2023-09-08 10:15:21 +08:00

380 lines
13 KiB
Python

from typing import Dict, List, Tuple, TextIO, Union, Iterable
import ast
from collections import defaultdict
from lhotse import load_manifest, load_manifest_lazy
from lhotse.cut import Cut, CutSet
from text_normalization import remove_non_alphabetic
from tqdm import tqdm
import os
import kaldialign
import logging
def get_facebook_biasing_list(
test_set: str,
use_distractors: bool = False,
num_distractors: int = 100,
) -> Dict:
# Get the biasing list from the meta paper: https://arxiv.org/pdf/2104.02194.pdf
assert num_distractors in (0, 100,500,1000,2000), num_distractors
if num_distractors == 0:
if test_set == "test-clean":
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_100.tsv"
elif test_set == "test-other":
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-other.biasing_100.tsv"
else:
raise ValueError(f"Unseen test set {test_set}")
else:
if test_set == "test-clean":
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_{num_distractors}.tsv"
elif test_set == "test-other":
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-other.biasing_{num_distractors}.tsv"
else:
raise ValueError(f"Unseen test set {test_set}")
f = open(biasing_file, 'r')
data = f.readlines()
f.close()
output = dict()
for line in data:
id, _, l1, l2 = line.split('\t')
if use_distractors:
biasing_list = ast.literal_eval(l2)
else:
biasing_list = ast.literal_eval(l1)
biasing_list = [w.strip().upper() for w in biasing_list]
output[id] = " ".join(biasing_list)
return output
def brian_biasing_list(level: str):
# The biasing list from Brian's paper: https://arxiv.org/pdf/2109.00627.pdf
import glob
root_dir = f"data/context_biasing/LibriSpeechBiasingLists/{level}Level"
all_files = glob.glob(root_dir + "/*")
biasing_dict = {}
for f in all_files:
k = f.split('/')[-1]
fin = open(f, 'r')
data = fin.read().strip().split()
biasing_dict[k] = " ".join(data)
fin.close()
return biasing_dict
def get_rare_words(subset: str, min_count: int):
"""Get a list of rare words appearing less than `min_count` times
Args:
subset:
min_count (int): Count of appearance
"""
txt_path = f"data/tmp/transcript_words_{subset}.txt"
rare_word_file = f"data/context_biasing/{subset}_rare_words_{min_count}.txt"
if os.path.exists(rare_word_file):
print("File exists, do not proceed!")
return
print(f"Finding rare words in the manifest.")
count_file = f"data/tmp/transcript_words_{subset}_count.txt"
if not os.path.exists(count_file):
with open(txt_path, "r") as file:
words = file.read().upper().split()
word_count = {}
for word in words:
word = remove_non_alphabetic(word, strict=False)
word = word.split()
for w in word:
if w not in word_count:
word_count[w] = 1
else:
word_count[w] += 1
with open(count_file, 'w') as fout:
for w in word_count:
fout.write(f"{w}\t{word_count[w]}\n")
else:
word_count = {}
with open(count_file, 'r') as fin:
word_count = fin.read().strip().split('\n')
word_count = [pair.split('\t') for pair in word_count]
word_count = sorted(word_count, key=lambda w: int(w[1]), reverse=True)
print(f"A total of {len(word_count)} words appeared!")
rare_words = []
for k in word_count:
if int(word_count[k]) <= min_count:
rare_words.append(k+"\n")
print(f"A total of {len(rare_words)} appeared <= {min_count} times")
with open(rare_word_file, 'w') as f:
f.writelines(rare_words)
def add_context_list_to_manifest(subset: str, min_count: int):
"""Generate a context list of rare words for each utterance in the manifest
Args:
subset (str): Subset
min_count (int): The min appearances
"""
rare_words_file = f"data/context_biasing/{subset}_rare_words_{min_count}.txt"
manifest_dir = f"data/fbank/libriheavy_cuts_{subset}.jsonl.gz"
target_manifest_dir = manifest_dir.replace(".jsonl.gz", f"_with_context_list_min_count_{min_count}.jsonl.gz")
if os.path.exists(target_manifest_dir):
print(f"Target file exits at {target_manifest_dir}!")
