./local/compile_hlg.py --lang-dir $lang_char_dir --lm G_3_gram_char
|
||||
./local/compile_lg.py --lang-dir $lang_char_dir --lm G_3_gram_char
|
||||
fi
|
||||
|
||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
log "Stage 8: Generate LM training data"
|
||||
|
||||
log "Processing char based data"
|
||||
out_dir=data/lm_training_char
|
||||
mkdir -p $out_dir $dl_dir/lm
|
||||
|
||||
if [ ! -f $dl_dir/lm/mdcc-train-word.txt ]; then
|
||||
./local/text2segments.py --input-file $lang_char_dir/train_text \
|
||||
--output-file $dl_dir/lm/mdcc-train-word.txt
|
||||
fi
|
||||
|
||||
# training words
|
||||
./local/prepare_char_lm_training_data.py \
|
||||
--lang-char data/lang_char \
|
||||
--lm-data $dl_dir/lm/mdcc-train-word.txt \
|
||||
--lm-archive $out_dir/lm_data.pt
|
||||
|
||||
# valid words
|
||||
if [ ! -f $dl_dir/lm/mdcc-valid-word.txt ]; then
|
||||
./local/text2segments.py --input-file $lang_char_dir/valid_text \
|
||||
--output-file $dl_dir/lm/mdcc-valid-word.txt
|
||||
fi
|
||||
|
||||
./local/prepare_char_lm_training_data.py \
|
||||
--lang-char data/lang_char \
|
||||
--lm-data $dl_dir/lm/mdcc-valid-word.txt \
|
||||
--lm-archive $out_dir/lm_data_valid.pt
|
||||
|
||||
# test words
|
||||
if [ ! -f $dl_dir/lm/mdcc-test-word.txt ]; then
|
||||
./local/text2segments.py --input-file $lang_char_dir/test_text \
|
||||
--output-file $dl_dir/lm/mdcc-test-word.txt
|
||||
fi
|
||||
|
||||
./local/prepare_char_lm_training_data.py \
|
||||
--lang-char data/lang_char \
|
||||
--lm-data $dl_dir/lm/mdcc-test-word.txt \
|
||||
--lm-archive $out_dir/lm_data_test.pt
|
||||
fi
|
||||
|
||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||
log "Stage 9: Sort LM training data"
|
||||
# Sort LM training data by sentence length in descending order
|
||||
# for ease of training.
|
||||
#
|
||||
# Sentence length equals to the number of tokens
|
||||
# in a sentence.
|
||||
|
||||
out_dir=data/lm_training_char
|
||||
mkdir -p $out_dir
|
||||
ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/
|
||||
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data.pt \
|
||||
--out-statistics $out_dir/statistics.txt
|
||||
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data_valid.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
|
||||
--out-statistics $out_dir/statistics-valid.txt
|
||||
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data_test.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data-test.pt \
|
||||
--out-statistics $out_dir/statistics-test.txt
|
||||
fi
|
||||
|
||||
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||
log "Stage 12: Train RNN LM model"
|
||||
python ../../../icefall/rnn_lm/train.py \
|
||||
--start-epoch 0 \
|
||||
--world-size 1 \
|
||||
--num-epochs 20 \
|
||||
--use-fp16 0 \
|
||||
--embedding-dim 512 \
|
||||
--hidden-dim 512 \
|
||||
--num-layers 2 \
|
||||
--batch-size 400 \
|
||||
--exp-dir rnnlm_char/exp \
|
||||
--lm-data $out_dir/sorted_lm_data.pt \
|
||||
--lm-data-valid $out_dir/sorted_lm_data-valid.pt \
|
||||
--vocab-size 4336 \
|
||||
--master-port 12345
|
||||
fi
|
1
egs/mdcc/ASR/shared
Symbolic link
1
egs/mdcc/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
||||
../../../icefall/shared/
|
@ -15,3 +15,6 @@ onnxruntime==1.16.3
|
||||
black==22.3.0
|
||||
isort==5.10.1
|
||||
flake8==5.0.4
|
||||
|
||||
# cantonese word segment support
|
||||
pycantonese==3.4.0
|
Loading…
x
Reference in New Issue
Block a user