mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-09 17:14:20 +00:00
update the biasing lists
This commit is contained in:
parent
bbf1577818
commit
81af525de4
@ -1,17 +1,30 @@
|
||||
from typing import Dict
|
||||
from typing import Dict, List, Tuple, TextIO, Union, Iterable
|
||||
import ast
|
||||
from collections import defaultdict
|
||||
from lhotse import load_manifest, load_manifest_lazy
|
||||
from lhotse.cut import Cut, CutSet
|
||||
from text_normalization import remove_non_alphabetic
|
||||
from tqdm import tqdm
|
||||
import os
|
||||
|
||||
import kaldialign
|
||||
import logging
|
||||
|
||||
def get_facebook_biasing_list(
|
||||
test_set: str,
|
||||
use_distractors: bool = False,
|
||||
num_distractors: int = 100,
|
||||
) -> Dict:
|
||||
assert num_distractors in (100,500,1000,2000), num_distractors
|
||||
# Get the biasing list from the meta paper: https://arxiv.org/pdf/2104.02194.pdf
|
||||
assert num_distractors in (0, 100,500,1000,2000), num_distractors
|
||||
if num_distractors == 0:
|
||||
if test_set == "test-clean":
|
||||
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_100.tsv"
|
||||
elif test_set == "test-other":
|
||||
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-other.biasing_100.tsv"
|
||||
else:
|
||||
raise ValueError(f"Unseen test set {test_set}")
|
||||
else:
|
||||
if test_set == "test-clean":
|
||||
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_{num_distractors}.tsv"
|
||||
elif test_set == "test-other":
|
||||
@ -35,7 +48,28 @@ def get_facebook_biasing_list(
|
||||
|
||||
return output
|
||||
|
||||
def brian_biasing_list(level: str):
|
||||
# The biasing list from Brian's paper: https://arxiv.org/pdf/2109.00627.pdf
|
||||
import glob
|
||||
root_dir = f"data/context_biasing/LibriSpeechBiasingLists/{level}Level"
|
||||
all_files = glob.glob(root_dir + "/*")
|
||||
biasing_dict = {}
|
||||
for f in all_files:
|
||||
k = f.split('/')[-1]
|
||||
fin = open(f, 'r')
|
||||
data = fin.read().strip().split()
|
||||
biasing_dict[k] = " ".join(data)
|
||||
fin.close()
|
||||
|
||||
return biasing_dict
|
||||
|
||||
def get_rare_words(subset: str, min_count: int):
|
||||
"""Get a list of rare words appearing less than `min_count` times
|
||||
|
||||
Args:
|
||||
subset:
|
||||
min_count (int): Count of appearance
|
||||
"""
|
||||
txt_path = f"data/tmp/transcript_words_{subset}.txt"
|
||||
rare_word_file = f"data/context_biasing/{subset}_rare_words_{min_count}.txt"
|
||||
|
||||
@ -59,12 +93,13 @@ def get_rare_words(subset: str, min_count: int):
|
||||
|
||||
with open(count_file, 'w') as fout:
|
||||
for w in word_count:
|
||||
fout.write(f"{w}\t{word_count[w]}")
|
||||
fout.write(f"{w}\t{word_count[w]}\n")
|
||||
else:
|
||||
word_count = {}
|
||||
with open(count_file, 'r') as fin:
|
||||
word_count = fin.read().split('\n')
|
||||
word_count = [pair.split() for pair in word_count]
|
||||
word_count = fin.read().strip().split('\n')
|
||||
word_count = [pair.split('\t') for pair in word_count]
|
||||
word_count = sorted(word_count, key=lambda w: int(w[1]), reverse=True)
|
||||
|
||||
print(f"A total of {len(word_count)} words appeared!")
|
||||
rare_words = []
|
||||
@ -77,6 +112,13 @@ def get_rare_words(subset: str, min_count: int):
|
||||
f.writelines(rare_words)
|
||||
|
||||
def add_context_list_to_manifest(subset: str, min_count: int):
|
||||
"""Generate a context list of rare words for each utterance in the manifest
|
||||
|
||||
Args:
|
||||
subset (str): Subset
|
||||
min_count (int): The min appearances
|
||||
|
||||
"""
|
||||
rare_words_file = f"data/context_biasing/{subset}_rare_words_{min_count}.txt"
|
||||
manifest_dir = f"data/fbank/libriheavy_cuts_{subset}.jsonl.gz"
|
||||
|
||||
@ -111,7 +153,7 @@ def add_context_list_to_manifest(subset: str, min_count: int):
|
||||
|
||||
|
||||
def check(subset: str, min_count: int):
|
||||
#manifest_dir = f"data/fbank/libriheavy_cuts_{subset}_with_context_list_min_count_{min_count}.jsonl.gz"
|
||||
# Used to show how many samples in the training set have a context list
|
||||
print("Calculating the stats over the manifest")
|
||||
manifest_dir = f"data/fbank/libriheavy_cuts_{subset}_with_context_list_min_count_{min_count}.jsonl.gz"
|
||||
cuts = load_manifest_lazy(manifest_dir)
|
||||
@ -121,11 +163,218 @@ def check(subset: str, min_count: int):
|
||||
print(f"{sum(has_context_list)}/{total_cuts} cuts have context list! ")
|
||||
print(f"Average length of non-empty context list is {sum(context_list_len)/sum(has_context_list)}")
|
||||
|
||||
|
||||
def write_error_stats(
|
||||
f: TextIO,
|
||||
test_set_name: str,
|
||||
results: List[Tuple[str, str]],
|
||||
enable_log: bool = True,
|
||||
compute_CER: bool = False,
|
||||
biasing_words: List[str] = None,
|
||||
) -> float:
|
||||
"""Write statistics based on predicted results and reference transcripts. It also calculates the
|
||||
biasing word error rate as described in https://arxiv.org/pdf/2104.02194.pdf
|
||||
|
||||
It will write the following to the given file:
|
||||
|
||||
- WER
|
||||
- number of insertions, deletions, substitutions, corrects and total
|
||||
reference words. For example::
|
||||
|
||||
Errors: 23 insertions, 57 deletions, 212 substitutions, over 2606
|
||||
reference words (2337 correct)
|
||||
|
||||
- The difference between the reference transcript and predicted result.
