Filter non-finite losses (#525)

* Filter non-finite losses

* Fixes after review
This commit is contained in:
Fangjun Kuang 2022-08-17 12:22:43 +08:00 committed by GitHub
parent 951b03f6d7
commit 669401869d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 40 additions and 2 deletions

View File

@ -78,6 +78,7 @@ class Transducer(nn.Module):
am_scale: float = 0.0,
lm_scale: float = 0.0,
warmup: float = 1.0,
reduction: str = "sum",
) -> torch.Tensor:
"""
Args:
@ -101,6 +102,10 @@ class Transducer(nn.Module):
warmup:
A value warmup >= 0 that determines which modules are active, values
warmup > 1 "are fully warmed up" and all modules will be active.
reduction:
"sum" to sum the losses over all utterances in the batch.
"none" to return the loss in a 1-D tensor for each utterance
in the batch.
Returns:
Return the transducer loss.
@ -110,6 +115,7 @@ class Transducer(nn.Module):
lm_scale * lm_probs + am_scale * am_probs +
(1-lm_scale-am_scale) * combined_probs
"""
assert reduction in ("sum", "none"), reduction
assert x.ndim == 3, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.num_axes == 2, y.num_axes
@ -155,7 +161,7 @@ class Transducer(nn.Module):
lm_only_scale=lm_scale,
am_only_scale=am_scale,
boundary=boundary,
reduction="sum",
reduction=reduction,
return_grad=True,
)
@ -188,7 +194,7 @@ class Transducer(nn.Module):
ranges=ranges,
termination_symbol=blank_id,
boundary=boundary,
reduction="sum",
reduction=reduction,
)
return (simple_loss, pruned_loss)

View File

@ -655,7 +655,35 @@ def compute_loss(
am_scale=params.am_scale,
lm_scale=params.lm_scale,
warmup=warmup,
reduction="none",
)
simple_loss_is_finite = torch.isfinite(simple_loss)
pruned_loss_is_finite = torch.isfinite(pruned_loss)
is_finite = simple_loss_is_finite & pruned_loss_is_finite
if not torch.all(is_finite):
logging.info(
"Not all losses are finite!\n"
f"simple_loss: {simple_loss}\n"
f"pruned_loss: {pruned_loss}"
)
display_and_save_batch(batch, params=params, sp=sp)
simple_loss = simple_loss[simple_loss_is_finite]
pruned_loss = pruned_loss[pruned_loss_is_finite]
# If the batch contains more than 10 utterance AND
# if either all simple_loss or pruned_loss is inf or nan,
# we stop the training process by raising an exception
if feature.size(0) >= 10:
if torch.all(~simple_loss_is_finite) or torch.all(
~pruned_loss_is_finite
):
raise ValueError(
"There are too many utterances in this batch "
"leading to inf or nan losses."
)
simple_loss = simple_loss.sum()
pruned_loss = pruned_loss.sum()
# after the main warmup step, we keep pruned_loss_scale small
# for the same amount of time (model_warm_step), to avoid
# overwhelming the simple_loss and causing it to diverge,
@ -675,6 +703,10 @@ def compute_loss(
info = MetricsTracker()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# info["frames"] is an approximate number for two reasons:
# (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2
# (2) If some utterances in the batch lead to inf/nan loss, they
# are filtered out.
info["frames"] = (
(feature_lens // params.subsampling_factor).sum().item()
)