Begin to use multiple datasets.

This commit is contained in:
Fangjun Kuang 2022-02-15 20:24:48 +08:00
parent 70a3c56a18
commit fb1e2ffdc1
7 changed files with 462 additions and 4 deletions

View File

@ -28,7 +28,7 @@ import os
from pathlib import Path
import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
from lhotse import ChunkedLilcomHdf5Writer, CutSet, Fbank, FbankConfig
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
@ -85,7 +85,7 @@ def compute_fbank_librispeech():
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomHdf5Writer,
storage_type=ChunkedLilcomHdf5Writer,
)
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")

View File

@ -28,7 +28,7 @@ import os
from pathlib import Path
import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer, combine
from lhotse import ChunkedLilcomHdf5Writer, CutSet, Fbank, FbankConfig, combine
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
@ -82,7 +82,7 @@ def compute_fbank_musan():
storage_path=f"{output_dir}/feats_musan",
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomHdf5Writer,
storage_type=ChunkedLilcomHdf5Writer,
)
)
musan_cuts.to_json(musan_cuts_path)

View File

@ -0,0 +1,123 @@
#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import re
from pathlib import Path
from lhotse import CutSet, SupervisionSegment
from lhotse.recipes.utils import read_manifests_if_cached
# Similar text filtering and normalization procedure as in:
# https://github.com/SpeechColab/GigaSpeech/blob/main/toolkits/kaldi/gigaspeech_data_prep.sh
def normalize_text(
utt: str,
punct_pattern=re.compile(r"<(COMMA|PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
whitespace_pattern=re.compile(r"\s\s+"),
) -> str:
return whitespace_pattern.sub(" ", punct_pattern.sub("", utt))
def has_no_oov(
sup: SupervisionSegment,
oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER)>"),
) -> bool:
return oov_pattern.search(sup.text) is None
def preprocess_giga_speech():
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
output_dir.mkdir(exist_ok=True)
dataset_parts = (
"DEV",
"TEST",
"XS",
"S",
"M",
"L",
"XL",
)
logging.info("Loading manifest (may take 4 minutes)")
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix="gigaspeech",
suffix="jsonl.gz",
)
assert manifests is not None
for partition, m in manifests.items():
logging.info(f"Processing {partition}")
raw_cuts_path = output_dir / f"cuts_{partition}_raw.jsonl.gz"
if raw_cuts_path.is_file():
logging.info(f"{partition} already exists - skipping")
continue
# Note this step makes the recipe different than LibriSpeech:
# We must filter out some utterances and remove punctuation
# to be consistent with Kaldi.
logging.info("Filtering OOV utterances from supervisions")
m["supervisions"] = m["supervisions"].filter(has_no_oov)
logging.info(f"Normalizing text in {partition}")
for sup in m["supervisions"]:
sup.text = normalize_text(sup.text)
sup.custom = {"origin": "giga"}
# Create long-recording cut manifests.
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
# Run data augmentation that needs to be done in the
# time domain.
if partition not in ["DEV", "TEST"]:
logging.info(
f"Speed perturb for {partition} with factors 0.9 and 1.1 "
"(Perturbing may take 8 minutes and saving may take 20 minutes)"
)
cut_set = (
cut_set
+ cut_set.perturb_speed(0.9)
+ cut_set.perturb_speed(1.1)
)
logging.info("About to split cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info(f"Saving to {raw_cuts_path}")
cut_set.to_file(raw_cuts_path)
def main():
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
preprocess_giga_speech()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,204 @@
# Copyright 2021 Piotr Żelasko
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from lhotse import CutSet
from icefall.utils import str2bool
class AsrDataset:
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--max-duration",
type=int,
default=200.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=30,
help="The number of buckets for the BucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=2,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--enable-spec-aug",
type=str2bool,
default=True,
help="When enabled, use SpecAugment for training dataset.",
)
group.add_argument(
"--spec-aug-time-warp-factor",
type=int,
default=80,
help="Used only when --enable-spec-aug is True. "
"It specifies the factor for time warping in SpecAugment. "
"Larger values mean more warping. "
"A value less than 1 means to disable time warp.",
)
group.add_argument(
"--enable-musan",
type=str2bool,
default=True,
help="When enabled, select noise from MUSAN and mix it"
"with training dataset. ",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/fbank"),
help="Path to directory with train/valid/test cuts.",
)
def train_dataloaders(
self, cuts_train: CutSet, cuts_musan: Optional[CutSet] = None
) -> DataLoader:
transforms = []
if cuts_musan is not None:
logging.info("Enable MUSAN")
transforms.append(
CutMix(
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
)
)
else:
logging.info("Disable MUSAN")
input_transforms = []
if self.args.enable_spec_aug:
logging.info("Enable SpecAugment")
logging.info(
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
)
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_frame_masks=2,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
)
)
else:
logging.info("Disable SpecAugment")
logging.info("About to create train dataset")
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
# NOTE: the PerturbSpeed transform should be added only if we
# remove it from data prep stage.
# Add on-the-fly speed perturbation; since originally it would
# have increased epoch size by 3, we will apply prob 2/3 and use
# 3x more epochs.
# Speed perturbation probably should come first before
# concatenation, but in principle the transforms order doesn't have
# to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
# Drop feats to be on the safe side.
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80))
),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
drop_last=True,
)
logging.info("About to create train dataloader")
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
)
return train_dl

