mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-10 22:45:27 +00:00
Whisper large fine-tuning on wenetspeech, mutli-hans-zh (#1483)
* add whisper fbank for wenetspeech * add whisper fbank for other dataset * add str to bool * add decode for wenetspeech * add requirments.txt * add original model decode with 30s * test feature extractor speed * add aishell2 feat * change compute feature batch * fix overwrite * fix executor * regression * add kaldifeatwhisper fbank * fix io issue * parallel jobs * use multi machines * add wenetspeech fine-tune scripts * add monkey patch codes * remove useless file * fix subsampling factor * fix too long audios * add remove long short * fix whisper version to support multi batch beam * decode all wav files * remove utterance more than 30s in test_net * only test net * using soft links * add kespeech whisper feats * fix index error * add manifests for whisper * change to licomchunky writer * add missing option * decrease cpu usage * add speed perturb for kespeech * fix kespeech speed perturb * add dataset * load checkpoint from specific path * add speechio * add speechio results --------- Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
This commit is contained in:
parent
cdb3fb5675
commit
5df24c1685
@ -29,7 +29,14 @@ import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
@ -42,10 +49,12 @@ torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_aishell2(num_mel_bins: int = 80, perturb_speed: bool = False):
|
||||
def compute_fbank_aishell2(
|
||||
num_mel_bins: int = 80, perturb_speed: bool = False, whisper_fbank: bool = False
|
||||
):
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
num_jobs = min(8, os.cpu_count())
|
||||
|
||||
dataset_parts = (
|
||||
"train",
|
||||
@ -68,8 +77,12 @@ def compute_fbank_aishell2(num_mel_bins: int = 80, perturb_speed: bool = False):
|
||||
list(manifests.keys()),
|
||||
dataset_parts,
|
||||
)
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
if whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=num_mel_bins, device="cuda")
|
||||
)
|
||||
else:
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
@ -82,7 +95,7 @@ def compute_fbank_aishell2(num_mel_bins: int = 80, perturb_speed: bool = False):
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
if "train" in partition and perturb_speed:
|
||||
logging.info(f"Doing speed perturb")
|
||||
logging.info("Doing speed perturb")
|
||||
cut_set = (
|
||||
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||
)
|
||||
@ -111,7 +124,12 @@ def get_args():
|
||||
default=False,
|
||||
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
@ -122,5 +140,7 @@ if __name__ == "__main__":
|
||||
|
||||
args = get_args()
|
||||
compute_fbank_aishell2(
|
||||
num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed
|
||||
num_mel_bins=args.num_mel_bins,
|
||||
perturb_speed=args.perturb_speed,
|
||||
whisper_fbank=args.whisper_fbank,
|
||||
)
|
||||
|
||||
@ -108,6 +108,16 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
fi
|
||||
fi
|
||||
|
||||
whisper_mel_bins=80
|
||||
if [ $stage -le 30 ] && [ $stop_stage -ge 30 ]; then
|
||||
log "Stage 30: Compute whisper fbank for aishell2"
|
||||
if [ ! -f data/fbank/.aishell2.whisper.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_aishell2.py --perturb-speed ${perturb_speed} --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
touch data/fbank/.aishell2.whisper.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute fbank for musan"
|
||||
if [ ! -f data/fbank/.msuan.done ]; then
|
||||
|
||||
@ -29,7 +29,14 @@ import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import ChunkedLilcomHdf5Writer, CutSet, Fbank, FbankConfig
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
@ -42,10 +49,12 @@ torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_aishell4(num_mel_bins: int = 80, perturb_speed: bool = False):
|
||||
def compute_fbank_aishell4(
|
||||
num_mel_bins: int = 80, perturb_speed: bool = False, whisper_fbank: bool = False
|
||||
):
|
||||
src_dir = Path("data/manifests/aishell4")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
num_jobs = min(8, os.cpu_count())
|
||||
|
||||
dataset_parts = (
|
||||
"train_S",
|
||||
@ -70,7 +79,12 @@ def compute_fbank_aishell4(num_mel_bins: int = 80, perturb_speed: bool = False):
|
||||
dataset_parts,
|
||||
)
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
if whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=num_mel_bins, device="cuda")
|
||||
)
|
||||
else:
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
@ -84,7 +98,7 @@ def compute_fbank_aishell4(num_mel_bins: int = 80, perturb_speed: bool = False):
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
if "train" in partition and perturb_speed:
|
||||
logging.info(f"Doing speed perturb")
|
||||
logging.info("Doing speed perturb")
|
||||
cut_set = (
|
||||
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||
)
|
||||
@ -95,7 +109,7 @@ def compute_fbank_aishell4(num_mel_bins: int = 80, perturb_speed: bool = False):
|
||||
# when an executor is specified, make more partitions
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=ChunkedLilcomHdf5Writer,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
|
||||
logging.info("About splitting cuts into smaller chunks")
|
||||
@ -121,7 +135,12 @@ def get_args():
|
||||
default=False,
|
||||
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
@ -132,5 +151,7 @@ if __name__ == "__main__":
|
||||
|
||||
args = get_args()
|
||||
compute_fbank_aishell4(
|
||||
num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed
|
||||
num_mel_bins=args.num_mel_bins,
|
||||
perturb_speed=args.perturb_speed,
|
||||
whisper_fbank=args.whisper_fbank,
|
||||
)
|
||||
|
||||
@ -6,7 +6,7 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||
set -eou pipefail
|
||||
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
stop_stage=7
|
||||
perturb_speed=true
|
||||
|
||||
|
||||
@ -76,11 +76,21 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Process aishell4"
|
||||
log "Stage 2: Compute fbank for aishell4"
|
||||
if [ ! -f data/fbank/aishell4/.fbank.done ]; then
|
||||
mkdir -p data/fbank/aishell4
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_aishell4.py --perturb-speed ${perturb_speed}
|
||||
touch data/fbank/aishell4/.fbank.done
|
||||
touch data/fbank/.fbank.done
|
||||
fi
|
||||
fi
|
||||
|
||||
whisper_mel_bins=80
|
||||
if [ $stage -le 20 ] && [ $stop_stage -ge 20 ]; then
|
||||
log "Stage 20: Compute whisper fbank for aishell4"
|
||||
if [ ! -f data/fbank/aishell4/.fbank.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_aishell4.py --perturb-speed ${perturb_speed} --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
touch data/fbank/.fbank.done
|
||||
fi
|
||||
fi
|
||||
|
||||
@ -106,16 +116,7 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Compute fbank for aishell4"
|
||||
if [ ! -f data/fbank/.aishell4.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_aishell4.py --perturb-speed ${perturb_speed}
|
||||
touch data/fbank/.aishell4.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Prepare char based lang"
|
||||
log "Stage 5: Prepare char based lang"
|
||||
lang_char_dir=data/lang_char
|
||||
mkdir -p $lang_char_dir
|
||||
|
||||
|
||||
@ -29,7 +29,14 @@ import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
@ -42,10 +49,12 @@ torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_alimeeting(num_mel_bins: int = 80, perturb_speed: bool = False):
|
||||
def compute_fbank_alimeeting(
|
||||
num_mel_bins: int = 80, perturb_speed: bool = False, whisper_fbank: bool = False
|
||||
):
|
||||
src_dir = Path("data/manifests/alimeeting")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
num_jobs = min(8, os.cpu_count())
|
||||
|
||||
dataset_parts = (
|
||||
"train",
|
||||
@ -53,7 +62,7 @@ def compute_fbank_alimeeting(num_mel_bins: int = 80, perturb_speed: bool = False
|
||||
"test",
|
||||
)
|
||||
|
||||
prefix = "alimeeting"
|
||||
prefix = "alimeeting-far"
|
||||
suffix = "jsonl.gz"
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts,
|
||||
@ -70,7 +79,12 @@ def compute_fbank_alimeeting(num_mel_bins: int = 80, perturb_speed: bool = False
|
||||
dataset_parts,
|
||||
)
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
if whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=num_mel_bins, device="cuda")
|
||||
)
|
||||
else:
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
@ -83,7 +97,7 @@ def compute_fbank_alimeeting(num_mel_bins: int = 80, perturb_speed: bool = False
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
if "train" in partition and perturb_speed:
|
||||
logging.info(f"Doing speed perturb")
|
||||
logging.info("Doing speed perturb")
|
||||
cut_set = (
|
||||
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||
)
|
||||
@ -121,7 +135,12 @@ def get_args():
|
||||
default=False,
|
||||
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use the Whisper Fbank feature extractor. Default: False.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
@ -132,5 +151,7 @@ if __name__ == "__main__":
|
||||
|
||||
args = get_args()
|
||||
compute_fbank_alimeeting(
|
||||
num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed
|
||||
num_mel_bins=args.num_mel_bins,
|
||||
perturb_speed=args.perturb_speed,
|
||||
whisper_fbank=args.whisper_fbank,
|
||||
)
|
||||
|
||||
@ -6,7 +6,7 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||
set -eou pipefail
|
||||
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
stop_stage=7
|
||||
perturb_speed=true
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
@ -66,10 +66,21 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Process alimeeting"
|
||||
if [ ! -f data/fbank/alimeeting/.fbank.done ]; then
|
||||
mkdir -p data/fbank/alimeeting
|
||||
log "Stage 2: compute fbank for alimeeting"
|
||||
if [ ! -f data/fbank/.fbank.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_alimeeting.py --perturb-speed ${perturb_speed}
|
||||
touch data/fbank/.fbank.done
|
||||
fi
|
||||
fi
|
||||
|
||||
whisper_mel_bins=80
|
||||
if [ $stage -le 20 ] && [ $stop_stage -ge 20 ]; then
|
||||
log "Stage 20: compute whisper fbank for alimeeting"
|
||||
if [ ! -f data/fbank/.fbank.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_alimeeting.py --perturb-speed ${perturb_speed} --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
touch data/fbank/.fbank.done
|
||||
fi
|
||||
fi
|
||||
|
||||
@ -95,16 +106,7 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Compute fbank for alimeeting"
|
||||
if [ ! -f data/fbank/.alimeeting.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_alimeeting.py --perturb-speed True
|
||||
touch data/fbank/.alimeeting.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Prepare char based lang"
|
||||
log "Stage 5: Prepare char based lang"
|
||||
lang_char_dir=data/lang_char
|
||||
mkdir -p $lang_char_dir
|
||||
|
||||
|
||||
@ -17,11 +17,21 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig, LilcomChunkyWriter
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
)
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
@ -31,7 +41,28 @@ torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_kespeech_dev_test():
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-mel-bins",
|
||||
type=int,
|
||||
default=80,
|
||||
help="""The number of mel bins for Fbank""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def compute_fbank_kespeech_dev_test(args):
|
||||
in_out_dir = Path("data/fbank/kespeech")
|
||||
# number of workers in dataloader
|
||||
num_workers = 42
|
||||
@ -48,7 +79,12 @@ def compute_fbank_kespeech_dev_test():
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
if args.whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=args.num_mel_bins, device=device)
|
||||
)
|
||||
else:
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
@ -86,7 +122,11 @@ def main():
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
compute_fbank_kespeech_dev_test()
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
compute_fbank_kespeech_dev_test(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -28,10 +28,14 @@ from lhotse import (
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
set_audio_duration_mismatch_tolerance,
|
||||
set_caching_enabled,
|
||||
)
