Keep just the RandomGrad changes, vs. 149. Git history may not reflect real changes.

This commit is contained in:
Daniel Povey 2022-10-20 13:28:50 +08:00
commit 610281eaa2
2 changed files with 20 additions and 33 deletions

View File

@ -19,12 +19,10 @@ import k2
import torch
import torch.nn as nn
from encoder_interface import EncoderInterface
from scaling import random_clamp
from icefall.utils import add_sos
class Transducer(nn.Module):
"""It implements https://arxiv.org/pdf/1211.3711.pdf
"Sequence Transduction with Recurrent Neural Networks"
@ -142,12 +140,6 @@ class Transducer(nn.Module):
lm = self.simple_lm_proj(decoder_out)
am = self.simple_am_proj(encoder_out)
if self.training:
lm = random_clamp(lm, min=-8.0, max=2.0, prob=0.5,
reflect=0.1)
am = random_clamp(am, min=-5.0, max=5.0, prob=0.5,
reflect=0.1)
with torch.cuda.amp.autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
@ -183,10 +175,6 @@ class Transducer(nn.Module):
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
if self.training:
logits = random_clamp(logits, -8.0, 2.0, prob=0.5,
reflect=0.1)
with torch.cuda.amp.autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),

View File

@ -175,7 +175,6 @@ class RandomClampFunction(torch.autograd.Function):
ctx.reflect = reflect
if reflect != 0.0:
ans = ans * (1.0 + reflect) - (x * reflect)
return ans
@staticmethod
@ -185,7 +184,7 @@ class RandomClampFunction(torch.autograd.Function):
reflect = ctx.reflect
if reflect != 0.0:
x_grad = x_grad * (1.0 + reflect) - (ans_grad * reflect)
return ans_grad * is_same.to(ans_grad.dtype), None, None, None, None
return x_grad, None, None, None, None
def random_clamp(x: Tensor,
min: Optional[float] = None,
@ -211,6 +210,7 @@ def random_cast_to_half(x: Tensor,
random_val = min_abs * x.sign() * (torch.rand_like(x) * min_abs < x_abs)
return torch.where(is_too_small, random_val, x).to(torch.float16)
class RandomGradFunction(torch.autograd.Function):
"""
Does nothing in forward pass; in backward pass, gets rid of very small grads using
@ -248,6 +248,7 @@ class RandomGrad(torch.nn.Module):
return RandomGradFunction.apply(x, self.min_abs)
class SoftmaxFunction(torch.autograd.Function):
"""
Tries to handle half-precision derivatives in a randomized way that should
@ -255,34 +256,33 @@ class SoftmaxFunction(torch.autograd.Function):
"""
@staticmethod
def forward(ctx, x: Tensor, dim: int):
with torch.cuda.amp.autocast(enabled=False):
if x.dtype == torch.float16:
x = x.to(torch.float32)
ans = x.softmax(dim=dim)
ctx.save_for_backward(ans)
ctx.dim = dim
return ans
ans = x.softmax(dim=dim)
# if x dtype is float16, x.softmax() returns a float32 because
# (presumably) that op does not support float16, and autocast
# is enabled.
ctx.save_for_backward(ans)
ctx.x_dtype = x.dtype
ctx.dim = dim
return ans
@staticmethod
def backward(ctx, ans_grad: Tensor):
ans, = ctx.saved_tensors
if ans.dtype == torch.float16 or ans_grad.dtype == torch.float16:
# use a randomized approach to convert to float16
with torch.cuda.amp.autocast(enabled=False):
ans_grad = ans_grad.to(torch.float32)
ans = ans.to(torch.float32)
x_grad = ans_grad * ans
x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True)
return random_cast_to_half(x_grad), None
else:
with torch.cuda.amp.autocast(enabled=False):
ans_grad = ans_grad.to(torch.float32)
ans = ans.to(torch.float32)
x_grad = ans_grad * ans
x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True)
if ctx.x_dtype == torch.float16:
x_grad = random_cast_to_half(x_grad)
return x_grad, None
def softmax(x: Tensor,
dim: int):
logging.info(f"torch.is_autocast_enabled()={torch.is_autocast_enabled()}, x dtype={x.dtype}")
return SoftmaxFunction.apply(x, dim)
@ -907,7 +907,6 @@ class DoubleSwish(torch.nn.Module):
def _test_max_eig():
for proportion in [0.1, 0.5, 10.0]:
logging.info(f"proportion = {proportion}")
x = torch.randn(100, 128)
@ -931,7 +930,7 @@ def _test_max_eig():
y.backward(gradient=y_grad)
if proportion < 0.2:
assert torch.allclose(x.grad, y_grad)
assert torch.allclose(x.grad, y_grad, atol=1.0e-02)
elif proportion > 1.0:
assert not torch.allclose(x.grad, y_grad)