View File

@ -0,0 +1,57 @@
# Copyright 2021 Piotr Żelasko
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Path
from lhotse import CutSet, load_manifest
class GigaSpeech:
def __init__(self, manifest_dir: str):
"""
Args:
manifest_dir:
It is expected to contain the following files::
- cuts_L.jsonl.gz
- cuts_XL.jsonl.gz
- cuts_TEST.jsonl.gz
- cuts_DEV.jsonl.gz
"""
self.manifest_dir = Path(manifest_dir)
def train_L_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_L.json.gz"
logging.info(f"About to get train-L cuts from {f}")
return CutSet.from_jsonl_lazy(f)
def train_XL_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_XL.json.gz"
logging.info(f"About to get train-XL cuts from {f}")
return CutSet.from_jsonl_lazy(f)
def test_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_TEST.json.gz"
logging.info(f"About to get TEST cuts from {f}")
return load_manifest(f)
def dev_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_DEV.json.gz"
logging.info(f"About to get DEV cuts from {f}")
return load_manifest(f)

View File

@ -0,0 +1,74 @@
# Copyright 2021 Piotr Żelasko
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Path
from lhotse import CutSet, load_manifest
class LibriSpeech:
def __init__(self, manifest_dir: str):
"""
Args:
manifest_dir:
It is expected to contain the following files::
- cuts_dev-clean.json.gz
- cuts_dev-other.json.gz
- cuts_test-clean.json.gz
- cuts_test-other.json.gz
- cuts_train-clean-100.json.gz
- cuts_train-clean-360.json.gz
- cuts_train-other-500.json.gz
"""
self.manifest_dir = Path(manifest_dir)
def train_clean_100_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_train-clean-100.json.gz"
logging.info(f"About to get train-clean-100 cuts from {f}")
return load_manifest(f)
def train_clean_360_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_train-clean-360.json.gz"
logging.info(f"About to get train-clean-360 cuts from {f}")
return load_manifest(f)
def train_other_500_cuts(self) -> CutSet:
f = self.args.manifest_dir / "cuts_train-other-500.json.gz"
logging.info(f"About to get train-other-500 cuts from {f}")
return load_manifest(f)
def test_clean_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_test-clean.json.gz"
logging.info(f"About to get test-clean cuts from {f}")
return load_manifest(f)
def test_other_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_test-other.json.gz"
logging.info(f"About to get test-other cuts from {f}")
return load_manifest(f)
def dev_clean_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_dev-clean.json.gz"
logging.info(f"About to get dev-clean cuts from {f}")
return load_manifest(f)
def dev_other_cuts(self) -> CutSet:
f = self.manifest_dir / "cuts_dev-other.json.gz"
logging.info(f"About to get dev-other cuts from {f}")
return load_manifest(f)