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
@ -88,6 +92,20 @@ def get_parser():
|
||||
default=-1,
|
||||
help="Stop processing pieces until this number (exclusive).",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-mel-bins",
|
||||
type=int,
|
||||
default=80,
|
||||
help="""The number of mel bins for Fbank""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@ -111,14 +129,19 @@ def compute_fbank_kespeech_splits(args):
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
if args.whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=args.num_mel_bins, device="cuda")
|
||||
)
|
||||
else:
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
|
||||
set_caching_enabled(False)
|
||||
for i in range(start, stop):
|
||||
idx = f"{i + 1}".zfill(num_digits)
|
||||
logging.info(f"Processing {idx}/{num_splits}")
|
||||
idx = f"{i}".zfill(num_digits)
|
||||
logging.info(f"Processing {i+1}/{num_splits}")
|
||||
|
||||
cuts_path = output_dir / f"kespeech-asr_cuts_{subset}.{idx}.jsonl.gz"
|
||||
if cuts_path.is_file():
|
||||
|
||||
@ -30,10 +30,17 @@ import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
@ -43,10 +50,33 @@ torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_magicdata(num_mel_bins: int = 80, speed_perturb: bool = False):
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-mel-bins",
|
||||
type=int,
|
||||
default=80,
|
||||
help="""The number of mel bins for Fbank""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def compute_fbank_magicdata(
|
||||
num_mel_bins: int = 80, speed_perturb: bool = False, whisper_fbank: bool = False
|
||||
):
|
||||
src_dir = Path("data/manifests/magicdata")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(30, os.cpu_count())
|
||||
num_jobs = min(8, os.cpu_count())
|
||||
|
||||
dataset_parts = ("train", "test", "dev")
|
||||
prefix = "magicdata"
|
||||
@ -66,7 +96,12 @@ def compute_fbank_magicdata(num_mel_bins: int = 80, speed_perturb: bool = False)
|
||||
dataset_parts,
|
||||
)
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
if args.whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=args.num_mel_bins, device="cuda")
|
||||
)
|
||||
else:
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
@ -107,7 +142,12 @@ def get_args():
|
||||
default=False,
|
||||
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
@ -118,5 +158,7 @@ if __name__ == "__main__":
|
||||
|
||||
args = get_args()
|
||||
compute_fbank_magicdata(
|
||||
num_mel_bins=args.num_mel_bins, speed_perturb=args.speed_perturb
|
||||
num_mel_bins=args.num_mel_bins,
|
||||
speed_perturb=args.speed_perturb,
|
||||
whisper_fbank=args.whisper_fbank,
|
||||
)
|
||||
|
||||
@ -30,10 +30,17 @@ import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
@ -43,7 +50,9 @@ torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_primewords(num_mel_bins: int = 80, speed_perturb: bool = False):
|
||||
def compute_fbank_primewords(
|
||||
num_mel_bins: int = 80, speed_perturb: bool = False, whisper_fbank: bool = False
|
||||
):
|
||||
src_dir = Path("data/manifests/primewords")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
@ -66,7 +75,12 @@ def compute_fbank_primewords(num_mel_bins: int = 80, speed_perturb: bool = False
|
||||
dataset_parts,
|
||||
)
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
if whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=args.num_mel_bins, device="cuda")
|
||||
)
|
||||
else:
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
@ -108,6 +122,13 @@ def get_args():
|
||||
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
@ -118,5 +139,7 @@ if __name__ == "__main__":
|
||||
|
||||
args = get_args()
|
||||
compute_fbank_primewords(
|
||||
num_mel_bins=args.num_mel_bins, speed_perturb=args.speed_perturb
|
||||
num_mel_bins=args.num_mel_bins,
|
||||
speed_perturb=args.speed_perturb,
|
||||
whisper_fbank=args.whisper_fbank,
|
||||
)
|
||||
|
||||
@ -30,10 +30,17 @@ import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
@ -43,7 +50,9 @@ torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_stcmds(num_mel_bins: int = 80, speed_perturb: bool = False):
|
||||
def compute_fbank_stcmds(
|
||||
num_mel_bins: int = 80, speed_perturb: bool = False, whisper_fbank: bool = False
|
||||
):
|
||||
src_dir = Path("data/manifests/stcmds")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
@ -66,7 +75,12 @@ def compute_fbank_stcmds(num_mel_bins: int = 80, speed_perturb: bool = False):
|
||||
dataset_parts,
|
||||
)
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
if whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=args.num_mel_bins, device="cuda")
|
||||
)
|
||||
else:
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
@ -107,6 +121,12 @@ def get_args():
|
||||
default=False,
|
||||
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
@ -117,5 +137,7 @@ if __name__ == "__main__":
|
||||
|
||||
args = get_args()
|
||||
compute_fbank_stcmds(
|
||||
num_mel_bins=args.num_mel_bins, speed_perturb=args.speed_perturb
|
||||
num_mel_bins=args.num_mel_bins,
|
||||
speed_perturb=args.speed_perturb,
|
||||
whisper_fbank=args.whisper_fbank,
|
||||
)
|
||||
|
||||
@ -30,10 +30,17 @@ import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
@ -43,7 +50,9 @@ torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_thchs30(num_mel_bins: int = 80, speed_perturb: bool = False):
|
||||
def compute_fbank_thchs30(
|
||||
num_mel_bins: int = 80, speed_perturb: bool = False, whisper_fbank: bool = False
|
||||
):
|
||||
src_dir = Path("data/manifests/thchs30")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
@ -70,7 +79,12 @@ def compute_fbank_thchs30(num_mel_bins: int = 80, speed_perturb: bool = False):
|
||||
dataset_parts,
|
||||
)
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
if whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=args.num_mel_bins, device="cuda")
|
||||
)
|
||||
else:
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
@ -113,6 +127,12 @@ def get_args():
|
||||
default=False,
|
||||
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
@ -123,5 +143,7 @@ if __name__ == "__main__":
|
||||
|
||||
args = get_args()
|
||||
compute_fbank_thchs30(
|
||||
num_mel_bins=args.num_mel_bins, speed_perturb=args.speed_perturb
|
||||
num_mel_bins=args.num_mel_bins,
|
||||
speed_perturb=args.speed_perturb,
|
||||
whisper_fbank=args.whisper_fbank,
|
||||
)
|
||||
|
||||
@ -60,7 +60,7 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
|
||||
if [ ! -f data/fbank/.thchs30.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_thchs30.py
|
||||
./local/compute_fbank_thchs30.py --speed-perturb true
|
||||
touch data/fbank/.thchs30.done
|
||||
fi
|
||||
fi
|
||||
@ -86,7 +86,7 @@ fi
|
||||
log "Dataset: AISHELL-2"
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Prepare AISHELL-2"
|
||||
if [ -e ../../aishell/ASR/data/fbank/.aishell2.done ]; then
|
||||
if [ -e ../../aishell2/ASR/data/fbank/.aishell2.done ]; then
|
||||
cd data/fbank
|
||||
ln -svf $(realpath ../../../../aishell2/ASR/data/fbank/aishell2_feats_train) .
|
||||
ln -svf $(realpath ../../../../aishell2/ASR/data/fbank/aishell2_feats_dev) .
|
||||
@ -104,15 +104,15 @@ fi
|
||||
log "Dataset: AISHELL-4"
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Prepare AISHELL-4"
|
||||
if [ -e ../../aishell/ASR/data/fbank/.aishell4.done ]; then
|
||||
if [ -e ../../aishell4/ASR/data/fbank/.fbank.done ]; then
|
||||
cd data/fbank
|
||||
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_feats_train) .
|
||||
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_feats_dev) .
|
||||
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_feats_test) .
|
||||
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_feats_train_L) .
|
||||
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_feats_train_M) .
|
||||
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_feats_train_S) .
|
||||
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_cuts_train_L.jsonl.gz) .
|
||||
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_cuts_train_M.jsonl.gz) .
|
||||
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_cuts_train_S.jsonl.gz) .
|
||||
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_cuts_dev.jsonl.gz) .
|
||||
ln -svf $(realpath ../../../../aishell4/ASR/data/fbank/aishell4_cuts_test.jsonl.gz) .
|
||||
cd ../..
|
||||
else
|
||||
@ -137,7 +137,7 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
|
||||
if [ ! -f data/fbank/.stcmds.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_stcmds.py
|
||||
./local/compute_fbank_stcmds.py --speed-perturb true
|
||||
touch data/fbank/.stcmds.done
|
||||
fi
|
||||
fi
|
||||
@ -151,15 +151,15 @@ if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
lhotse download primewords $dl_dir/primewords
|
||||
fi
|
||||
|
||||
if [ ! -f data/manifests/.stcmds.done ]; then
|
||||
if [ ! -f data/manifests/.primewords.done ]; then
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare stcmds $dl_dir/primewords data/manifests/primewords
|
||||
lhotse prepare primewords $dl_dir/primewords data/manifests/primewords
|
||||
touch data/manifests/.primewords.done
|
||||
fi
|
||||
|
||||
if [ ! -f data/fbank/.primewords.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_primewords.py
|
||||
./local/compute_fbank_primewords.py --speed-perturb true
|
||||
touch data/fbank/.primewords.done
|
||||
fi
|
||||
fi
|
||||
@ -180,7 +180,7 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
|
||||
if [ ! -f data/fbank/.magicdata.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_magicdata.py
|
||||
./local/compute_fbank_magicdata.py --speed-perturb true
|
||||
touch data/fbank/.magicdata.done
|
||||
fi
|
||||
fi
|
||||
@ -231,7 +231,7 @@ if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
||||
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/cuts_TEST_MEETING.jsonl.gz) .
|
||||
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/cuts_TEST_NET.jsonl.gz) .
|
||||
|
||||
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/L_split_1000) .
|
||||
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/L_split_${num_splits}) .
|
||||
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/*.lca) .
|
||||
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/) ./wenetspeech
|
||||
cd ../..
|
||||
@ -274,7 +274,7 @@ if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||
touch data/fbank/.kespeech_preprocess_complete
|
||||
fi
|
||||
|
||||
if [ -f data/fbank/.kespeech.train_phase1.split.${num_splits}.done ]; then
|
||||
if [ ! -f data/fbank/.kespeech.train_phase1.split.${num_splits}.done ]; then
|
||||
log "Spliting KeSpeech train_phase1"
|
||||
lhotse split ${num_splits} \
|
||||
data/fbank/kespeech/kespeech-asr_cuts_train_phase1_raw.jsonl.gz \
|
||||
@ -282,7 +282,7 @@ if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||
touch data/fbank/.kespeech.train_phase1.split.${num_splits}.done
|
||||
fi
|
||||
|
||||
if [ -f data/fbank/.kespeech.train_phase2.split.${num_splits}.done ]; then
|
||||
if [ ! -f data/fbank/.kespeech.train_phase2.split.${num_splits}.done ]; then
|
||||
log "Spliting KeSpeech train_phase2"
|
||||
lhotse split ${num_splits} \
|
||||
data/fbank/kespeech/kespeech-asr_cuts_train_phase2_raw.jsonl.gz \
|
||||
@ -291,10 +291,10 @@ if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||
fi
|
||||
|
||||
log "Compute KeSpeech fbank for train_phase1"
|
||||
./local/compute_fbank_kespeech_splits.py --num-splits ${num_splits} --training-subset train_phase1
|
||||
./local/compute_fbank_kespeech_splits.py --speed-perturb true --num-splits ${num_splits} --training-subset train_phase1
|
||||
|
||||
log "Compute KeSpeech fbank for train_phase2"
|
||||
./local/compute_fbank_kespeech_splits.py --num-splits ${num_splits} --training-subset train_phase2
|
||||
./local/compute_fbank_kespeech_splits.py --speed-perturb true --num-splits ${num_splits} --training-subset train_phase2
|
||||
|
||||
log "Compute KeSpeech fbank for test/dev"
|
||||
./local/compute_fbank_kespeech_dev_test.py
|
||||
@ -303,6 +303,119 @@ if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||
fi
|
||||
fi
|
||||
|
||||
whisper_mel_bins=80
|
||||
if [ $stage -le 120 ] && [ $stop_stage -ge 120 ]; then
|
||||
log "Stage 120: Prepare KeSpeech for whisper"
|
||||
if [ ! -d $dl_dir/KeSpeech ]; then
|
||||
log "Abort! Please download KeSpeech first."
