init commit

This commit is contained in:
jinzr 2024-03-08 16:49:43 +08:00
parent ae61bd4090
commit 821ec9db13
14 changed files with 684 additions and 2 deletions

View File

@ -360,7 +360,7 @@ if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
fi
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 11: Train RNN LM model"
log "Stage 12: Train RNN LM model"
python ../../../icefall/rnn_lm/train.py \
--start-epoch 0 \
--world-size 1 \

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/compile_hlg.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/compile_hlg_using_openfst.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/compile_lg.py

View File

@ -0,0 +1,157 @@
#!/usr/bin/env python3
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
# Zengrui Jin,)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the aishell dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
import os
from pathlib import Path
import torch
from lhotse import (
CutSet,
Fbank,
FbankConfig,
LilcomChunkyWriter,
WhisperFbank,
WhisperFbankConfig,
)
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_mdcc(
num_mel_bins: int = 80,
perturb_speed: bool = False,
whisper_fbank: bool = False,
output_dir: str = "data/fbank",
):
src_dir = Path("data/manifests")
output_dir = Path(output_dir)
num_jobs = min(15, os.cpu_count())
dataset_parts = (
"train",
"valid",
"test",
)
prefix = "mdcc"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
if whisper_fbank:
extractor = WhisperFbank(
WhisperFbankConfig(num_filters=num_mel_bins, device="cuda")
)
else:
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition and perturb_speed:
logging.info("Doing speed perturb")
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--num-mel-bins",
type=int,
default=80,
help="""The number of mel bins for Fbank""",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
parser.add_argument(
"--whisper-fbank",
type=str2bool,
default=False,
help="Use WhisperFbank instead of Fbank. Default: False.",
)
parser.add_argument(
"--output-dir",
type=str,
default="data/fbank",
help="Output directory. Default: data/fbank.",
)
return parser.parse_args()
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_mdcc(
num_mel_bins=args.num_mel_bins,
perturb_speed=args.perturb_speed,
whisper_fbank=args.whisper_fbank,
output_dir=args.output_dir,
)

View File

@ -0,0 +1 @@
../../../aishell/ASR/local/prepare_char.py

View File

@ -0,0 +1 @@
../../../aishell/ASR/local/prepare_char_lm_training_data.py

View File

@ -0,0 +1 @@
../../../aishell/ASR/local/prepare_lang.py

View File

@ -0,0 +1,124 @@
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes a text file "data/lang_char/text" as input, the file consist of
lines each containing a transcript, applies text norm and generates the following
files in the directory "data/lang_char":
- text_norm
- words.txt
- words_no_ids.txt
- text_words_segmentation
"""
import argparse
from pathlib import Path
from typing import List
import pycantonese
from tqdm.auto import tqdm
def get_parser():
parser = argparse.ArgumentParser(
description="Prepare char lexicon",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--input-file",
"-i",
default="data/lang_char/text",
type=str,
help="The input text file",
)
parser.add_argument(
"--output-dir",
"-o",
default="data/lang_char",
type=str,
help="The output directory",
)
return parser
def get_norm_lines(lines: List[str]) -> List[str]:
def _text_norm(text: str) -> str:
# to cope with the protocol for transcription:
# When taking notes, the annotators adhere to the following guidelines:
# 1) If the audio contains pure music, the annotators mark the label
# "(music)" in the file name of its transcript. 2) If the utterance
# contains one or several sentences with background music or noise, the
# annotators mark the label "(music)" before each sentence in the transcript.
# 3) The annotators use {} symbols to enclose words they are uncertain
# about, for example, {梁佳佳},我是{}人.
return (
text.strip()
.replace("(music)", "")
.replace("(music", "")
.replace("{", "")
.replace("}", "")
)
return [_text_norm(line) for line in lines]
def get_word_segments(lines: List[str]) -> List[str]:
return [
" ".join(pycantonese.segment(line)) + "\n"
for line in tqdm(lines, desc="Segmenting lines")
]
def get_words(lines: List[str]) -> List[str]:
words = set()
for line in tqdm(lines, desc="Getting words"):
words.update(pycantonese.segment(line))
return list(words)
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
input_file = Path(args.input_file)
output_dir = Path(args.output_dir)
assert output_dir.is_dir(), f"{output_dir} does not exist"
assert input_file.is_file(), f"{input_file} does not exist"
lines = input_file.read_text(encoding="utf-8").strip().split("\n")
norm_lines = get_norm_lines(lines)
with open(output_dir / "text_norm", "w+", encoding="utf-8") as f:
f.writelines([line + "\n" for line in norm_lines])
words = get_words(norm_lines)
with open(output_dir / "words_no_ids.txt", "w+", encoding="utf-8") as f:
f.writelines([word + "\n" for word in sorted(words)])
words = (
["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>"]
+ sorted(words)
+ ["#0", "<s>", "<\s>"]
)
with open(output_dir / "words.txt", "w+", encoding="utf-8") as f:
f.writelines([f"{word} {i}\n" for i, word in enumerate(words)])
text_words_segments = get_word_segments(norm_lines)
with open(output_dir / "text_words_segmentation", "w+", encoding="utf-8") as f:
f.writelines(text_words_segments)

