Finish preparing training datasets.

This commit is contained in:
Fangjun Kuang 2022-02-16 12:27:48 +08:00
parent fb1e2ffdc1
commit 7cbd6d11ba
5 changed files with 305 additions and 37 deletions

View File

@ -0,0 +1,109 @@
#!/usr/bin/env bash
set -eou pipefail
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/GigaSpeech
# You can find audio, dict, GigaSpeech.json inside it.
# You can apply for the download credentials by following
# https://github.com/SpeechColab/GigaSpeech#download
# Number of hours for GigaSpeech subsets
# XL 10k hours
# L 2.5k hours
# M 1k hours
# S 250 hours
# XS 10 hours
# DEV 12 hours
# Test 40 hours
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
[ ! -e $dl_dir/GigaSpeech ] && mkdir -p $dl_dir/GigaSpeech
# If you have pre-downloaded it to /path/to/GigaSpeech,
# you can create a symlink
#
# ln -sfv /path/to/GigaSpeech $dl_dir/GigaSpeech
#
if [ ! -d $dl_dir/GigaSpeech/audio ] && [ ! -f $dl_dir/GigaSpeech.json ]; then
# Check credentials.
if [ ! -f $dl_dir/password ]; then
echo -n "$0: Please apply for the download credentials by following"
echo -n "https://github.com/SpeechColab/GigaSpeech#dataset-download"
echo " and save it to $dl_dir/password."
exit 1;
fi
PASSWORD=`cat $dl_dir/password 2>/dev/null`
if [ -z "$PASSWORD" ]; then
echo "$0: Error, $dl_dir/password is empty."
exit 1;
fi
PASSWORD_MD5=`echo $PASSWORD | md5sum | cut -d ' ' -f 1`
if [[ $PASSWORD_MD5 != "dfbf0cde1a3ce23749d8d81e492741b8" ]]; then
echo "$0: Error, invalid $dl_dir/password."
exit 1;
fi
# Download XL, DEV and TEST sets by default.
lhotse download gigaspeech \
--subset XL \
--subset L \
--subset M \
--subset S \
--subset XS \
--subset DEV \
--subset TEST \
--host tsinghua \
$dl_dir/password $dl_dir/GigaSpeech
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare GigaSpeech manifest (may take 30 minutes)"
# We assume that you have downloaded the GigaSpeech corpus
# to $dl_dir/GigaSpeech
mkdir -p data/manifests
lhotse prepare gigaspeech \
--subset XL \
--subset L \
--subset M \
--subset S \
--subset XS \
--subset DEV \
--subset TEST \
-j $nj \
$dl_dir/GigaSpeech data/manifests
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Preprocess GigaSpeech manifest"
if [ ! -f data/fbank/.preprocess_complete ]; then
log "It may take 2 hours for this stage"
python3 ./local/preprocess_gigaspeech.py
touch data/fbank/.preprocess_complete
fi
fi

View File

@ -16,12 +16,28 @@
# limitations under the License.
import argparse
import logging
from pathlib import Path
from typing import Optional
from lhotse import CutSet, Fbank, FbankConfig
from lhotse.dataset import (
BucketingSampler,
CutMix,
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
SpecAugment,
)
from lhotse.dataset.input_strategies import (
OnTheFlyFeatures,
PrecomputedFeatures,
)
from torch.utils.data import DataLoader
from lhotse import CutSet
from icefall.utils import str2bool
class AsrDataset:
class AsrDataModule:
def __init__(self, args: argparse.Namespace):
self.args = args
@ -55,19 +71,11 @@ class AsrDataset:
"--num-buckets",
type=int,
default=30,
help="The number of buckets for the BucketingSampler"
help="The number of buckets for the BucketingSampler "
"and DynamicBucketingSampler."
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
@ -126,8 +134,25 @@ class AsrDataset:
)
def train_dataloaders(
self, cuts_train: CutSet, cuts_musan: Optional[CutSet] = None
self,
cuts_train: CutSet,
dynamic_bucketing: bool,
on_the_fly_feats: bool,
cuts_musan: Optional[CutSet] = None,
) -> DataLoader:
"""
Args:
cuts_train:
Cuts for training.
cuts_musan:
If not None, it is the cuts for mixing.
dynamic_bucketing:
True to use DynamicBucketingSampler;
False to use BucketingSampler.
on_the_fly_feats:
True to use OnTheFlyFeatures;
False to use PrecomputedFeatures.
"""
transforms = []
if cuts_musan is not None:
logging.info("Enable MUSAN")
@ -177,21 +202,34 @@ class AsrDataset:
# Drop feats to be on the safe side.
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80))
input_strategy=(
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
if on_the_fly_feats
else PrecomputedFeatures()
),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
drop_last=True,
)
if dynamic_bucketing:
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
drop_last=True,
)
else:
logging.info("Using BucketingSampler.")
train_sampler = BucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
bucket_method="equal_duration",
drop_last=True,
)
logging.info("About to create train dataloader")
train_dl = DataLoader(