|
||||
log "KeSpeech download link: https://github.com/KeSpeech/KeSpeech"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -f data/manifests/.kespeech.done ]; then
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare kespeech -j 8 $dl_dir/KeSpeech data/manifests/kespeech
|
||||
touch data/manifests/.kespeech.done
|
||||
fi
|
||||
|
||||
if [ ! -f data/fbank/.kespeech.done ]; then
|
||||
mkdir -p data/fbank
|
||||
|
||||
log "Preprocess KeSpeech manifest"
|
||||
if [ ! -f data/fbank/.kespeech_preprocess_complete ]; then
|
||||
python3 ./local/preprocess_kespeech.py --speed-perturb true
|
||||
touch data/fbank/.kespeech_preprocess_complete
|
||||
fi
|
||||
|
||||
if [ ! -f data/fbank/.kespeech.train_phase1.split.${num_splits}.done ]; then
|
||||
log "Spliting KeSpeech train_phase1"
|
||||
lhotse split ${num_splits} \
|
||||
data/fbank/kespeech/kespeech-asr_cuts_train_phase1_raw.jsonl.gz \
|
||||
data/fbank/kespeech/train_phase1_split_${num_splits}
|
||||
touch data/fbank/.kespeech.train_phase1.split.${num_splits}.done
|
||||
fi
|
||||
|
||||
if [ ! -f data/fbank/.kespeech.train_phase2.split.${num_splits}.done ]; then
|
||||
log "Spliting KeSpeech train_phase2"
|
||||
lhotse split ${num_splits} \
|
||||
data/fbank/kespeech/kespeech-asr_cuts_train_phase2_raw.jsonl.gz \
|
||||
data/fbank/kespeech/train_phase2_split_${num_splits}
|
||||
touch data/fbank/.kespeech.train_phase2.split.${num_splits}.done
|
||||
fi
|
||||
|
||||
log "Compute KeSpeech fbank for train_phase1"
|
||||
./local/compute_fbank_kespeech_splits.py --num-splits ${num_splits} --training-subset train_phase1 --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
|
||||
log "Compute KeSpeech fbank for train_phase2"
|
||||
./local/compute_fbank_kespeech_splits.py --num-splits ${num_splits} --training-subset train_phase2 --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
|
||||
log "Compute KeSpeech fbank for test/dev"
|
||||
# ./local/compute_fbank_kespeech_dev_test.py --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
|
||||
if [ ! -f data/fbank/kespeech/kespeech-asr_cuts_train_phase1.jsonl.gz ]; then
|
||||
pieces=$(find data/fbank/kespeech/train_phase1_split_${num_splits} -name "kespeech-asr_cuts_train_phase1.*.jsonl.gz")
|
||||
lhotse combine $pieces data/fbank/kespeech/kespeech-asr_cuts_train_phase1.jsonl.gz
|
||||
fi
|
||||
if [ ! -f data/fbank/kespeech/kespeech-asr_cuts_train_phase2.jsonl.gz ]; then
|
||||
pieces=$(find data/fbank/kespeech/train_phase2_split_${num_splits} -name "kespeech-asr_cuts_train_phase2.*.jsonl.gz")
|
||||
lhotse combine $pieces data/fbank/kespeech/kespeech-asr_cuts_train_phase2.jsonl.gz
|
||||
fi
|
||||
touch data/fbank/.kespeech.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 121 ] && [ $stop_stage -ge 121 ]; then
|
||||
log "Stage 121: Prepare MagicData, Primewords, ST-CMDS, THCHS-30 for whisper"
|
||||
|
||||
if [ ! -f data/manifests/.magicdata.done ]; then
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare magicdata $dl_dir/magicdata data/manifests/magicdata
|
||||
touch data/manifests/.magicdata.done
|
||||
fi
|
||||
|
||||
if [ ! -f data/manifests/.primewords.done ]; then
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare primewords $dl_dir/primewords data/manifests/primewords
|
||||
touch data/manifests/.primewords.done
|
||||
fi
|
||||
if [ ! -f data/manifests/.stcmds.done ]; then
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare stcmds $dl_dir/stcmds data/manifests/stcmds
|
||||
touch data/manifests/.stcmds.done
|
||||
fi
|
||||
|
||||
if [ ! -f data/manifests/.thchs30.done ]; then
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare thchs-30 $dl_dir/thchs30 data/manifests/thchs30
|
||||
touch data/manifests/.thchs30.done
|
||||
fi
|
||||
|
||||
if [ ! -f data/fbank/.thchs30.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_thchs30.py --speed-perturb true --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
touch data/fbank/.thchs30.done
|
||||
fi
|
||||
|
||||
if [ ! -f data/fbank/.stcmds.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_stcmds.py --speed-perturb true --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
touch data/fbank/.stcmds.done
|
||||
fi
|
||||
if [ ! -f data/fbank/.magicdata.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_magicdata.py --speed-perturb true --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
touch data/fbank/.magicdata.done
|
||||
fi
|
||||
|
||||
if [ ! -f data/fbank/.primewords.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_primewords.py --speed-perturb true --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
touch data/fbank/.primewords.done
|
||||
fi
|
||||
|
||||
fi
|
||||
|
||||
|
||||
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
|
||||
log "Stage 13: BPE model training (note that we use transcripts of wenetspeech only for BPE training)"
|
||||
./local/prepare_for_bpe_model.py --lang-dir ./data/lang_char --text ./data/lang_char/text
|
||||
@ -369,5 +482,3 @@ if [ $stage -le 15 ] && [ $stop_stage -ge 15 ]; then
|
||||
python ./local/compile_lg.py --lang-dir $lang_dir
|
||||
done
|
||||
fi
|
||||
|
||||
|
||||
|
||||
1
egs/multi_zh-hans/ASR/whisper/asr_datamodule.py
Symbolic link
1
egs/multi_zh-hans/ASR/whisper/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../zipformer/asr_datamodule.py
|
||||
519
egs/multi_zh-hans/ASR/whisper/decode.py
Normal file
519
egs/multi_zh-hans/ASR/whisper/decode.py
Normal file
@ -0,0 +1,519 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
||||
# Fangjun Kuang,
|
||||
# Wei Kang)
|
||||
# 2024 Yuekai Zhang
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
# Command for decoding using fine-tuned models:
|
||||
git lfs install
|
||||
git clone https://huggingface.co/yuekai/icefall_asr_aishell_whisper
|
||||
ln -s icefall_asr_aishell_whisper/exp_large_v2/epoch-10-avg6.pt whisper/exp_large_v2/epoch-999.pt
|
||||
|
||||
python3 ./whisper/decode.py \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--epoch 999 --avg 1 \
|
||||
--beam-size 10 --max-duration 50
|
||||
|
||||
# Command for decoding using pretrained models (before fine-tuning):
|
||||
|
||||
python3 ./whisper/decode.py \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--epoch -1 --avg 1 \
|
||||
--remove-whisper-encoder-input-length-restriction False \
|
||||
--beam-size 10 --max-duration 50
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import whisper
|
||||
from asr_datamodule import AsrDataModule
|
||||
from lhotse.cut import Cut
|
||||
from multi_dataset import MultiDataset
|
||||
from tn.chinese.normalizer import Normalizer
|
||||
from whisper.normalizers import BasicTextNormalizer
|
||||
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||
from zhconv import convert
|
||||
|
||||
from icefall.checkpoint import average_checkpoints_with_averaged_model, load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def average_checkpoints(
|
||||
filenames: List[Path], device: torch.device = torch.device("cpu")
|
||||
) -> dict:
|
||||
"""Average a list of checkpoints.
|
||||
The function is mainly used for deepspeed converted checkpoint averaging, which only include model state_dict.
|
||||
|
||||
Args:
|
||||
filenames:
|
||||
Filenames of the checkpoints to be averaged. We assume all
|
||||
checkpoints are saved by :func:`save_checkpoint`.
|
||||
device:
|
||||
Move checkpoints to this device before averaging.
|
||||
Returns:
|
||||
Return a dict (i.e., state_dict) which is the average of all
|
||||
model state dicts contained in the checkpoints.
|
||||
"""
|
||||
n = len(filenames)
|
||||
|
||||
if "model" in torch.load(filenames[0], map_location=device):
|
||||
avg = torch.load(filenames[0], map_location=device)["model"]
|
||||
else:
|
||||
avg = torch.load(filenames[0], map_location=device)
|
||||
|
||||
# Identify shared parameters. Two parameters are said to be shared
|
||||
# if they have the same data_ptr
|
||||
uniqued: Dict[int, str] = dict()
|
||||
|
||||
for k, v in avg.items():
|
||||
v_data_ptr = v.data_ptr()
|
||||
if v_data_ptr in uniqued:
|
||||
continue
|
||||
uniqued[v_data_ptr] = k
|
||||
|
||||
uniqued_names = list(uniqued.values())
|
||||
|
||||
for i in range(1, n):
|
||||
if "model" in torch.load(filenames[i], map_location=device):
|
||||
state_dict = torch.load(filenames[i], map_location=device)["model"]
|
||||
else:
|
||||
state_dict = torch.load(filenames[i], map_location=device)
|
||||
for k in uniqued_names:
|
||||
avg[k] += state_dict[k]
|
||||
|
||||
for k in uniqued_names:
|
||||
if avg[k].is_floating_point():
|
||||
avg[k] /= n
|
||||
else:
|
||||
avg[k] //= n
|
||||
|
||||
return avg
|
||||
|
||||
|
||||
def remove_punctuation(text: str or List[str]):
|
||||
"""Modified from https://github.com/yeyupiaoling/Whisper-Finetune/blob/master/utils/data_utils.py
|
||||
|
||||
Args:
|
||||
text: It can be a string or a list of strings.
|
||||
Returns:
|
||||
Return a string or a list of strings without any punctuation.
|
||||
"""
|
||||
punctuation = "!,.;:?、!,。;:?《》 "
|
||||
if isinstance(text, str):
|
||||
text = re.sub(r"[{}]+".format(punctuation), "", text).strip()
|
||||
return text
|
||||
elif isinstance(text, list):
|
||||
result_text = []
|
||||
for t in text:
|
||||
t = re.sub(r"[{}]+".format(punctuation), "", t).strip()
|
||||
result_text.append(t)
|
||||
return result_text
|
||||
else:
|
||||
raise Exception(f"Not support type {type(text)}")
|
||||
|
||||
|
||||
def to_simple(text: str or List[str]):
|
||||
"""Convert traditional Chinese to simplified Chinese.
|
||||
Args:
|
||||
text: It can be a string or a list of strings.
|
||||
Returns:
|
||||
Return a string or a list of strings converted to simplified Chinese.
|
||||
"""
|
||||
if isinstance(text, str):
|
||||
text = convert(text, "zh-cn")
|
||||
return text
|
||||
elif isinstance(text, list):
|
||||
result_text = []
|
||||
for t in text:
|
||||
t = convert(t, "zh-cn")
|
||||
result_text.append(t)
|
||||
return result_text
|
||||
else:
|
||||
raise Exception(f"Not support type{type(text)}")
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="beam-search",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- beam-search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="beam size for beam search decoding",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="whisper/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="large-v2",
|
||||
choices=["large-v2", "large-v3", "medium", "small", "tiny"],
|
||||
help="""The model name to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--remove-whisper-encoder-input-length-restriction",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="replace whisper encoder forward method to remove input length restriction",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: "beam-search"
|
||||
- value: A list of lists. Each sublist is a list of token IDs.