View File

@ -0,0 +1,86 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
# 2022 Xiaomi Corp. (authors: Weiji Zhuang)
# 2024 Xiaomi Corp. (authors: Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input "text", which refers to the transcript file for
MDCC:
- text
and generates the output file text_word_segmentation which is implemented
with word segmenting:
- text_words_segmentation
"""
import argparse
from typing import List
import pycantonese
from tqdm.auto import tqdm
def get_parser():
parser = argparse.ArgumentParser(
description="Cantonese Word Segmentation for text",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--input-file",
"-i",
default="data/lang_char/text",
type=str,
help="the input text file for MDCC",
)
parser.add_argument(
"--output-file",
"-o",
default="data/lang_char/text_words_segmentation",
type=str,
help="the text implemented with words segmenting for MDCC",
)
return parser
def get_word_segments(lines: List[str]) -> List[str]:
return [
" ".join(pycantonese.segment(line)) + "\n"
for line in tqdm(lines, desc="Segmenting lines")
]
def main():
parser = get_parser()
args = parser.parse_args()
input_file = args.input_file
output_file = args.output_file
with open(input_file, "r", encoding="utf-8") as fr:
lines = fr.readlines()
new_lines = get_word_segments(lines)
with open(output_file, "w", encoding="utf-8") as fw:
fw.writelines(new_lines)
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../aidatatang_200zh/ASR/local/text2token.py