|
||||
An instance is given below::
|
||||
|
||||
THE ASSOCIATION OF (EDISON->ADDISON) ILLUMINATING COMPANIES
|
||||
|
||||
The above example shows that the reference word is `EDISON`,
|
||||
but it is predicted to `ADDISON` (a substitution error).
|
||||
|
||||
Another example is::
|
||||
|
||||
FOR THE FIRST DAY (SIR->*) I THINK
|
||||
|
||||
The reference word `SIR` is missing in the predicted
|
||||
results (a deletion error).
|
||||
results:
|
||||
An iterable of tuples. The first element is the cut_id, the second is
|
||||
the reference transcript and the third element is the predicted result.
|
||||
enable_log:
|
||||
If True, also print detailed WER to the console.
|
||||
Otherwise, it is written only to the given file.
|
||||
biasing_words:
|
||||
All the words in the biasing list
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
subs: Dict[Tuple[str, str], int] = defaultdict(int)
|
||||
ins: Dict[str, int] = defaultdict(int)
|
||||
dels: Dict[str, int] = defaultdict(int)
|
||||
|
||||
# `words` stores counts per word, as follows:
|
||||
# corr, ref_sub, hyp_sub, ins, dels
|
||||
words: Dict[str, List[int]] = defaultdict(lambda: [0, 0, 0, 0, 0])
|
||||
num_corr = 0
|
||||
ERR = "*"
|
||||
|
||||
if compute_CER:
|
||||
for i, res in enumerate(results):
|
||||
cut_id, ref, hyp = res
|
||||
ref = list("".join(ref))
|
||||
hyp = list("".join(hyp))
|
||||
results[i] = (cut_id, ref, hyp)
|
||||
|
||||
for cut_id, ref, hyp in results:
|
||||
ali = kaldialign.align(ref, hyp, ERR)
|
||||
for ref_word, hyp_word in ali:
|
||||
if ref_word == ERR: # INSERTION
|
||||
ins[hyp_word] += 1
|
||||
words[hyp_word][3] += 1
|
||||
elif hyp_word == ERR: # DELETION
|
||||
dels[ref_word] += 1
|
||||
words[ref_word][4] += 1
|
||||
elif hyp_word != ref_word: # SUBSTITUTION
|
||||
subs[(ref_word, hyp_word)] += 1
|
||||
words[ref_word][1] += 1
|
||||
words[hyp_word][2] += 1
|
||||
else:
|
||||
words[ref_word][0] += 1
|
||||
num_corr += 1
|
||||
ref_len = sum([len(r) for _, r, _ in results])
|
||||
sub_errs = sum(subs.values())
|
||||
ins_errs = sum(ins.values())
|
||||
del_errs = sum(dels.values())
|
||||
tot_errs = sub_errs + ins_errs + del_errs
|
||||
tot_err_rate = "%.2f" % (100.0 * tot_errs / ref_len)
|
||||
|
||||
if enable_log:
|
||||
logging.info(
|
||||
f"[{test_set_name}] %WER {tot_errs / ref_len:.2%} "
|
||||
f"[{tot_errs} / {ref_len}, {ins_errs} ins, "
|
||||
f"{del_errs} del, {sub_errs} sub ]"
|
||||
)
|
||||
|
||||
print(f"%WER = {tot_err_rate}", file=f)
|
||||
print(
|
||||
f"Errors: {ins_errs} insertions, {del_errs} deletions, "
|
||||
f"{sub_errs} substitutions, over {ref_len} reference "
|
||||
f"words ({num_corr} correct)",
|
||||
file=f,
|
||||
)
|
||||
print(
|
||||
"Search below for sections starting with PER-UTT DETAILS:, "
|
||||
"SUBSTITUTIONS:, DELETIONS:, INSERTIONS:, PER-WORD STATS:",
|
||||
file=f,
|
||||
)
|
||||
|
||||
print("", file=f)
|
||||
print("PER-UTT DETAILS: corr or (ref->hyp) ", file=f)
|
||||
for cut_id, ref, hyp in results:
|
||||
ali = kaldialign.align(ref, hyp, ERR)
|
||||
combine_successive_errors = True
|
||||
if combine_successive_errors:
|
||||
ali = [[[x], [y]] for x, y in ali]
|
||||
for i in range(len(ali) - 1):
|
||||
if ali[i][0] != ali[i][1] and ali[i + 1][0] != ali[i + 1][1]:
|
||||
ali[i + 1][0] = ali[i][0] + ali[i + 1][0]