View File

@ -17,7 +17,7 @@
import logging
from typing import Path
from pathlib import Path
from lhotse import CutSet, load_manifest
@ -29,29 +29,47 @@ class GigaSpeech:
manifest_dir:
It is expected to contain the following files::
- cuts_L.jsonl.gz
- cuts_XL.jsonl.gz
- cuts_TEST.jsonl.gz
- cuts_DEV.jsonl.gz
- cuts_XL_raw.jsonl.gz
- cuts_L_raw.jsonl.gz
- cuts_M_raw.jsonl.gz
- cuts_S_raw.jsonl.gz
- cuts_XS_raw.jsonl.gz
- cuts_DEV_raw.jsonl.gz
- cuts_TEST_raw.jsonl.gz
"""
self.manifest_dir = Path(manifest_dir)
def train_L_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_L.json.gz"
logging.info(f"About to get train-L cuts from {f}")
return CutSet.from_jsonl_lazy(f)
def train_XL_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_XL.json.gz"
f = self.manifest_dir / "cuts_XL_raw.jsonl.gz"
logging.info(f"About to get train-XL cuts from {f}")
return CutSet.from_jsonl_lazy(f)
def train_L_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_L_raw.jsonl.gz"
logging.info(f"About to get train-L cuts from {f}")
return CutSet.from_jsonl_lazy(f)
def train_M_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_M_raw.jsonl.gz"
logging.info(f"About to get train-M cuts from {f}")
return CutSet.from_jsonl_lazy(f)
def train_S_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_S_raw.jsonl.gz"
logging.info(f"About to get train-S cuts from {f}")
return CutSet.from_jsonl_lazy(f)
def train_XS_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_XS_raw.jsonl.gz"
logging.info(f"About to get train-XS cuts from {f}")
return CutSet.from_jsonl_lazy(f)
def test_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_TEST.json.gz"
f = self.manifest_dir / "cuts_TEST.jsonl.gz"
logging.info(f"About to get TEST cuts from {f}")
return load_manifest(f)
def dev_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_DEV.json.gz"
f = self.manifest_dir / "cuts_DEV.jsonl.gz"
logging.info(f"About to get DEV cuts from {f}")
return load_manifest(f)

View File

@ -16,7 +16,7 @@
# limitations under the License.
import logging
from typing import Path
from pathlib import Path
from lhotse import CutSet, load_manifest

View File

@ -0,0 +1,103 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./transducer_stateless_multi_datasets/test_asr_datamodule.py
"""
import argparse
import random
from pathlib import Path
from asr_datamodule import AsrDataModule
from gigaspeech import GigaSpeech
from lhotse import load_manifest
from librispeech import LibriSpeech
def test_dataset():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
AsrDataModule.add_arguments(parser)
args = parser.parse_args()
print(args)
if args.enable_musan:
cuts_musan = load_manifest(
Path(args.manifest_dir) / "cuts_musan.json.gz"
)
else:
cuts_musan = None
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir)
train_clean_100 = librispeech.train_clean_100_cuts()
train_S = gigaspeech.train_S_cuts()
asr_datamodule = AsrDataModule(args)
libri_train_dl = asr_datamodule.train_dataloaders(
train_clean_100,
dynamic_bucketing=False,
on_the_fly_feats=False,
cuts_musan=cuts_musan,
)
giga_train_dl = asr_datamodule.train_dataloaders(
train_S,
dynamic_bucketing=True,
on_the_fly_feats=True,
cuts_musan=cuts_musan,
)
seed = 20220216
rng = random.Random(seed)
for epoch in range(2):
print("epoch", epoch)
batch_idx = 0
libri_train_dl.sampler.set_epoch(epoch)
giga_train_dl.sampler.set_epoch(epoch)
iter_libri = iter(libri_train_dl)
iter_giga = iter(giga_train_dl)
while True:
idx = rng.choices((0, 1), weights=[0.8, 0.2], k=1)[0]
dl = iter_libri if idx == 0 else iter_giga
batch_idx += 1
print("dl idx", idx, "batch_idx", batch_idx)
batch = next(dl)
cuts = batch["supervisions"]["cut"]
for c in cuts:
print(c.id)
if batch_idx > 10:
break
def main():
test_dataset()
if __name__ == "__main__":
main()