diff --git a/egs/aishell/ASR/prepare.sh b/egs/aishell/ASR/prepare.sh index b7be89bc8..13be69534 100755 --- a/egs/aishell/ASR/prepare.sh +++ b/egs/aishell/ASR/prepare.sh @@ -360,7 +360,7 @@ if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then fi if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then - log "Stage 11: Train RNN LM model" + log "Stage 12: Train RNN LM model" python ../../../icefall/rnn_lm/train.py \ --start-epoch 0 \ --world-size 1 \ diff --git a/egs/mdcc/ASR/local/compile_hlg.py b/egs/mdcc/ASR/local/compile_hlg.py new file mode 120000 index 000000000..471aa7fb4 --- /dev/null +++ b/egs/mdcc/ASR/local/compile_hlg.py @@ -0,0 +1 @@ +../../../librispeech/ASR/local/compile_hlg.py \ No newline at end of file diff --git a/egs/mdcc/ASR/local/compile_hlg_using_openfst.py b/egs/mdcc/ASR/local/compile_hlg_using_openfst.py new file mode 120000 index 000000000..d34edd7f3 --- /dev/null +++ b/egs/mdcc/ASR/local/compile_hlg_using_openfst.py @@ -0,0 +1 @@ +../../../librispeech/ASR/local/compile_hlg_using_openfst.py \ No newline at end of file diff --git a/egs/mdcc/ASR/local/compile_lg.py b/egs/mdcc/ASR/local/compile_lg.py new file mode 120000 index 000000000..462d6d3fb --- /dev/null +++ b/egs/mdcc/ASR/local/compile_lg.py @@ -0,0 +1 @@ +../../../librispeech/ASR/local/compile_lg.py \ No newline at end of file diff --git a/egs/mdcc/ASR/local/compute_fbank_mdcc.py b/egs/mdcc/ASR/local/compute_fbank_mdcc.py new file mode 100755 index 000000000..647b21127 --- /dev/null +++ b/egs/mdcc/ASR/local/compute_fbank_mdcc.py @@ -0,0 +1,157 @@ +#!/usr/bin/env python3 +# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang, +# Zengrui Jin,) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the aishell dataset. +It looks for manifests in the directory data/manifests. + +The generated fbank features are saved in data/fbank. +""" + +import argparse +import logging +import os +from pathlib import Path + +import torch +from lhotse import ( + CutSet, + Fbank, + FbankConfig, + LilcomChunkyWriter, + WhisperFbank, + WhisperFbankConfig, +) +from lhotse.recipes.utils import read_manifests_if_cached + +from icefall.utils import get_executor, str2bool + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + + +def compute_fbank_mdcc( + num_mel_bins: int = 80, + perturb_speed: bool = False, + whisper_fbank: bool = False, + output_dir: str = "data/fbank", +): + src_dir = Path("data/manifests") + output_dir = Path(output_dir) + num_jobs = min(15, os.cpu_count()) + + dataset_parts = ( + "train", + "valid", + "test", + ) + prefix = "mdcc" + suffix = "jsonl.gz" + manifests = read_manifests_if_cached( + dataset_parts=dataset_parts, + output_dir=src_dir, + prefix=prefix, + suffix=suffix, + ) + assert manifests is not None + + assert len(manifests) == len(dataset_parts), ( + len(manifests), + len(dataset_parts), + list(manifests.keys()), + dataset_parts, + ) + if whisper_fbank: + extractor = WhisperFbank( + WhisperFbankConfig(num_filters=num_mel_bins, device="cuda") + ) + else: + extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) + + with get_executor() as ex: # Initialize the executor only once. + for partition, m in manifests.items(): + if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file(): + logging.info(f"{partition} already exists - skipping.") + continue + logging.info(f"Processing {partition}") + cut_set = CutSet.from_manifests( + recordings=m["recordings"], + supervisions=m["supervisions"], + ) + if "train" in partition and perturb_speed: + logging.info("Doing speed perturb") + cut_set = ( + cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) + ) + cut_set = cut_set.compute_and_store_features( + extractor=extractor, + storage_path=f"{output_dir}/{prefix}_feats_{partition}", + # when an executor is specified, make more partitions + num_jobs=num_jobs if ex is None else 80, + executor=ex, + storage_type=LilcomChunkyWriter, + ) + cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}") + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--num-mel-bins", + type=int, + default=80, + help="""The number