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
batch:
|
||||
It is returned by :meth:`torch.utils.data.DataLoader.__iter__`.
|
||||
Returns:
|
||||
Return a dict, whose key may be "beam-search".
|
||||
"""
|
||||
dtype = torch.float16
|
||||
device = torch.device("cuda")
|
||||
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device, dtype=dtype).transpose(1, 2)
|
||||
if not params.remove_whisper_encoder_input_length_restriction:
|
||||
T = 3000
|
||||
if feature.shape[2] < T:
|
||||
feature = torch.cat(
|
||||
[
|
||||
feature,
|
||||
torch.zeros(
|
||||
feature.shape[0], feature.shape[1], T - feature.shape[2]
|
||||
).to(device, dtype=dtype),
|
||||
],
|
||||
2,
|
||||
)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_len = supervisions["num_frames"]
|
||||
feature_len = feature_len.to(device, dtype=dtype)
|
||||
results = model.decode(feature, params.decoding_options)
|
||||
hyps = [result.text for result in results]
|
||||
|
||||
hyps = remove_punctuation(hyps)
|
||||
hyps = to_simple(hyps)
|
||||
hyps = [params.normalizer.normalize(hyp) for hyp in hyps]
|
||||
print(hyps)
|
||||
return {"beam-search": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
The dataloader.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
Returns:
|
||||
Return a dict, whose key may be "beam-search".
|
||||
"""
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
|
||||
enable_log = True
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
if enable_log:
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
# we compute CER for aishell dataset.
|
||||
results_char = []
|
||||
for res in results:
|
||||
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
if enable_log:
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tCER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
setup_logger(
|
||||
f"{params.exp_dir}/log-{params.method}-beam{params.beam_size}/log-decode-{params.suffix}"
|
||||
)
|
||||
|
||||
options = whisper.DecodingOptions(
|
||||
task="transcribe",
|
||||
language="zh",
|
||||
without_timestamps=True,
|
||||
beam_size=params.beam_size,
|
||||
)
|
||||
params.decoding_options = options
|
||||
params.cleaner = BasicTextNormalizer()
|
||||
params.normalizer = Normalizer()
|
||||
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
if params.remove_whisper_encoder_input_length_restriction:
|
||||
replace_whisper_encoder_forward()
|
||||
model = whisper.load_model(params.model_name, "cpu")
|
||||
if params.epoch > 0:
|
||||
if params.avg > 1:
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
checkpoint = torch.load(
|
||||
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||||
)
|
||||
if "model" not in checkpoint:
|
||||
# deepspeed converted checkpoint only contains model state_dict
|
||||
filenames = [
|
||||
f"{params.exp_dir}/epoch-{epoch}.pt"
|
||||
for epoch in range(start, params.epoch + 1)
|
||||
]
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
else:
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
# save checkpoints
|
||||
filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||
torch.save(model.state_dict(), filename)
|
||||
else:
|
||||
checkpoint = torch.load(
|
||||
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||||
)
|
||||
if "model" not in checkpoint:
|
||||
model.load_state_dict(checkpoint, strict=True)
|
||||
else:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
|
||||
data_module = AsrDataModule(args)
|
||||
multi_dataset = MultiDataset(args.manifest_dir)
|
||||
|
||||
def remove_long_utt(c: Cut):
|
||||
# Keep only utterances with duration in 30 seconds
|
||||
#
|
||||
if c.duration > 30.0:
|
||||
# logging.warning(
|
||||
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||
# )
|
||||
return False
|
||||
return True
|
||||
|
||||
test_sets_cuts = multi_dataset.test_cuts()
|
||||
|
||||
test_sets = test_sets_cuts.keys()
|
||||
test_dls = [
|
||||
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_long_utt))
|
||||
for cuts_name in test_sets
|
||||
]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
)
|
||||
|
||||
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
1
egs/multi_zh-hans/ASR/whisper/ds_config_zero1.json
Symbolic link
1
egs/multi_zh-hans/ASR/whisper/ds_config_zero1.json
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/whisper/ds_config_zero1.json
|
||||
1
egs/multi_zh-hans/ASR/whisper/label_smoothing.py
Symbolic link
1
egs/multi_zh-hans/ASR/whisper/label_smoothing.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/conformer_ctc/label_smoothing.py
|
||||
296
egs/multi_zh-hans/ASR/whisper/multi_dataset.py
Normal file
296
egs/multi_zh-hans/ASR/whisper/multi_dataset.py
Normal file
@ -0,0 +1,296 @@
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import glob
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
import lhotse
|
||||
from lhotse import CutSet, load_manifest_lazy
|
||||
|
||||
|
||||
class MultiDataset:
|
||||
def __init__(self, fbank_dir: str):
|
||||
"""
|
||||
Args:
|
||||
manifest_dir:
|
||||
It is expected to contain the following files:
|
||||
- aishell_cuts_train.jsonl.gz
|
||||
- aishell2_cuts_train.jsonl.gz
|
||||
- aishell4_cuts_train_L.jsonl.gz
|
||||
- aishell4_cuts_train_M.jsonl.gz
|
||||
- aishell4_cuts_train_S.jsonl.gz
|
||||
- alimeeting-far_cuts_train.jsonl.gz
|
||||
- magicdata_cuts_train.jsonl.gz
|
||||
- primewords_cuts_train.jsonl.gz
|
||||
- stcmds_cuts_train.jsonl.gz
|
||||
- thchs_30_cuts_train.jsonl.gz
|
||||
- kespeech/kespeech-asr_cuts_train_phase1.jsonl.gz
|
||||
- kespeech/kespeech-asr_cuts_train_phase2.jsonl.gz
|
||||
- wenetspeech/cuts_L.jsonl.gz
|
||||
"""
|
||||
self.fbank_dir = Path(fbank_dir)
|
||||
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get multidataset train cuts")
|
||||
|
||||
# THCHS-30
|
||||
logging.info("Loading THCHS-30 in lazy mode")
|
||||
thchs_30_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "thchs_30_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-1
|
||||
logging.info("Loading Aishell-1 in lazy mode")
|
||||
aishell_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-2
|
||||
logging.info("Loading Aishell-2 in lazy mode")
|
||||
aishell_2_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell2_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-4
|
||||
logging.info("Loading Aishell-4 in lazy mode")
|
||||
aishell_4_L_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_train_L.jsonl.gz"
|
||||
)
|
||||
aishell_4_M_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_train_M.jsonl.gz"
|
||||
)
|
||||
aishell_4_S_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_train_S.jsonl.gz"
|
||||
)
|
||||
|
||||
# ST-CMDS
|
||||
logging.info("Loading ST-CMDS in lazy mode")
|
||||
stcmds_cuts = load_manifest_lazy(self.fbank_dir / "stcmds_cuts_train.jsonl.gz")
|
||||
|
||||
# Primewords
|
||||
logging.info("Loading Primewords in lazy mode")
|
||||
primewords_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "primewords_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# MagicData
|
||||
logging.info("Loading MagicData in lazy mode")
|
||||
magicdata_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "magicdata_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# Ali-Meeting
|
||||
logging.info("Loading Ali-Meeting in lazy mode")
|
||||
alimeeting_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "alimeeting-far_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
# WeNetSpeech
|
||||
logging.info("Loading WeNetSpeech in lazy mode")
|
||||
wenetspeech_L_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_L.jsonl.gz"
|
||||
)
|
||||
|
||||
# KeSpeech
|
||||
logging.info("Loading KeSpeech in lazy mode")
|
||||
kespeech_1_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase1.jsonl.gz"
|
||||
)
|
||||
kespeech_2_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase2.jsonl.gz"
|
||||
)
|
||||
|
||||
return CutSet.mux(
|
||||
thchs_30_cuts,
|
||||
aishell_cuts,
|
||||
aishell_2_cuts,
|
||||
aishell_4_L_cuts,
|
||||
aishell_4_M_cuts,
|
||||
aishell_4_S_cuts,
|
||||
stcmds_cuts,
|
||||
primewords_cuts,
|
||||
magicdata_cuts,
|
||||
alimeeting_cuts,
|
||||
wenetspeech_L_cuts,
|
||||
kespeech_1_cuts,
|
||||
kespeech_2_cuts,
|
||||
weights=[
|
||||
len(thchs_30_cuts),
|
||||
len(aishell_cuts),
|
||||
len(aishell_2_cuts),
|
||||
len(aishell_4_L_cuts),
|
||||
len(aishell_4_M_cuts),
|
||||
len(aishell_4_S_cuts),
|
||||
len(stcmds_cuts),
|
||||
len(primewords_cuts),
|
||||
len(magicdata_cuts),
|
||||
len(alimeeting_cuts),
|
||||
len(wenetspeech_L_cuts),
|
||||
len(kespeech_1_cuts),
|
||||
len(kespeech_2_cuts),
|
||||
],
|
||||
)
|
||||
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get multidataset dev cuts")
|
||||
|
||||
# AISHELL
|
||||
logging.info("Loading Aishell DEV set in lazy mode")
|
||||
aishell_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-2
|
||||
logging.info("Loading Aishell-2 DEV set in lazy mode")
|
||||
aishell2_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# Ali-Meeting
|
||||
logging.info("Loading Ali-Meeting DEV set in lazy mode")
|
||||
alimeeting_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
|
||||
)
|
||||
|
||||
# MagicData
|
||||
logging.info("Loading MagicData DEV set in lazy mode")
|
||||
magicdata_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# KeSpeech
|
||||
logging.info("Loading KeSpeech DEV set in lazy mode")
|
||||
kespeech_dev_phase1_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
|
||||
)
|
||||
kespeech_dev_phase2_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
|
||||
)
|
||||
|
||||
# WeNetSpeech
|
||||
logging.info("Loading WeNetSpeech DEV set in lazy mode")
|
||||
wenetspeech_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_DEV.jsonl.gz"
|
||||
)
|
||||
|
||||
return wenetspeech_dev_cuts
|
||||
# return [
|
||||
# aishell_dev_cuts,
|
||||
# aishell2_dev_cuts,
|
||||
# alimeeting_dev_cuts,
|
||||
# magicdata_dev_cuts,
|
||||
# kespeech_dev_phase1_cuts,
|
||||
# kespeech_dev_phase2_cuts,
|
||||
# wenetspeech_dev_cuts,
|
||||
# ]
|
||||
|
||||
def test_cuts(self) -> Dict[str, CutSet]:
|
||||
logging.info("About to get multidataset test cuts")
|
||||
|
||||
# AISHELL
|
||||
logging.info("Loading Aishell set in lazy mode")
|
||||
aishell_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_test.jsonl.gz"
|
||||
)
|
||||
aishell_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-2
|
||||
logging.info("Loading Aishell-2 set in lazy mode")
|
||||
aishell2_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell2_cuts_test.jsonl.gz"
|
||||
)
|
||||
aishell2_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# AISHELL-4
|
||||
logging.info("Loading Aishell-4 TEST set in lazy mode")
|
||||
aishell4_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "aishell4_cuts_test.jsonl.gz"
|
||||
)
|
||||
|
||||
# Ali-Meeting
|
||||
logging.info("Loading Ali-Meeting set in lazy mode")
|
||||
alimeeting_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "alimeeting-far_cuts_test.jsonl.gz"
|
||||
)
|
||||
alimeeting_eval_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
|
||||
)
|
||||
|
||||
# MagicData
|
||||
logging.info("Loading MagicData set in lazy mode")
|
||||
magicdata_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "magicdata_cuts_test.jsonl.gz"
|
||||
)
|
||||
magicdata_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
# KeSpeech
|
||||
logging.info("Loading KeSpeech set in lazy mode")
|
||||
kespeech_test_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_test.jsonl.gz"
|
||||
)
|
||||
kespeech_dev_phase1_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
|
||||
)
|
||||
kespeech_dev_phase2_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
|
||||
)
|
||||
|
||||
# WeNetSpeech
|
||||
logging.info("Loading WeNetSpeech set in lazy mode")
|
||||
wenetspeech_test_meeting_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_TEST_MEETING.jsonl.gz"
|
||||
)
|
||||
wenetspeech_test_net_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_TEST_NET.jsonl.gz"
|
||||
)
|
||||
wenetspeech_dev_cuts = load_manifest_lazy(
|
||||
self.fbank_dir / "wenetspeech" / "cuts_DEV.jsonl.gz"
|
||||
)
|
||||
|
||||
return {
|
||||
"aishell-2_test": aishell2_test_cuts,
|
||||
"aishell-4": aishell4_test_cuts,
|
||||
"magicdata_test": magicdata_test_cuts,
|