304
egs/mdcc/ASR/prepare.sh Normal file
View File

@ -0,0 +1,304 @@
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
stage=-1
stop_stage=100
perturb_speed=true
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/mdcc
# |-- README.md
# |-- audio/
# |-- clip_info_rthk.csv
# |-- cnt_asr_metadata_full.csv
# |-- cnt_asr_test_metadata.csv
# |-- cnt_asr_train_metadata.csv
# |-- cnt_asr_valid_metadata.csv
# |-- data_statistic.py
# |-- length
# |-- podcast_447_2021.csv
# |-- test.txt
# |-- transcription/
# `-- words_length
# You can download them from:
# https://drive.google.com/file/d/1epfYMMhXdBKA6nxPgUugb2Uj4DllSxkn/view?usp=drive_link
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "stage 0: Download data"
# If you have pre-downloaded it to /path/to/mdcc,
# you can create a symlink
#
# ln -sfv /path/to/mdcc $dl_dir/mdcc
#
# The directory structure is
# mdcc/
# |-- README.md
# |-- audio/
# |-- clip_info_rthk.csv
# |-- cnt_asr_metadata_full.csv
# |-- cnt_asr_test_metadata.csv
# |-- cnt_asr_train_metadata.csv
# |-- cnt_asr_valid_metadata.csv
# |-- data_statistic.py
# |-- length
# |-- podcast_447_2021.csv
# |-- test.txt
# |-- transcription/
# `-- words_length
if [ ! -d $dl_dir/mdcc/audio ]; then
lhotse download mdcc $dl_dir
# this will download and unzip dataset.zip to $dl_dir/
mv $dl_dir/dataset $dl_dir/mdcc
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/musan
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare MDCC manifest"
# We assume that you have downloaded the MDCC corpus
# to $dl_dir/mdcc
if [ ! -f data/manifests/.mdcc_manifests.done ]; then
mkdir -p data/manifests
lhotse prepare mdcc $dl_dir/mdcc data/manifests
touch data/manifests/.mdcc_manifests.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
if [ ! -f data/manifests/.musan_manifests.done ]; then
log "It may take 6 minutes"
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan_manifests.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for MDCC"
if [ ! -f data/fbank/.mdcc.done ]; then
mkdir -p data/fbank
./local/compute_fbank_mdcc.py --perturb-speed ${perturb_speed}
touch data/fbank/.mdcc.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
if [ ! -f data/fbank/.msuan.done ]; then
mkdir -p data/fbank
./local/compute_fbank_musan.py
touch data/fbank/.msuan.done
fi
fi
lang_char_dir=data/lang_char
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare char based lang"
mkdir -p $lang_char_dir
# Prepare text.
# Note: in Linux, you can install jq with the following command:
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
# 2. chmod +x ./jq
# 3. cp jq /usr/bin
if [ ! -f $lang_char_dir/text ]; then
gunzip -c data/manifests/mdcc_supervisions_train.jsonl.gz \
|jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \
> $lang_char_dir/train_text
cat $lang_char_dir/train_text > $lang_char_dir/text
gunzip -c data/manifests/mdcc_supervisions_test.jsonl.gz \
|jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \
> $lang_char_dir/valid_text
cat $lang_char_dir/valid_text >> $lang_char_dir/text
gunzip -c data/manifests/mdcc_supervisions_valid.jsonl.gz \
|jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \
> $lang_char_dir/test_text
cat $lang_char_dir/test_text >> $lang_char_dir/text
fi
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
./local/preprocess_mdcc.py --input-file $lang_char_dir/text \
--output-dir $lang_char_dir
fi
if [ ! -f $lang_char_dir/tokens.txt ]; then
./local/prepare_char.py --lang-dir $lang_char_dir
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare G"
mkdir -p data/lm
# Train LM on transcripts
if [ ! -f data/lm/3-gram.unpruned.arpa ]; then
python3 ./shared/make_kn_lm.py \
-ngram-order 3 \
-text $lang_char_dir/text_words_segmentation \
-lm data/lm/3-gram.unpruned.arpa
fi
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="$lang_char_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_char.fst.txt
fi
if [ ! -f $lang_char_dir/HLG.fst ]; then
./local/prepare_lang_fst.py \
--lang-dir $lang_char_dir \
--ngram-G ./data/lm/G_3_gram_char.fst.txt
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compile LG & HLG"
./local/compile_hlg.py --lang-dir $lang_char_dir --lm G_3_gram_char
./local/compile_lg.py --lang-dir $lang_char_dir --lm G_3_gram_char
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Generate LM training data"
log "Processing char based data"
out_dir=data/lm_training_char
mkdir -p $out_dir $dl_dir/lm
if [ ! -f $dl_dir/lm/mdcc-train-word.txt ]; then
./local/text2segments.py --input-file $lang_char_dir/train_text \
--output-file $dl_dir/lm/mdcc-train-word.txt
fi
# training words
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/mdcc-train-word.txt \
--lm-archive $out_dir/lm_data.pt
# valid words
if [ ! -f $dl_dir/lm/mdcc-valid-word.txt ]; then
./local/text2segments.py --input-file $lang_char_dir/valid_text \
--output-file $dl_dir/lm/mdcc-valid-word.txt
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/mdcc-valid-word.txt \
--lm-archive $out_dir/lm_data_valid.pt
# test words
if [ ! -f $dl_dir/lm/mdcc-test-word.txt ]; then
./local/text2segments.py --input-file $lang_char_dir/test_text \
--output-file $dl_dir/lm/mdcc-test-word.txt
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/mdcc-test-word.txt \
--lm-archive $out_dir/lm_data_test.pt
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Sort LM training data"
# Sort LM training data by sentence length in descending order
# for ease of training.
#
# Sentence length equals to the number of tokens
# in a sentence.
out_dir=data/lm_training_char
mkdir -p $out_dir
ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data.pt \
--out-lm-data $out_dir/sorted_lm_data.pt \
--out-statistics $out_dir/statistics.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data_valid.pt \
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
--out-statistics $out_dir/statistics-valid.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data_test.pt \
--out-lm-data $out_dir/sorted_lm_data-test.pt \
--out-statistics $out_dir/statistics-test.txt
fi
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 12: Train RNN LM model"
python ../../../icefall/rnn_lm/train.py \
--start-epoch 0 \
--world-size 1 \
--num-epochs 20 \
--use-fp16 0 \
--embedding-dim 512 \
--hidden-dim 512 \
--num-layers 2 \
--batch-size 400 \
--exp-dir rnnlm_char/exp \
--lm-data $out_dir/sorted_lm_data.pt \
--lm-data-valid $out_dir/sorted_lm_data-valid.pt \
--vocab-size 4336 \
--master-port 12345
fi

1
egs/mdcc/ASR/shared Symbolic link
View File

@ -0,0 +1 @@
../../../icefall/shared/

View File

@ -14,4 +14,7 @@ onnxruntime==1.16.3
# style check session:
black==22.3.0
isort==5.10.1
flake8==5.0.4
flake8==5.0.4
# cantonese word segment support
pycantonese==3.4.0