of mel bins for Fbank""", + ) + parser.add_argument( + "--perturb-speed", + type=str2bool, + default=False, + help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.", + ) + parser.add_argument( + "--whisper-fbank", + type=str2bool, + default=False, + help="Use WhisperFbank instead of Fbank. Default: False.", + ) + parser.add_argument( + "--output-dir", + type=str, + default="data/fbank", + help="Output directory. Default: data/fbank.", + ) + return parser.parse_args() + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + + args = get_args() + compute_fbank_mdcc( + num_mel_bins=args.num_mel_bins, + perturb_speed=args.perturb_speed, + whisper_fbank=args.whisper_fbank, + output_dir=args.output_dir, + ) diff --git a/egs/mdcc/ASR/local/prepare_char.py b/egs/mdcc/ASR/local/prepare_char.py new file mode 120000 index 000000000..42743b544 --- /dev/null +++ b/egs/mdcc/ASR/local/prepare_char.py @@ -0,0 +1 @@ +../../../aishell/ASR/local/prepare_char.py \ No newline at end of file diff --git a/egs/mdcc/ASR/local/prepare_char_lm_training_data.py b/egs/mdcc/ASR/local/prepare_char_lm_training_data.py new file mode 120000 index 000000000..2374cafdd --- /dev/null +++ b/egs/mdcc/ASR/local/prepare_char_lm_training_data.py @@ -0,0 +1 @@ +../../../aishell/ASR/local/prepare_char_lm_training_data.py \ No newline at end of file diff --git a/egs/mdcc/ASR/local/prepare_lang.py b/egs/mdcc/ASR/local/prepare_lang.py new file mode 120000 index 000000000..bee8d5f03 --- /dev/null +++ b/egs/mdcc/ASR/local/prepare_lang.py @@ -0,0 +1 @@ +../../../aishell/ASR/local/prepare_lang.py \ No newline at end of file diff --git a/egs/mdcc/ASR/local/preprocess_mdcc.py b/egs/mdcc/ASR/local/preprocess_mdcc.py new file mode 100644 index 000000000..e7a87f0d5 --- /dev/null +++ b/egs/mdcc/ASR/local/preprocess_mdcc.py @@ -0,0 +1,124 @@ +#!/usr/bin/env python3 +# Copyright 2024 Xiaomi Corp. (authors: Zengrui Jin) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +This script takes a text file "data/lang_char/text" as input, the file consist of +lines each containing a transcript, applies text norm and generates the following +files in the directory "data/lang_char": + - text_norm + - words.txt + - words_no_ids.txt + - text_words_segmentation +""" + +import argparse +from pathlib import Path +from typing import List + +import pycantonese +from tqdm.auto import tqdm + + +def get_parser(): + parser = argparse.ArgumentParser( + description="Prepare char lexicon", + formatter_class=argparse.ArgumentDefaultsHelpFormatter, + ) + parser.add_argument( + "--input-file", + "-i", + default="data/lang_char/text", + type=str, + help="The input text file", + ) + parser.add_argument( + "--output-dir", + "-o", + default="data/lang_char", + type=str, + help="The output directory", + ) + return parser + + +def get_norm_lines(lines: List[str]) -> List[str]: + def _text_norm(text: str) -> str: + # to cope with the protocol for transcription: + # When taking notes, the annotators adhere to the following guidelines: + # 1) If the audio contains pure music, the annotators mark the label + # "(music)" in the file name of its transcript. 2) If the utterance + # contains one or several sentences with background music or noise, the + # annotators mark the label "(music)" before each sentence in the transcript. + # 3) The annotators use {} symbols to enclose words they are uncertain + # about, for example, {梁佳佳},我是{}人. + return ( + text.strip() + .replace("(music)", "") + .replace("(music", "") + .replace("{", "") + .replace("}", "") + ) + + return [_text_norm(line) for line in lines] + + +def get_word_segments(lines: List[str]) -> List[str]: + return [ + " ".join(pycantonese.segment(line)) + "\n" + for line in tqdm(lines, desc="Segmenting lines") + ] + + +def get_words(lines: List[str]) -> List[str]: + words = set() + for line in tqdm(lines, desc="Getting words"): + words.update(pycantonese.segment(line)) + return list(words) + + +if __name__ == "__main__": + parser = get_parser() + args = parser.parse_args() + + input_file = Path(args.input_file) + output_dir = Path(args.output_dir) + + assert output_dir.is_dir(), f"{output_dir} does not exist" + assert input_file.is_file(), f"{input_file} does not exist" + + lines = input_file.read_text(encoding="utf-8").strip().split("\n") + + norm_lines = get_norm_lines(lines) + with open(output_dir / "text_norm", "w+", encoding="utf-8") as f: + f.writelines([line + "\n" for line in norm_lines]) + + words = get_words(norm_lines) + with open(output_dir / "words_no_ids.txt", "w+", encoding="utf-8") as f: + f.writelines([word + "\n" for word in sorted(words)]) + + words = ( + ["", "!SIL", "", ""] + + sorted(words) + + ["#0", "", "<\s>"] + ) + + with open(output_dir / "words.txt", "w+", encoding="utf-8") as f: + f.writelines([f"{word} {i}\n" for i, word in enumerate(words)]) + + text_words_segments = get_word_segments(norm_lines) + with open(output_dir / "text_words_segmentation", "w+", encoding="utf-8") as f: + f.writelines(text_words_segments) diff --git a/egs/mdcc/ASR/local/text2segments.py b/egs/mdcc/ASR/local/text2segments.py new file mode 100644 index 000000000..8ce7ab7e5 --- /dev/null +++ b/egs/mdcc/ASR/local/text2segments.py @@ -0,0 +1,86 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) +# 2022 Xiaomi Corp. (authors: Weiji Zhuang) +# 2024 Xiaomi Corp. (authors: Zengrui Jin) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This script takes as input "text", which refers to the transcript file for +MDCC: + - text +and generates the output file text_word_segmentation which is implemented +with word segmenting: + - text_words_segmentation +""" + +import argparse +from typing import List + +import pycantonese +from tqdm.auto import tqdm + + +def get_parser(): + parser = argparse.ArgumentParser( + description="Cantonese Word Segmentation for text", + formatter_class=argparse.ArgumentDefaultsHelpFormatter, + ) + parser.add_argument( + "--input-file", + "-i", + default="data/lang_char/text", + type=str, + help="the input text file for MDCC", + ) + parser.add_argument( + "--output-file", + "-o", + default="data/lang_char/text_words_segmentation", + type=str, + help="the text implemented with words segmenting for MDCC", + ) + + return parser + + +def get_word_segments(lines: List[str]) -> List[str]: + return [ + " ".join(pycantonese.segment(line)) + "\n" + for line in tqdm(lines, desc="Segmenting lines") + ] + + +def main(): + parser = get_parser() + args = parser.parse_args() + + input_file = args.input_file + output_file = args.output_file + + with open(input_file, "r", encoding="utf-8") as fr: + lines = fr.readlines() + + new_lines = get_word_segments(lines) + + with open(output_file, "w", encoding="utf-8") as fw: + fw.writelines(new_lines) + + +if __name__ == "__main__": + main() diff --git a/egs/mdcc/ASR/local/text2token.py b/egs/mdcc/ASR/local/text2token.py new file mode 120000 index 000000000..81e459d69 --- /dev/null +++ b/egs/mdcc/ASR/local/text2token.py @@ -0,0 +1 @@ +../../../aidatatang_200zh/ASR/local/text2token.py \ No newline at end of file diff --git a/egs/mdcc/ASR/prepare.sh b/egs/mdcc/ASR/prepare.sh new file mode 100644 index 000000000..d57f31e73 --- /dev/null +++ b/egs/mdcc/ASR/prepare.sh @@ -0,0 +1,304 @@ +#!/usr/bin/env bash + +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + +set -eou pipefail + +stage=-1 +stop_stage=100 +perturb_speed=true + + +# We assume dl_dir (download dir) contains the following +# directories and files. If not, they will be downloaded +# by this script automatically. +# +# - $dl_dir/mdcc +# |-- README.md +# |-- audio/ +# |-- clip_info_rthk.csv +# |-- cnt_asr_metadata_full.csv +# |-- cnt_asr_test_metadata.csv +# |-- cnt_asr_train_metadata.csv +# |-- cnt_asr_valid_metadata.csv +# |-- data_statistic.py +# |-- length +# |-- podcast_447_2021.csv +# |-- test.txt +# |-- transcription/ +# `-- words_length +# You can download them from: +# https://drive.google.com/file/d/1epfYMMhXdBKA6nxPgUugb2Uj4DllSxkn/view?usp=drive_link +# +# - $dl_dir/musan +# This directory contains the following directories downloaded from +# http://www.openslr.org/17/ +# +# - music +# - noise +# - speech + +dl_dir=$PWD/download + +. shared/parse_options.sh || exit 1 + +# All files generated by this script are saved in "data". +# You can safely remove "data" and rerun this script to regenerate it. +mkdir -p data + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +log "dl_dir: $dl_dir" + +if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then + log "stage 0: Download data" + + # If you have pre-downloaded it to /path/to/mdcc, + # you can create a symlink + # + # ln -sfv /path/to/mdcc $dl_dir/mdcc + # + # The directory structure is + # mdcc/ + # |-- README.md + # |-- audio/ + # |-- clip_info_rthk.csv + # |-- cnt_asr_metadata_full.csv + # |-- cnt_asr_test_metadata.csv + # |-- cnt_asr_train_metadata.csv + # |-- cnt_asr_valid_metadata.csv + # |-- data_statistic.py + # |-- length + # |-- podcast_447_2021.csv + # |-- test.txt + # |-- transcription/ + # `-- words_length + + if [ ! -d $dl_dir/mdcc/audio ]; then + lhotse download mdcc $dl_dir + + # this will download and unzip dataset.zip to $dl_dir/ + + mv $dl_dir/dataset $dl_dir/mdcc + fi + + # If you have pre-downloaded it to /path/to/musan, + # you can create a symlink + # + # ln -sfv /path/to/musan $dl_dir/musan + # + if [ ! -d $dl_dir/musan ]; then + lhotse download musan $dl_dir + fi +fi + +if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then + log "Stage 1: Prepare MDCC manifest" + # We assume that you have downloaded the MDCC corpus + # to $dl_dir/mdcc + if [ ! -f data/manifests/.mdcc_manifests.done ]; then + mkdir -p data/manifests + lhotse prepare mdcc $dl_dir/mdcc data/manifests + touch data/manifests/.mdcc_manifests.done + fi +fi + +if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then + log "Stage 2: Prepare musan manifest" + # We assume that you have downloaded the musan corpus + # to data/musan + if [ ! -f data/manifests/.musan_manifests.done ]; then + log "It may take 6 minutes" + mkdir -p data/manifests + lhotse prepare musan $dl_dir/musan data/manifests + touch data/manifests/.musan_manifests.done + fi +fi + +if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then + log "Stage 3: Compute fbank for MDCC" + if [ ! -f data/fbank/.mdcc.done ]; then + mkdir -p data/fbank + ./local/compute_fbank_mdcc.py --perturb-speed ${perturb_speed} + touch data/fbank/.mdcc.done + fi +fi + +if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then + log "Stage 4: Compute fbank for musan" + if [ ! -f data/fbank/.msuan.done ]; then + mkdir -p data/fbank + ./local/compute_fbank_musan.py + touch data/fbank/.msuan.done + fi +fi + +lang_char_dir=data/lang_char +if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then + log "Stage 5: Prepare char based lang" + mkdir -p $lang_char_dir + + # Prepare text. + # Note: in Linux, you can install jq with the following command: + # 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 + # 2. chmod +x ./jq + # 3. cp jq /usr/bin + if [ ! -f $lang_char_dir/text ]; then + gunzip -c data/manifests/mdcc_supervisions_train.jsonl.gz \ + |jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \ + > $lang_char_dir/train_text + + cat $lang_char_dir/train_text > $lang_char_dir/text + + gunzip -c data/manifests/mdcc_supervisions_test.jsonl.gz \ + |jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \ + > $lang_char_dir/valid_text + + cat $lang_char_dir/valid_text >> $lang_char_dir/text + + gunzip -c data/manifests/mdcc_supervisions_valid.jsonl.gz \ + |jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \ + > $lang_char_dir/test_text + + cat $lang_char_dir/test_text >> $lang_char_dir/text + fi + + if [ ! -f $lang_char_dir/text_words_segmentation ]; then + ./local/preprocess_mdcc.py --input-file $lang_char_dir/text \ + --output-dir $lang_char_dir + fi + + if [ ! -f $lang_char_dir/tokens.txt ]; then + ./local/prepare_char.py --lang-dir $lang_char_dir + fi +fi + +if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then + log "Stage 6: Prepare G" + + mkdir -p data/lm + + # Train LM on transcripts + if [ ! -f data/lm/3-gram.unpruned.arpa ]; then + python3 ./shared/make_kn_lm.py \ + -ngram-order 3 \ + -text $lang_char_dir/text_words_segmentation \ + -lm data/lm/3-gram.unpruned.arpa + fi + + # We assume you have installed kaldilm, if not, please install + # it using: pip install kaldilm + if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then + # It is used in building HLG + python3 -m kaldilm \ + --read-symbol-table="$lang_char_dir/words.txt" \ + --disambig-symbol='#0' \ + --max-order=3 \ + data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_char.fst.txt + fi + + if [ ! -f $lang_char_dir/HLG.fst ]; then + ./local/prepare_lang_fst.py \ + --lang-dir $lang_char_dir \ + --ngram-G ./data/lm/G_3_gram_char.fst.txt + fi +fi + +if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then + log "Stage 7: Compile LG & HLG" + + ./local/compile_hlg.py --lang-dir $lang_char_dir --lm G_3_gram_char + ./local/compile_lg.py --lang-dir $lang_char_dir --lm G_3_gram_char +fi + +if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then + log "Stage 8: Generate LM training data" + + log "Processing char based data" + out_dir=data/lm_training_char + mkdir -p $out_dir $dl_dir/lm + + if [ ! -f $dl_dir/lm/mdcc-train-word.txt ]; then + ./local/text2segments.py --input-file $lang_char_dir/train_text \ + --output-file $dl_dir/lm/mdcc-train-word.txt + fi + + # training words + ./local/prepare_char_lm_training_data.py \ + --lang-char data/lang_char \ + --lm-data $dl_dir/lm/mdcc-train-word.txt \ + --lm-archive $out_dir/lm_data.pt + + # valid words + if [ ! -f $dl_dir/lm/mdcc-valid-word.txt ]; then + ./local/text2segments.py --input-file $lang_char_dir/valid_text \ + --output-file $dl_dir/lm/mdcc-valid-word.txt + fi + + ./local/prepare_char_lm_training_data.py \ + --lang-char data/lang_char \ + --lm-data $dl_dir/lm/mdcc-valid-word.txt \ + --lm-archive $out_dir/lm_data_valid.pt + + # test words + if [ ! -f $dl_dir/lm/mdcc-test-word.txt ]; then + ./local/text2segments.py --input-file $lang_char_dir/test_text \ + --output-file $dl_dir/lm/mdcc-test-word.txt + fi + + ./local/prepare_char_lm_training_data.py \ + --lang-char data/lang_char \ + --lm-data $dl_dir/lm/mdcc-test-word.txt \ + --lm-archive $out_dir/lm_data_test.pt +fi + +if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then + log "Stage 9: Sort LM training data" + # Sort LM training data by sentence length in descending order + # for ease of training. + # + # Sentence length equals to the number of tokens + # in a sentence. + + out_dir=data/lm_training_char + mkdir -p $out_dir + ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/ + + ./local/sort_lm_training_data.py \ + --in-lm-data $out_dir/lm_data.pt \ + --out-lm-data $out_dir/sorted_lm_data.pt \ + --out-statistics $out_dir/statistics.txt + + ./local/sort_lm_training_data.py \ + --in-lm-data $out_dir/lm_data_valid.pt \ + --out-lm-data $out_dir/sorted_lm_data-valid.pt \ + --out-statistics $out_dir/statistics-valid.txt + + ./local/sort_lm_training_data.py \ + --in-lm-data $out_dir/lm_data_test.pt \ + --out-lm-data $out_dir/sorted_lm_data-test.pt \ + --out-statistics $out_dir/statistics-test.txt +fi + +if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then + log "Stage 12: Train RNN LM model" + python ../../../icefall/rnn_lm/train.py \ + --start-epoch 0 \ + --world-size 1 \ + --num-epochs 20 \ + --use-fp16 0 \ + --embedding-dim 512 \ + --hidden-dim 512 \ + --num-layers 2 \ + --batch-size 400 \ + --exp-dir rnnlm_char/exp \ + --lm-data $out_dir/sorted_lm_data.pt \ + --lm-data-valid $out_dir/sorted_lm_data-valid.pt \ + --vocab-size 4336 \ + --master-port 12345 +fi diff --git a/egs/mdcc/ASR/shared b/egs/mdcc/ASR/shared new file mode 120000 index 000000000..4c5e91438 --- /dev/null +++ b/egs/mdcc/ASR/shared @@ -0,0 +1 @@ +../../../icefall/shared/ \ No newline at end of file diff --git a/requirements.txt b/requirements.txt index e64afd1ee..1f2afb557 100644 --- a/requirements.txt +++ b/requirements.txt @@ -14,4 +14,7 @@ onnxruntime==1.16.3 # style check session: black==22.3.0 isort==5.10.1 -flake8==5.0.4 \ No newline at end of file +flake8==5.0.4 + +# cantonese word segment support +pycantonese==3.4.0 \ No newline at end of file