return
print(f"Reading rare words from {rare_words_file}")
with open(rare_words_file, "r") as f:
rare_words = f.read()
rare_words = rare_words.split("\n")
rare_words = set(rare_words)
print(f"A total of {len(rare_words)} rare words!")
cuts = load_manifest_lazy(manifest_dir)
print(f"Loaded manifest from {manifest_dir}")
def _add_context(c: Cut):
splits = remove_non_alphabetic(c.supervisions[0].texts[0], strict=False).upper().split()
found = []
for w in splits:
if w in rare_words:
found.append(w)
c.supervisions[0].context_list = " ".join(found)
return c
cuts = cuts.map(_add_context)
cuts.to_file(target_manifest_dir)
print(f"Saved manifest with context list to {target_manifest_dir}")
def check(subset: str, min_count: int):
# Used to show how many samples in the training set have a context list
print("Calculating the stats over the manifest")
manifest_dir = f"data/fbank/libriheavy_cuts_{subset}_with_context_list_min_count_{min_count}.jsonl.gz"
cuts = load_manifest_lazy(manifest_dir)
total_cuts = len(cuts)
has_context_list = [c.supervisions[0].context_list != "" for c in cuts]
context_list_len = [len(c.supervisions[0].context_list.split()) for c in cuts]
print(f"{sum(has_context_list)}/{total_cuts} cuts have context list! ")
print(f"Average length of non-empty context list is {sum(context_list_len)/sum(has_context_list)}")
def write_error_stats(
f: TextIO,
test_set_name: str,
results: List[Tuple[str, str]],
enable_log: bool = True,
compute_CER: bool = False,
biasing_words: List[str] = None,
) -> float:
"""Write statistics based on predicted results and reference transcripts. It also calculates the
biasing word error rate as described in https://arxiv.org/pdf/2104.02194.pdf
It will write the following to the given file:
- WER
- number of insertions, deletions, substitutions, corrects and total
reference words. For example::
Errors: 23 insertions, 57 deletions, 212 substitutions, over 2606
reference words (2337 correct)
- The difference between the reference transcript and predicted result.
An instance is given below::
THE ASSOCIATION OF (EDISON->ADDISON) ILLUMINATING COMPANIES
The above example shows that the reference word is `EDISON`,
but it is predicted to `ADDISON` (a substitution error).
Another example is::
FOR THE FIRST DAY (SIR->*) I THINK
The reference word `SIR` is missing in the predicted
results (a deletion error).
results:
An iterable of tuples. The first element is the cut_id, the second is
the reference transcript and the third element is the predicted result.
enable_log:
If True, also print detailed WER to the console.
Otherwise, it is written only to the given file.
biasing_words:
All the words in the biasing list
Returns:
Return None.
"""
subs: Dict[Tuple[str, str], int] = defaultdict(int)
ins: Dict[str, int] = defaultdict(int)
dels: Dict[str, int] = defaultdict(int)
# `words` stores counts per word, as follows:
# corr, ref_sub, hyp_sub, ins, dels
words: Dict[str, List[int]] = defaultdict(lambda: [0, 0, 0, 0, 0])
num_corr = 0
ERR = "*"
if compute_CER:
for i, res in enumerate(results):
cut_id, ref, hyp = res
ref = list("".join(ref))
hyp = list("".join(hyp))
results[i] = (cut_id, ref, hyp)
for cut_id, ref, hyp in results:
ali = kaldialign.align(ref, hyp, ERR)
for ref_word, hyp_word in ali:
if ref_word == ERR: # INSERTION
ins[hyp_word] += 1
words[hyp_word][3] += 1
elif hyp_word == ERR: # DELETION
dels[ref_word] += 1
words[ref_word][4] += 1
elif hyp_word != ref_word: # SUBSTITUTION
subs[(ref_word, hyp_word)] += 1
words[ref_word][1] += 1
words[hyp_word][2] += 1
else:
words[ref_word][0] += 1