||||
"kespeech-asr_test": kespeech_test_cuts,
|
||||
}
|
||||
|
||||
# return {
|
||||
# "alimeeting_test": alimeeting_test_cuts,
|
||||
# "alimeeting_eval": alimeeting_eval_cuts,
|
||||
# "aishell_test": aishell_test_cuts,
|
||||
# "aishell_dev": aishell_dev_cuts,
|
||||
# "aishell-2_test": aishell2_test_cuts,
|
||||
# "aishell-2_dev": aishell2_dev_cuts,
|
||||
# "aishell-4": aishell4_test_cuts,
|
||||
# "magicdata_test": magicdata_test_cuts,
|
||||
# "magicdata_dev": magicdata_dev_cuts,
|
||||
# "kespeech-asr_test": kespeech_test_cuts,
|
||||
# "kespeech-asr_dev_phase1": kespeech_dev_phase1_cuts,
|
||||
# "kespeech-asr_dev_phase2": kespeech_dev_phase2_cuts,
|
||||
# "wenetspeech-meeting_test": wenetspeech_test_meeting_cuts,
|
||||
# "wenetspeech-net_test": wenetspeech_test_net_cuts,
|
||||
# "wenetspeech_dev": wenetspeech_dev_cuts,
|
||||
# }
|
||||
1
egs/multi_zh-hans/ASR/whisper/optim.py
Symbolic link
1
egs/multi_zh-hans/ASR/whisper/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/optim.py
|
||||
1
egs/multi_zh-hans/ASR/whisper/requirements.txt
Symbolic link
1
egs/multi_zh-hans/ASR/whisper/requirements.txt
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/whisper/requirements.txt
|
||||
983
egs/multi_zh-hans/ASR/whisper/train.py
Normal file
983
egs/multi_zh-hans/ASR/whisper/train.py
Normal file
@ -0,0 +1,983 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||
# 2024 Yuekai Zhang
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
|
||||
#fine-tuning with deepspeed zero stage 1
|
||||
torchrun --nproc-per-node 8 ./whisper/train.py \
|
||||
--max-duration 200 \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--deepspeed \
|
||||
--deepspeed_config ./whisper/ds_config_zero1.json
|
||||
|
||||
# fine-tuning with ddp
|
||||
torchrun --nproc_per_node 8 ./whisper/train.py \
|
||||
--max-duration 200 \
|
||||
--exp-dir whisper/exp_medium \
|
||||
--base-lr 1e-5 \
|
||||
--model-name medium
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import deepspeed
|
||||
import k2
|
||||
import optim
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import whisper
|
||||
from asr_datamodule import AsrDataModule
|
||||
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||||
from label_smoothing import LabelSmoothingLoss
|
||||
from lhotse import CutSet, load_manifest
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.dataset.sampling.base import CutSampler
|
||||
from lhotse.utils import fix_random_seed
|
||||
from multi_dataset import MultiDataset
|
||||
from optim import Eden, ScaledAdam
|
||||
from torch import Tensor
|
||||
from torch.cuda.amp import GradScaler
|
||||
from torch.nn.functional import pad as pad_tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||
|
||||
from icefall import diagnostics
|
||||
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.checkpoint import update_averaged_model
|
||||
from icefall.dist import cleanup_dist, get_rank, get_world_size, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.hooks import register_inf_check_hooks
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
filter_uneven_sized_batch,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
||||
|
||||
|
||||
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
|
||||
if isinstance(model, DDP):
|
||||
# get underlying nn.Module
|
||||
model = model.module
|
||||
for module in model.modules():
|
||||
if hasattr(module, "batch_count"):
|
||||
module.batch_count = batch_count
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Resume training from this epoch. It should be positive.
|
||||
If larger than 1, it will load checkpoint from
|
||||
exp-dir/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-batch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --start-epoch is ignored and
|
||||
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="whisper/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="large-v2",
|
||||
choices=["large-v2", "large-v3", "medium", "small", "tiny"],
|
||||
help="""The model name to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--pretrained-model-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="""The path to the pretrained model if it is not None. Training will
|
||||
start from this model. e.g. ./wenetspeech/ASR/whisper/exp_large_v2/epoch-4-avg-3.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--base-lr", type=float, default=1e-5, help="The base learning rate."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-batches",
|
||||
type=float,
|
||||
default=5000,
|
||||
help="""Number of steps that affects how rapidly the learning rate
|
||||
decreases. We suggest not to change this.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-epochs",
|
||||
type=float,
|
||||
default=6,
|
||||
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--print-diagnostics",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Accumulate stats on activations, print them and exit.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--inf-check",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Add hooks to check for infinite module outputs and gradients.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--keep-last-k",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""Only keep this number of checkpoints on disk.
|
||||
For instance, if it is 3, there are only 3 checkpoints
|
||||
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
||||
It does not affect checkpoints with name `epoch-xxx.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--average-period",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Update the averaged model, namely `model_avg`, after processing
|
||||
this number of batches. `model_avg` is a separate version of model,
|
||||
in which each floating-point parameter is the average of all the
|
||||
parameters from the start of training. Each time we take the average,
|
||||
we do: `model_avg = model * (average_period / batch_idx_train) +
|
||||
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-fp16",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
parser = deepspeed.add_config_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- frame_shift_ms: The frame shift in milliseconds.
|
||||
- allowed_excess_duration_ratio: The allowed excess duration ratio.
|
||||
- best_train_loss: The best training loss so far.
|
||||
- best_valid_loss: The best validation loss so far.
|
||||
- best_train_epoch: The epoch where the best training loss is achieved.
|
||||
- best_valid_epoch: The epoch where the best validation loss is achieved.
|
||||
- batch_idx_train: The batch index of the current batch.
|
||||
- log_interval: Log training stats every `log_interval` batches.
|
||||
- reset_interval: Reset the stats every `reset_interval` batches.
|
||||
- valid_interval: Run validation every `valid_interval` batches.
|
||||
- env_info: The environment information.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"frame_shift_ms": 10.0,
|
||||
"subsampling_factor": 2,
|
||||
"allowed_excess_duration_ratio": 0.1,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 10000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
model_avg: nn.Module = None,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[LRSchedulerType] = None,
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_batch is positive, it will load the checkpoint from
|
||||
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
||||
params.start_epoch is larger than 1, it will load the checkpoint from
|
||||
`params.start_epoch - 1`.
|
||||
|
||||
Apart from loading state dict for `model` and `optimizer` it also updates
|
||||
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The scheduler that we are using.
|
||||
Returns:
|
||||
Return a dict containing previously saved training info.
|
||||
"""
|
||||
if params.start_batch > 0:
|
||||
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
||||
elif params.start_epoch > 1:
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
else:
|
||||
return None
|
||||
|
||||
assert filename.is_file(), f"{filename} does not exist!"
|
||||
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
if params.start_batch > 0:
|
||||
if "cur_epoch" in saved_params:
|
||||
params["start_epoch"] = saved_params["cur_epoch"]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: Union[nn.Module, DDP],
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[LRSchedulerType] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
optimizer:
|
||||
The optimizer used in the training.
|
||||
sampler:
|
||||
The sampler for the training dataset.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sampler=sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
tokenizer: whisper.tokenizer.Tokenizer,
|
||||
model: Union[nn.Module, DDP],
|
||||
batch: dict,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute the loss for the given batch.
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
tokenizer:
|
||||
The tokenizer used to encode the text.
|
||||
model:
|
||||
The model for training.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
is_training:
|
||||
Whether it is training.
|
||||
Returns:
|
||||
Return a tuple of two elements. The first element is the loss tensor.
|
||||
"""
|
||||
# For the uneven-sized batch, the total duration after padding would possibly
|
||||
# cause OOM. Hence, for each batch, which is sorted descendingly by length,
|
||||
# we simply drop the last few shortest samples, so that the retained total frames
|
||||
# (after padding) would not exceed `allowed_max_frames`:
|
||||
# `allowed_max_frames = int(max_frames * (1.0 + allowed_excess_duration_ratio))`,
|
||||
# where `max_frames = max_duration * 1000 // frame_shift_ms`.
|
||||
# We set allowed_excess_duration_ratio=0.1.
|
||||
if isinstance(model, DDP):
|
||||
# get underlying nn.Module
|
||||
model = model.module
|
||||
|
||||
def _batch_tensors(tensors: List[Tensor], pad_value: Any) -> Tensor:
|
||||
padding_size = max(tensor.shape[0] for tensor in tensors)
|
||||
dims = len(tensors[0].shape)
|
||||
padded_tensors = []
|
||||
for tensor in tensors:
|
||||
padding = [0] * 2 * dims
|
||||
padding[-1] = padding_size - tensor.shape[0]
|
||||
padded_tensors.append(pad_tensor(tensor, padding, "constant", pad_value))
|
||||
return torch.stack([tensor for tensor in padded_tensors], dim=0)
|
||||
|
||||
max_frames = params.max_duration * 1000 // params.frame_shift_ms
|
||||
allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio))
|
||||
batch = filter_uneven_sized_batch(batch, allowed_max_frames)
|
||||
|
||||
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
feature = feature.transpose(1, 2) # (N, C, T)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
batch_idx_train = params.batch_idx_train
|
||||
|
||||
texts = batch["supervisions"]["text"]
|
||||
# remove spaces in texts
|
||||
texts = [text.replace(" ", "") for text in texts]
|
||||
|
||||
text_tokens_list = [
|
||||
list(tokenizer.sot_sequence_including_notimestamps)
|
||||
+ tokenizer.encode(text)
|
||||
+ [tokenizer.eot]
|
||||
for text in texts
|
||||
]
|
||||
# convert it to torch tensor
|
||||
text_tokens_list = [
|
||||
torch.LongTensor(text_tokens) for text_tokens in text_tokens_list
|
||||
]
|
||||
|
||||
# 50256 is the index of <pad> for all whisper models
|
||||
prev_outputs_tokens = _batch_tensors(
|
||||
[tokens[:-1] for tokens in text_tokens_list], pad_value=50256
|
||||
)
|
||||
target_tokens = _batch_tensors(
|
||||
[tokens[1:] for tokens in text_tokens_list], pad_value=50256
|
||||
)
|
||||
target_lengths = torch.LongTensor(
|
||||
[tokens.shape[0] - 1 for tokens in text_tokens_list]
|
||||
)
|
||||
|
||||
decoder_criterion = LabelSmoothingLoss(
|
||||
ignore_index=50256, label_smoothing=0.1, reduction="sum"
|
||||
)
|
||||
|
||||
# ignore the first 3 tokens, which are always <|lang_id|>, <|transcibe|>, <|notimestampes|>
|
||||
ignore_prefix_size = 3
|
||||
with torch.set_grad_enabled(is_training):
|
||||
encoder_out = model.encoder(feature)
|
||||
text_logits = model.decoder(prev_outputs_tokens.to(device), encoder_out)
|
||||
text_logits = text_logits[:, ignore_prefix_size:, :]
|
||||
target_tokens = target_tokens[:, ignore_prefix_size:]
|
||||
loss = decoder_criterion(text_logits, target_tokens.to(device))