|
||||
ali[i + 1][1] = ali[i][1] + ali[i + 1][1]
|
||||
ali[i] = [[], []]
|
||||
ali = [
|
||||
[
|
||||
list(filter(lambda a: a != ERR, x)),
|
||||
list(filter(lambda a: a != ERR, y)),
|
||||
]
|
||||
for x, y in ali
|
||||
]
|
||||
ali = list(filter(lambda x: x != [[], []], ali))
|
||||
ali = [
|
||||
[
|
||||
ERR if x == [] else " ".join(x),
|
||||
ERR if y == [] else " ".join(y),
|
||||
]
|
||||
for x, y in ali
|
||||
]
|
||||
|
||||
print(
|
||||
f"{cut_id}:\t"
|
||||
+ " ".join(
|
||||
(
|
||||
ref_word
|
||||
if ref_word == hyp_word
|
||||
else f"({ref_word}->{hyp_word})"
|
||||
for ref_word, hyp_word in ali
|
||||
)
|
||||
),
|
||||
file=f,
|
||||
)
|
||||
|
||||
print("", file=f)
|
||||
print("SUBSTITUTIONS: count ref -> hyp", file=f)
|
||||
|
||||
for count, (ref, hyp) in sorted(
|
||||
[(v, k) for k, v in subs.items()], reverse=True
|
||||
):
|
||||
print(f"{count} {ref} -> {hyp}", file=f)
|
||||
|
||||
print("", file=f)
|
||||
print("DELETIONS: count ref", file=f)
|
||||
for count, ref in sorted([(v, k) for k, v in dels.items()], reverse=True):
|
||||
print(f"{count} {ref}", file=f)
|
||||
|
||||
print("", file=f)
|
||||
print("INSERTIONS: count hyp", file=f)
|
||||
for count, hyp in sorted([(v, k) for k, v in ins.items()], reverse=True):
|
||||
print(f"{count} {hyp}", file=f)
|
||||
|
||||
unbiased_word_counts = 0
|
||||
unbiased_word_errs = 0
|
||||
biased_word_counts = 0
|
||||
biased_word_errs = 0
|
||||
|
||||
print("", file=f)
|
||||
print(
|
||||
"PER-WORD STATS: word corr tot_errs count_in_ref count_in_hyp", file=f
|
||||
)
|
||||
|
||||
for _, word, counts in sorted(
|
||||
[(sum(v[1:]), k, v) for k, v in words.items()], reverse=True
|
||||
):
|
||||
(corr, ref_sub, hyp_sub, ins, dels) = counts
|
||||
tot_errs = ref_sub + hyp_sub + ins + dels
|
||||
# number of appearances of "word" in reference text
|
||||
ref_count = corr + ref_sub + dels # correct + in ref but got substituted + deleted
|
||||
# number of appearances of "word" in hyp text
|
||||
hyp_count = corr + hyp_sub + ins
|
||||
|
||||
|
||||
if biasing_words is not None:
|
||||
if word in biasing_words:
|
||||
biased_word_counts += ref_count
|
||||
biased_word_errs += (ins + dels + ref_sub)
|
||||
else:
|
||||
unbiased_word_counts += ref_count
|
||||
unbiased_word_errs += (ins + dels + hyp_sub)
|
||||
|
||||
print(f"{word} {corr} {tot_errs} {ref_count} {hyp_count}", file=f)
|
||||
|
||||
if biasing_words is not None:
|
||||
B_WER = "%.2f" % (100 *biased_word_errs/biased_word_counts)
|
||||
U_WER = "%.2f" % (100 *unbiased_word_errs/unbiased_word_counts)
|
||||
logging.info(f"Biased WER: {B_WER} [{biased_word_errs}/{biased_word_counts}] ")
|
||||
logging.info(f"Un-biased WER: {U_WER} [{unbiased_word_errs}/{unbiased_word_counts}]")
|
||||
|
||||
|
||||
return float(tot_err_rate)
|
||||
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
#test_set = "test-clean"
|
||||
#get_facebook_biasing_list(test_set)
|
||||
subset = "medium"
|
||||
min_count = 10
|
||||
min_count = 460
|
||||
#get_rare_words(subset, min_count)
|
||||
#add_context_list_to_manifest(subset=subset, min_count=min_count)
|
||||
add_context_list_to_manifest(subset=subset, min_count=min_count)
|
||||
check(subset=subset, min_count=min_count)
|
Loading…
x
Reference in New Issue
Block a user