num_corr += 1
ref_len = sum([len(r) for _, r, _ in results])
sub_errs = sum(subs.values())
ins_errs = sum(ins.values())
del_errs = sum(dels.values())
tot_errs = sub_errs + ins_errs + del_errs
tot_err_rate = "%.2f" % (100.0 * tot_errs / ref_len)
if enable_log:
logging.info(
f"[{test_set_name}] %WER {tot_errs / ref_len:.2%} "
f"[{tot_errs} / {ref_len}, {ins_errs} ins, "
f"{del_errs} del, {sub_errs} sub ]"
)
print(f"%WER = {tot_err_rate}", file=f)
print(
f"Errors: {ins_errs} insertions, {del_errs} deletions, "
f"{sub_errs} substitutions, over {ref_len} reference "
f"words ({num_corr} correct)",
file=f,
)
print(
"Search below for sections starting with PER-UTT DETAILS:, "
"SUBSTITUTIONS:, DELETIONS:, INSERTIONS:, PER-WORD STATS:",
file=f,
)
print("", file=f)
print("PER-UTT DETAILS: corr or (ref->hyp) ", file=f)
for cut_id, ref, hyp in results:
ali = kaldialign.align(ref, hyp, ERR)
combine_successive_errors = True
if combine_successive_errors:
ali = [[[x], [y]] for x, y in ali]
for i in range(len(ali) - 1):
if ali[i][0] != ali[i][1] and ali[i + 1][0] != ali[i + 1][1]:
ali[i + 1][0] = ali[i][0] + ali[i + 1][0]
ali[i + 1][1] = ali[i][1] + ali[i + 1][1]
ali[i] = [[], []]
ali = [
[
list(filter(lambda a: a != ERR, x)),
list(filter(lambda a: a != ERR, y)),
]
for x, y in ali
]
ali = list(filter(lambda x: x != [[], []], ali))
ali = [
[
ERR if x == [] else " ".join(x),
ERR if y == [] else " ".join(y),
]
for x, y in ali
]
print(
f"{cut_id}:\t"
+ " ".join(
(
ref_word
if ref_word == hyp_word
else f"({ref_word}->{hyp_word})"
for ref_word, hyp_word in ali
)
),
file=f,
)
print("", file=f)
print("SUBSTITUTIONS: count ref -> hyp", file=f)
for count, (ref, hyp) in sorted(
[(v, k) for k, v in subs.items()], reverse=True
):
print(f"{count} {ref} -> {hyp}", file=f)
print("", file=f)
print("DELETIONS: count ref", file=f)
for count, ref in sorted([(v, k) for k, v in dels.items()], reverse=True):
print(f"{count} {ref}", file=f)
print("", file=f)
print("INSERTIONS: count hyp", file=f)
for count, hyp in sorted([(v, k) for k, v in ins.items()], reverse=True):
print(f"{count} {hyp}", file=f)
unbiased_word_counts = 0
unbiased_word_errs = 0
biased_word_counts = 0
biased_word_errs = 0
print("", file=f)
print(
"PER-WORD STATS: word corr tot_errs count_in_ref count_in_hyp", file=f
)
for _, word, counts in sorted(
[(sum(v[1:]), k, v) for k, v in words.items()], reverse=True
):
(corr, ref_sub, hyp_sub, ins, dels) = counts
tot_errs = ref_sub + hyp_sub + ins + dels
# number of appearances of "word" in reference text
ref_count = corr + ref_sub + dels # correct + in ref but got substituted + deleted
# number of appearances of "word" in hyp text
hyp_count = corr + hyp_sub + ins
if biasing_words is not None:
if word in biasing_words:
biased_word_counts += ref_count
biased_word_errs += (ins + dels + ref_sub)
else:
unbiased_word_counts += ref_count
unbiased_word_errs += (ins + dels + hyp_sub)
print(f"{word} {corr} {tot_errs} {ref_count} {hyp_count}", file=f)
if biasing_words is not None:
B_WER = "%.2f" % (100 *biased_word_errs/biased_word_counts)
U_WER = "%.2f" % (100 *unbiased_word_errs/unbiased_word_counts)
logging.info(f"Biased WER: {B_WER} [{biased_word_errs}/{biased_word_counts}] ")
logging.info(f"Un-biased WER: {U_WER} [{unbiased_word_errs}/{unbiased_word_counts}]")
return float(tot_err_rate)
if __name__=="__main__":
#test_set = "test-clean"
#get_facebook_biasing_list(test_set)
subset = "medium"
min_count = 460
#get_rare_words(subset, min_count)
add_context_list_to_manifest(subset=subset, min_count=min_count)
check(subset=subset, min_count=min_count)