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||
|
||||
# Note: We use reduction=sum while computing the loss.
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
tokenizer: whisper.tokenizer.Tokenizer,
|
||||
model: Union[nn.Module, DDP],
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
batch=batch,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
tokenizer: whisper.tokenizer.Tokenizer,
|
||||
model: Union[nn.Module, DDP],
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: LRSchedulerType,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
scaler: GradScaler,
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler, we call step() every step.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
rank:
|
||||
The rank of the node in DDP training. If no DDP is used, it should
|
||||
be set to 0.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
logging.info(
|
||||
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||
)
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
if params.deepspeed:
|
||||
model.save_checkpoint(
|
||||
save_dir=params.exp_dir,
|
||||
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||
client_state={},
|
||||
)
|
||||
if rank == 0:
|
||||
convert_zero_checkpoint_to_fp32_state_dict(
|
||||
params.exp_dir,
|
||||
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}.pt",
|
||||
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||
)
|
||||
os.system(
|
||||
f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}"
|
||||
)
|
||||
|
||||
try:
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
if params.deepspeed:
|
||||
# deepspeed's backward() is different from torch's backward()
|
||||
# in that it does not accept a loss tensor as input.
|
||||
# It computes the loss internally.
|
||||
model.backward(loss)
|
||||
model.step()
|
||||
else:
|
||||
scaler.scale(loss).backward()
|
||||
set_batch_count(model, params.batch_idx_train)
|
||||
scheduler.step_batch(params.batch_idx_train)
|
||||
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
optimizer.zero_grad()
|
||||
except: # noqa
|
||||
display_and_save_batch(batch, params=params)
|
||||
raise
|
||||
|
||||
if params.print_diagnostics and batch_idx == 5:
|
||||
return
|
||||
|
||||
if (
|
||||
rank == 0
|
||||
and params.batch_idx_train > 0
|
||||
and params.batch_idx_train % params.average_period == 0
|
||||
and not params.deepspeed
|
||||
):
|
||||
update_averaged_model(
|
||||
params=params,
|
||||
model_cur=model,
|
||||
model_avg=model_avg,
|
||||
)
|
||||
|
||||
if batch_idx % 100 == 0 and params.use_fp16 and not params.deepspeed:
|
||||
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
||||
# of the grad scaler is configurable, but we can't configure it to have different
|
||||
# behavior depending on the current grad scale.
|
||||
cur_grad_scale = scaler._scale.item()
|
||||
if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0):
|
||||
scaler.update(cur_grad_scale * 2.0)
|
||||
if cur_grad_scale < 0.01:
|
||||
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
||||
if cur_grad_scale < 1.0e-05:
|
||||
raise RuntimeError(
|
||||
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
||||
)
|
||||
if batch_idx % params.log_interval == 0:
|
||||
try:
|
||||
cur_lr = scheduler.get_last_lr()[0]
|
||||
except: # noqa
|
||||
cur_lr = 0.0
|
||||
cur_grad_scale = (
|
||||
scaler._scale.item()
|
||||
if (params.use_fp16 and not params.deepspeed)
|
||||
else 1.0
|
||||
)
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||
f"lr: {cur_lr:.2e}, "
|
||||
+ (
|
||||
f"grad_scale: {scaler._scale.item()}"
|
||||
if (params.use_fp16 and not params.deepspeed)
|
||||
else ""
|
||||
)
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||
if params.use_fp16:
|
||||
tb_writer.add_scalar(
|
||||
"train/grad_scale",
|
||||
cur_grad_scale,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
|
||||
replace_whisper_encoder_forward()
|
||||
model = whisper.load_model(params.model_name, "cpu")
|
||||
del model.alignment_heads
|
||||
|
||||
if params.pretrained_model_path:
|
||||
checkpoint = torch.load(params.pretrained_model_path, map_location="cpu")
|
||||
if "model" not in checkpoint:
|
||||
model.load_state_dict(checkpoint, strict=True)
|
||||
else:
|
||||
load_checkpoint(params.pretrained_model_path, model)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
tokenizer = whisper.tokenizer.get_tokenizer(
|
||||
model.is_multilingual,
|
||||
num_languages=model.num_languages,
|
||||
language="zh",
|
||||
task="transcribe",
|
||||
)
|
||||
|
||||
model_avg: Optional[nn.Module] = None
|
||||
if rank == 0:
|
||||
# model_avg is only used with rank 0
|
||||
model_avg = copy.deepcopy(model).to(torch.float64)
|
||||
|
||||
assert params.start_epoch > 0, params.start_epoch
|
||||
checkpoints = load_checkpoint_if_available(
|
||||
params=params, model=model, model_avg=model_avg
|
||||
)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
logging.info(f"Device: {device}")
|
||||
model.to(device)
|
||||
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=params.base_lr)
|
||||
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
||||
|
||||
if checkpoints and "optimizer" in checkpoints:
|
||||
logging.info("Loading optimizer state dict")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
if (
|
||||
checkpoints
|
||||
and "scheduler" in checkpoints
|
||||
and checkpoints["scheduler"] is not None
|
||||
):
|
||||
logging.info("Loading scheduler state dict")
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
if world_size > 1:
|
||||
if params.deepspeed:
|
||||
logging.info("Using DeepSpeed")
|
||||
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||
args=params, model=model, model_parameters=model.parameters()
|
||||
)
|
||||
else:
|
||||
logging.info("Using DDP")
|
||||
setup_dist(use_ddp_launch=True)
|
||||
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
if params.inf_check:
|
||||
register_inf_check_hooks(model)
|
||||
|
||||
data_module = AsrDataModule(args)
|
||||
multi_dataset = MultiDataset(args.manifest_dir)
|
||||
|
||||
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||
# We only load the sampler's state dict when it loads a checkpoint
|
||||
# saved in the middle of an epoch
|
||||
sampler_state_dict = checkpoints["sampler"]
|
||||
else:
|
||||
sampler_state_dict = None
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
#
|
||||
# Caution: There is a reason to select 20.0 here. Please see
|
||||
# ../local/display_manifest_statistics.py
|
||||
#
|
||||
# You should use ../local/display_manifest_statistics.py to get
|
||||
# an utterance duration distribution for your dataset to select
|
||||
# the threshold
|
||||
if c.duration < 1.0 or c.duration > 20.0:
|
||||
# logging.warning(
|
||||
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||
# )
|
||||
return False
|
||||
return True
|
||||
|
||||
train_cuts = multi_dataset.train_cuts()
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
train_dl = data_module.train_dataloaders(
|
||||
train_cuts, sampler_state_dict=sampler_state_dict
|
||||
)
|
||||
|
||||
valid_cuts = multi_dataset.dev_cuts()
|
||||
valid_dl = data_module.valid_dataloaders(valid_cuts)
|
||||
|
||||
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
||||
if checkpoints and "grad_scaler" in checkpoints:
|
||||
logging.info("Loading grad scaler state dict")
|
||||
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
logging.info(f"start training from epoch {params.start_epoch}")
|
||||
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||
if not params.deepspeed:
|
||||
scheduler.step_epoch(epoch - 1)
|
||||
fix_random_seed(params.seed + epoch - 1)
|
||||
train_dl.sampler.set_epoch(epoch - 1)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
scaler=scaler,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.print_diagnostics:
|
||||
diagnostic.print_diagnostics()
|
||||
break
|
||||
|
||||
if params.deepspeed:
|
||||
model.save_checkpoint(
|
||||
save_dir=params.exp_dir,
|
||||
tag=f"epoch-{params.cur_epoch}",
|
||||
client_state={},
|
||||
)
|
||||
if rank == 0:
|
||||
convert_zero_checkpoint_to_fp32_state_dict(
|
||||
params.exp_dir,
|
||||
f"{params.exp_dir}/epoch-{params.cur_epoch}.pt",
|
||||
tag=f"epoch-{params.cur_epoch}",
|
||||
)
|
||||
os.system(f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}")
|
||||
else:
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sampler=train_dl.sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1 and not params.deepspeed:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def display_and_save_batch(
|
||||
batch: dict,
|
||||
params: AttributeDict,
|
||||
) -> None:
|
||||
"""Display the batch statistics and save the batch into disk.
|
||||
|
||||
Args:
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
"""
|
||||
from lhotse.utils import uuid4
|
||||
|
||||
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
||||
logging.info(f"Saving batch to {filename}")
|
||||
torch.save(batch, filename)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
features = batch["inputs"]
|
||||
|
||||
logging.info(f"features shape: {features.shape}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = get_world_size()
|
||||
rank = get_rank()
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
run(rank=rank, world_size=world_size, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/whisper/whisper_encoder_forward_monkey_patch.py
|
||||
15
egs/speechio/ASR/README.md
Normal file
15
egs/speechio/ASR/README.md
Normal file
@ -0,0 +1,15 @@
|
||||
|
||||
# Introduction
|
||||
|
||||
This recipe includes some different pretrained ASR models' decoding results with [SpeechIO](https://github.com/SpeechColab/Leaderboard) test sets.
|
||||
|
||||
[./RESULTS.md](./RESULTS.md) contains the latest results.
|
||||
|
||||
# Pretrained Models
|
||||
|
||||
The following table lists the pretrained models.
|
||||
|
||||
| | Huggingface | Comment |
|
||||
|---------------------------------------|--------------------|-----------------------------|
|
||||
| `zipformer` | zrjin/icefall-asr-multi-zh-hans-zipformer-ctc-2023-10-24 | Using [multi-hans-zh recipe](../../multi_zh-hans/ASR/zipformer/) training | |
|
||||
| `whisper` | yuekai/icefall_asr_wenetspeech_whisper | Using [wenetspeech recipe](../../wenetspeech/ASR/whisper/) training |
|
||||
92
egs/speechio/ASR/RESULTS.md
Normal file
92
egs/speechio/ASR/RESULTS.md
Normal file
@ -0,0 +1,92 @@
|
||||
## Results
|
||||
|
||||
### SpeechIO Test Set Decoding Results
|
||||
|
||||
##### Decoding results using pretrained [multi-hans-zh zipformer](https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-ctc-2023-10-24), [whipser-large-v2](https://github.com/openai/whisper/blob/main/whisper/__init__.py#L27), [whisper-large-v2-wenetspeech-ft](https://huggingface.co/yuekai/icefall_asr_wenetspeech_whisper).
|
||||
|
||||
| | zipformer_transducer | zipformer_transducer_blank_penalty_2 | whisper_large_v2 | whisper_large_v2_wenetspeech | whisper_large_v2_wenetspeech_zipformer_fusion |
|
||||
|------------------------|----------------------|--------------------------------------|------------------|------------------------------|-----------------------------------------------|
|
||||
| SPEECHIO_ASR_ZH00000 | 10.04 | 8.04 | 11.4 | 9.88 | 7.78 |
|
||||
| SPEECHIO_ASR_ZH00001 | 1.67 | 1.51 | 2.49 | 1.57 | 1.38 |
|
||||
| SPEECHIO_ASR_ZH00002 | 5.89 | 5.27 | 7.89 | 5.65 | 4.99 |
|
||||
| SPEECHIO_ASR_ZH00003 | 2.66 | 2.79 | 5.94 | 2.27 | 2.33 |
|
||||
| SPEECHIO_ASR_ZH00004 | 3.6 | 3.34 | 4.57 | 3.62 | 3.26 |
|
||||
| SPEECHIO_ASR_ZH00005 | 7.54 | 5.81 | 8.39 | 7.26 | 5.43 |
|
||||
| SPEECHIO_ASR_ZH00006 | 15.59 | 13.34 | 19.07 | 13.64 | 11.96 |
|
||||
| SPEECHIO_ASR_ZH00007 | 15.9 | 15.05 | 16.7 | 14.06 | 13.73 |
|
||||
| SPEECHIO_ASR_ZH00008 | 11.07 | 9.68 | 14.69 | 10.34 | 8.87 |
|
||||
| SPEECHIO_ASR_ZH00009 | 7.38 | 6.23 | 8.32 | 6.74 | 5.96 |
|
||||
| SPEECHIO_ASR_ZH00010 | 9.19 | 7.33 | 11.2 | 8.85 | 6.97 |
|
||||
| SPEECHIO_ASR_ZH00011 | 4.16 | 3.84 | 54.56 | 4.09 | 3.72 |
|
||||
| SPEECHIO_ASR_ZH00012 | 7.61 | 6.58 | 10.53 | 8.35 | 6.27 |
|
||||
| SPEECHIO_ASR_ZH00013 | 8.72 | 7.66 | 9.32 | 7.26 | 6.7 |
|
||||
| SPEECHIO_ASR_ZH00014 | 9.69 | 8.71 | 9.03 | 7.03 | 6.59 |
|
||||
| SPEECHIO_ASR_ZH00015 | 11.94 | 11.37 | 16.58 | 12.02 | 11.11 |
|
||||
| SPEECHIO_ASR_ZH00016 | 9.79 | 8.79 | 14.1 | 10.19 | 8.15 |
|
||||
| SPEECHIO_ASR_ZH00017 | 8 | 6.72 | 9.04 | 8.9 | 6.44 |
|
||||
| SPEECHIO_ASR_ZH00018 | 5.42 | 5.02 | 6.06 | 4.86 | 4.4 |
|
||||
| SPEECHIO_ASR_ZH00019 | 11.26 | 9.06 | 14.8 | 9.83 | 8.22 |
|
||||
| SPEECHIO_ASR_ZH00020 | 4.37 | 4.23 | 5.97 | 4.23 | 4.13 |
|
||||
| SPEECHIO_ASR_ZH00021 | 7.81 | 6.34 | 8.53 | 7.08 | 5.88 |
|
||||
| SPEECHIO_ASR_ZH00022 | 9.11 | 8.54 | 9.7 | 8.97 | 8.02 |
|
||||
| SPEECHIO_ASR_ZH00023 | 9.98 | 8.98 | 6.31 | 9.44 | 8.57 |
|
||||
| SPEECHIO_ASR_ZH00024 | 16.15 | 12.95 | 20.54 | 15.92 | 12.28 |
|
||||
| SPEECHIO_ASR_ZH00025 | 10.38 | 9.82 | 11.4 | 10.26 | 9.27 |
|
||||
| SPEECHIO_ASR_ZH00026 | 5.69 | 5.63 | 9.09 | 5.95 | 5.51 |
|
||||
| Average WER (001-026) | 8.48 | 7.48 | 12.11 | 8.01 | 6.93 |
|
||||
|
||||
|
||||
|
||||
|
||||
Command for decoding using fine-tuned whisper:
|
||||
```bash
|
||||
git lfs install
|
||||
git clone https://huggingface.co/yuekai/icefall_asr_wenetspeech_whisper
|
||||
ln -s icefall_asr_aishell_whisper/exp_large_v2/epoch-4-avg3.pt whisper/exp_large_v2_wenetspeech/epoch-999.pt
|
||||
|
||||
python3 ./whisper/decode.py \
|
||||
--exp-dir whisper/exp_large_v2_wenetspeech \
|
||||
--model-name large-v2 \
|
||||
--epoch 999 --avg 1 \
|
||||
--start-index 0 --end-index 26 \
|
||||
--remove-whisper-encoder-input-length-restriction True \
|
||||
--manifest-dir data/fbank \
|
||||
--beam-size 1 --max-duration 50
|
||||
```
|
||||
Command for decoding using pretrained zipformer:
|
||||
```bash
|
||||
git lfs install
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-ctc-2023-10-24
|
||||
cd icefall-asr-multi-zh-hans-zipformer-ctc-2023-10-24
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
git lfs pull --include "data/lang_bpe_2000/*"
|
||||
ln -s ../icefall-asr-multi-zh-hans-zipformer-ctc-2023-10-24/exp/pretrained.pt zipformer/exp_pretrain/epoch-999.pt
|
||||
ln -s ../icefall-asr-multi-zh-hans-zipformer-ctc-2023-10-24/data/lang_bpe_2000/ ./data
|
||||
wget https://huggingface.co/pkufool/icefall-asr-zipformer-wenetspeech-20230615/resolve/main/data/lang_char/words.txt
|
||||
mv words.txt ./data/lang_bpe_2000/
|
||||
|
||||
./zipformer/decode.py \
|
||||
--epoch 999 \
|
||||
--avg 1 \
|
||||
--blank-penalty 2.0 \
|
||||
--use-averaged-model false \
|
||||
--exp-dir ./zipformer/exp_pretrain \
|
||||
--max-duration 600 \
|
||||
--start-index 0 --end-index 26 \
|
||||
--manifest-dir data/fbank_kaldi \
|
||||
--decoding-method greedy_search
|
||||
```
|
||||
Command for fusion the above decoding results from whisper and zipformer:
|
||||
```bash
|
||||
python local/whisper_zipformer_fusion.py \
|
||||
--whisper-log-dir ./whisper/exp_large_v2_wenetspeech \
|
||||
--zipformer-log-dir ./zipformer/exp_pretrain/greedy_search \
|
||||
--output-log-dir ./results_fusion
|
||||
|
||||
```
|
||||
|
||||
See why the fusion helps [here](./local/whisper_zipformer_fusion.py).
|
||||
|
||||
SpeechIO fbank features, decoding scripts, logs, and decoding results
|
||||
are available at
|
||||
<https://huggingface.co/yuekai/icefall_asr_speechio>
|
||||
148
egs/speechio/ASR/local/compute_fbank_speechio.py
Normal file
148
egs/speechio/ASR/local/compute_fbank_speechio.py
Normal file
@ -0,0 +1,148 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang
|
||||
# Zengrui Jin)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the ST-CMDS dataset.
|
||||
It looks for manifests in the directory data/manifests/stcmds.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
SPEECHIO_TESTSET_INDEX = 26 # Currently, from 0 - 26 test sets are open source.
|
||||
|
||||
|
||||
def compute_fbank_speechio(
|
||||
num_mel_bins: int = 80,
|
||||
speed_perturb: bool = False,
|
||||
fbank_dir: str = "data/fbank",
|
||||
whisper_fbank: bool = False,
|
||||
):
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path(fbank_dir)
|
||||
num_jobs = min(8, os.cpu_count())
|
||||
|
||||
dataset_parts = []
|
||||
for i in range(SPEECHIO_TESTSET_INDEX + 1):
|
||||
idx = f"{i}".zfill(2)
|
||||
dataset_parts.append(f"SPEECHIO_ASR_ZH000{idx}")
|
||||
|
||||
prefix = "speechio"
|
||||
suffix = "jsonl.gz"
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts,
|
||||
output_dir=src_dir,
|
||||
prefix=prefix,
|
||||
suffix=suffix,
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
assert len(manifests) == len(dataset_parts), (
|
||||
len(manifests),
|
||||
len(dataset_parts),
|
||||
list(manifests.keys()),
|
||||
dataset_parts,
|
||||
)
|
||||
|
||||
if whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=args.num_mel_bins, device="cuda")
|
||||
)
|
||||
else:
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
|
||||
logging.info(f"{partition} already exists - skipping.")
|
||||
continue
|
||||
logging.info(f"Processing {partition}")
|
||||
cut_set = CutSet.from_manifests(
|
||||
recordings=m["recordings"],
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
||||
# when an executor is specified, make more partitions
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--num-mel-bins",
|
||||
type=int,
|
||||
default=80,
|
||||
help="""The number of mel bins for Fbank""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fbank-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
args = get_args()
|
||||
compute_fbank_speechio(
|
||||
num_mel_bins=args.num_mel_bins,
|
||||
fbank_dir=args.fbank_dir,
|
||||
whisper_fbank=args.whisper_fbank,
|
||||
)
|
||||
1162
egs/speechio/ASR/local/display_manifest_statistics.py
Normal file
1162
egs/speechio/ASR/local/display_manifest_statistics.py
Normal file
File diff suppressed because it is too large
Load Diff
217
egs/speechio/ASR/local/whisper_zipformer_fusion.py
Normal file
217
egs/speechio/ASR/local/whisper_zipformer_fusion.py
Normal file
@ -0,0 +1,217 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2024 Author: Yuekai Zhang
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This file uses whisper and zipformer decoding results to generate fusion decoding results.
|
||||
Since whisper model is more likely to make deletion errors and zipformer model is more likely to make substitution and insertion errors,
|
||||
we trust whisper model when it makes substitution and insertion errors and trust zipformer model when it makes deletion errors.
|
||||
|
||||
Usage:
|
||||
python whisper_zipformer_fusion.py --whisper-log-dir ./whisper_decoding_log_dir --zipformer-log-dir ./zipformer_decoding_log_dir --output-log-dir ./results_fusion
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import kaldialign
|
||||
|
||||
from icefall.utils import store_transcripts, write_error_stats
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
parser.add_argument(
|
||||
"--whisper-log-dir",
|
||||
type=str,
|
||||
default="./recogs_whisper",
|
||||
help="The directory to store the whisper logs: e.g. recogs-SPEECHIO_ASR_ZH00014-beam-search-epoch--1-avg-1.txt",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--zipformer-log-dir",
|
||||
type=str,
|
||||
default="./recogs_zipformer",
|
||||
help="The directory to store the zipformer logs",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-log-dir",
|
||||
type=str,
|
||||
default="./results_fusion",
|
||||
help="The directory to store the fusion logs",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def save_results(
|
||||
res_dir: Path,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
|
||||
suffix = "epoch-999-avg-1"
|
||||
|
||||
for key, results in results_dict.items():
|
||||
recog_path = res_dir / f"recogs-{test_set_name}-{key}-{suffix}.txt"
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
print(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = res_dir / f"errs-{test_set_name}-{key}-{suffix}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
print("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = res_dir / f"wer-summary-{test_set_name}-{key}-{suffix}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
print(s)
|
||||
|
||||
|
||||
def extract_hyp_ref_wavname(filename):
|
||||
"""
|
||||
0Phqz8RWYuE_0007-5: ref=['R', 'Y', 'Y', 'B', '它最大的优势就是进光量或者说是对光线利用率的提升']
|
||||
0Phqz8RWYuE_0007-5: hyp=而YB它最大的优势是近光量或者说是对光线利用率的提升
|
||||
"""
|
||||
hyps, refs, wav_name = [], [], []
|
||||
with open(filename, "r") as f:
|
||||
for line in f:
|
||||
if "ref" in line:
|
||||
ref = line.split("ref=")[1].strip()
|
||||
ref = ref[2:-2]
|
||||
list_elements = ref.split("', '")
|
||||
ref = "".join(list_elements)
|
||||
refs.append(ref)
|
||||
elif "hyp" in line:
|
||||
hyp = line.split("hyp=")[1].strip()
|
||||
hyps.append(hyp)
|
||||
wav_name.append(line.split(":")[0])
|
||||
return hyps, refs, wav_name
|
||||
|
||||
|
||||
def get_pair_filenames(
|
||||
whisper_log_dir,
|
||||
zipformer_log_dir,
|
||||
whisper_suffix="beam-search-epoch-999-avg-1",
|
||||
zipformer_suffix="greedy_search_blank_penalty_2.0-epoch-999-avg-1-context-2-max-sym-per-frame-1-blank-penalty-2.0",
|
||||
):
|
||||
results = []
|
||||
start_index, end_index = 0, 26
|
||||
dataset_parts = []
|
||||
for i in range(start_index, end_index + 1):
|
||||
idx = f"{i}".zfill(2)
|
||||
dataset_parts.append(f"SPEECHIO_ASR_ZH000{idx}")
|
||||
for partition in dataset_parts:
|
||||
whisper_filename = f"{whisper_log_dir}/recogs-{partition}-{whisper_suffix}.txt"
|
||||
zipformer_filename = (
|
||||
f"{zipformer_log_dir}/recogs-{partition}-{zipformer_suffix}.txt"
|
||||
)
|
||||
results.append((whisper_filename, zipformer_filename))
|
||||
return results
|
||||
|
||||
|
||||
def fusion_hyps_trust_substituion_insertion(
|
||||
hyps_whisper, hyps_zipformer, refs, ERR="*"
|
||||
):
|
||||
"""
|
||||
alignment example:
|
||||
[('我', '你'), ('在', '*'), ('任', '任'), ('的', '的'), ('时', '时'), ('候', '候'), ('*', '呢')]
|
||||
left is whisper, right is zipformer
|
||||
for whisper substitution, use left
|
||||
for whisper insertion, use left
|
||||
for whisper deletion, use right
|
||||
"""
|
||||
hyps_fusion = []
|
||||
for hyp_w, hyp_z, ref in zip(hyps_whisper, hyps_zipformer, refs):
|
||||
ali = kaldialign.align(hyp_w, hyp_z, ERR)
|
||||
hyp_f = ""
|
||||
for a in ali:
|
||||
if a[0] == ERR:
|
||||
hyp_f += a[1]
|
||||
else:
|
||||
hyp_f += a[0]
|
||||
hyps_fusion.append(hyp_f)
|
||||
return hyps_fusion
|
||||
|
||||
|
||||
def fusion_hyps_trust_substituion(hyps_whisper, hyps_zipformer, refs, ERR="*"):
|
||||
"""
|
||||
alignment example:
|
||||
[('我', '你'), ('在', '*'), ('任', '任'), ('的', '的'), ('时', '时'), ('候', '候'), ('*', '呢')]
|
||||
left is whisper, right is zipformer
|
||||
for whisper substitution, use left
|
||||
for whisper insertion, use right
|
||||
for whisper deletion, use right
|
||||
"""
|
||||
hyps_fusion = []
|
||||
for hyp_w, hyp_z, ref in zip(hyps_whisper, hyps_zipformer, refs):
|
||||
ali = kaldialign.align(hyp_w, hyp_z, ERR)
|
||||
hyp_f = ""
|
||||
for a in ali:
|
||||
if a[0] == ERR:
|
||||
hyp_f += a[1]
|
||||
elif a[1] == ERR:
|
||||
pass
|
||||
else:
|
||||
hyp_f += a[0]
|
||||
hyps_fusion.append(hyp_f)
|
||||
return hyps_fusion
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
# mkdir output_log_dir
|
||||
Path(args.output_log_dir).mkdir(parents=True, exist_ok=True)
|
||||
pair_logs = get_pair_filenames(args.whisper_log_dir, args.zipformer_log_dir)
|
||||
for pair in pair_logs:
|
||||
hyps_whisper, refs, wav_name = extract_hyp_ref_wavname(pair[0])
|
||||
hyps_zipformer, _, _ = extract_hyp_ref_wavname(pair[1])
|
||||
|
||||
hyps_fusion = fusion_hyps_trust_substituion_insertion(
|
||||
hyps_whisper, hyps_zipformer, refs
|
||||
)
|
||||
|
||||
partition_name = pair[0].split("/")[-1].split("-")[1]
|
||||
save_results(
|
||||
Path(args.output_log_dir),
|
||||
partition_name,
|
||||
{"fusion": list(zip(wav_name, refs, hyps_fusion))},
|
||||
)
|
||||
|
||||
print(f"Processed {partition_name}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
67
egs/speechio/ASR/prepare.sh
Normal file
67
egs/speechio/ASR/prepare.sh
Normal file
@ -0,0 +1,67 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
stage=3
|
||||
stop_stage=3
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
#
|
||||
# - $dl_dir/SPEECHIO_ASR_ZH00000
|
||||
# This directory contains the following files downloaded from
|
||||
# https://github.com/SpeechColab/Leaderboard
|
||||
#
|
||||
# - metadata.tsv
|
||||
# - wav
|
||||
# - wav.scp
|
||||
# - trans.txt
|
||||
#
|
||||
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare speechio manifest"
|
||||
# We assume that you have downloaded the speechio dataset
|
||||
# to $dl_dir
|
||||
mkdir -p data/manifests
|
||||
if [ ! -e data/manifests/.speechio.done ]; then
|
||||
lhotse prepare speechio $dl_dir data/manifests
|
||||
touch data/manifests/.speechio.done
|
||||
fi
|
||||
fi
|
||||
|
||||
whisper_mel_bins=80
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Compute whisper fbank for speechio"
|
||||
if [ ! -f data/fbank/.speechio.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_speechio.py --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
touch data/fbank/.speechio.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Compute kaldi fbank for speechio"
|
||||
if [ ! -f data/fbank/.speechio.kaldi.done ]; then
|
||||
fbank_dir=data/fbank_kaldi
|
||||
mkdir -p $fbank_dir
|
||||
./local/compute_fbank_speechio.py --fbank-dir $fbank_dir
|
||||
touch data/fbank/.speechio.kaldi.done
|
||||
fi
|
||||
fi
|
||||
1
egs/speechio/ASR/shared
Symbolic link
1
egs/speechio/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
||||
../../../icefall/shared//
|
||||
195
egs/speechio/ASR/whisper/asr_datamodule.py
Normal file
195
egs/speechio/ASR/whisper/asr_datamodule.py
Normal file
@ -0,0 +1,195 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SimpleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import AudioSamples # noqa F401 For AudioSamples
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class AsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
There is no train and valid dataloader, for speechio dataset
|
||||
but there can be multiple test dataloaders.
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=300.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default="PrecomputedFeatures",
|
||||
help="AudioSamples or PrecomputedFeatures",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--start-index",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Decoding will start from dataset SPEECHIO_ASR_ZH000index",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--end-index",
|
||||
type=int,
|
||||
default=26,
|
||||
help="Decoding will end with dataset SPEECHIO_ASR_ZH000index",
|
||||
)
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
520
egs/speechio/ASR/whisper/decode.py
Normal file
520
egs/speechio/ASR/whisper/decode.py
Normal file
@ -0,0 +1,520 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
||||
# Fangjun Kuang,
|
||||
# Wei Kang)
|
||||
# 2024 Yuekai Zhang
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
# Command for decoding using fine-tuned models:
|
||||
git lfs install
|
||||
git clone https://huggingface.co/yuekai/icefall_asr_aishell_whisper
|
||||
ln -s icefall_asr_aishell_whisper/exp_large_v2/epoch-10-avg6.pt whisper/exp_large_v2/epoch-999.pt
|
||||
|
||||
python3 ./whisper/decode.py \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--epoch 999 --avg 1 \
|
||||
--beam-size 10 --max-duration 50
|
||||
|
||||
# Command for decoding using pretrained models (before fine-tuning):
|
||||
|
||||
python3 ./whisper/decode.py \
|
||||
--exp-dir whisper/exp_large_v2_pretrained \
|
||||
--model-name large-v2 \
|
||||
--epoch -1 --avg 1 \
|
||||
--start-index 14 --end-index 15 \
|
||||
--remove-whisper-encoder-input-length-restriction False \
|
||||
--beam-size 1 --max-duration 50
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import whisper
|
||||
from asr_datamodule import AsrDataModule
|
||||
from lhotse.cut import Cut
|
||||
from multi_dataset import MultiDataset
|
||||
from tn.chinese.normalizer import Normalizer
|
||||
from whisper.normalizers import BasicTextNormalizer
|
||||
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||
from zhconv import convert
|
||||
|
||||
from icefall.checkpoint import average_checkpoints_with_averaged_model, load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def average_checkpoints(
|
||||
filenames: List[Path], device: torch.device = torch.device("cpu")
|
||||
) -> dict:
|
||||
"""Average a list of checkpoints.
|
||||
The function is mainly used for deepspeed converted checkpoint averaging, which only include model state_dict.
|
||||
|
||||
Args:
|
||||
filenames:
|
||||
Filenames of the checkpoints to be averaged. We assume all
|
||||
checkpoints are saved by :func:`save_checkpoint`.
|
||||
device:
|
||||
Move checkpoints to this device before averaging.
|
||||
Returns:
|
||||
Return a dict (i.e., state_dict) which is the average of all
|
||||
model state dicts contained in the checkpoints.
|
||||
"""
|
||||
n = len(filenames)
|
||||
|
||||
if "model" in torch.load(filenames[0], map_location=device):
|
||||
avg = torch.load(filenames[0], map_location=device)["model"]
|
||||
else:
|
||||
avg = torch.load(filenames[0], map_location=device)
|
||||
|
||||
# Identify shared parameters. Two parameters are said to be shared
|
||||
# if they have the same data_ptr
|
||||
uniqued: Dict[int, str] = dict()
|
||||
|
||||
for k, v in avg.items():
|
||||
v_data_ptr = v.data_ptr()
|
||||
if v_data_ptr in uniqued:
|
||||
continue
|
||||
uniqued[v_data_ptr] = k
|
||||
|
||||
uniqued_names = list(uniqued.values())
|
||||
|
||||
for i in range(1, n):
|
||||
if "model" in torch.load(filenames[i], map_location=device):
|
||||
state_dict = torch.load(filenames[i], map_location=device)["model"]
|
||||
else:
|
||||
state_dict = torch.load(filenames[i], map_location=device)
|
||||
for k in uniqued_names:
|
||||
avg[k] += state_dict[k]
|
||||
|
||||
for k in uniqued_names:
|
||||
if avg[k].is_floating_point():
|
||||
avg[k] /= n
|
||||
else:
|
||||
avg[k] //= n
|
||||
|
||||
return avg
|
||||
|
||||
|
||||
def remove_punctuation(text: str or List[str]):
|
||||
"""Modified from https://github.com/yeyupiaoling/Whisper-Finetune/blob/master/utils/data_utils.py
|
||||
|
||||
Args:
|
||||
text: It can be a string or a list of strings.
|
||||
Returns:
|
||||
Return a string or a list of strings without any punctuation.
|
||||
"""
|
||||
punctuation = "!,.;:?、!,。;:?《》 "
|
||||
if isinstance(text, str):
|
||||
text = re.sub(r"[{}]+".format(punctuation), "", text).strip()
|
||||
return text
|
||||
elif isinstance(text, list):
|
||||
result_text = []
|
||||
for t in text:
|
||||
t = re.sub(r"[{}]+".format(punctuation), "", t).strip()
|
||||
result_text.append(t)
|
||||
return result_text
|
||||
else:
|
||||
raise Exception(f"Not support type {type(text)}")
|
||||
|
||||
|
||||
def to_simple(text: str or List[str]):
|
||||
"""Convert traditional Chinese to simplified Chinese.
|
||||
Args:
|
||||
text: It can be a string or a list of strings.
|
||||
Returns:
|
||||
Return a string or a list of strings converted to simplified Chinese.
|
||||
"""
|
||||
if isinstance(text, str):
|
||||
text = convert(text, "zh-cn")
|
||||
return text
|
||||
elif isinstance(text, list):
|
||||
result_text = []
|
||||
for t in text:
|
||||
t = convert(t, "zh-cn")
|
||||
result_text.append(t)
|
||||
return result_text
|
||||
else:
|
||||
raise Exception(f"Not support type{type(text)}")
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="beam-search",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- beam-search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="beam size for beam search decoding",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="whisper/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="large-v2",
|
||||
choices=["large-v2", "large-v3", "medium", "small", "tiny"],
|
||||
help="""The model name to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--remove-whisper-encoder-input-length-restriction",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="replace whisper encoder forward method to remove input length restriction",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: "beam-search"
|
||||
- value: A list of lists. Each sublist is a list of token IDs.
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
batch:
|
||||
It is returned by :meth:`torch.utils.data.DataLoader.__iter__`.
|
||||
Returns:
|
||||
Return a dict, whose key may be "beam-search".
|
||||
"""
|
||||
dtype = torch.float16
|
||||
device = torch.device("cuda")
|
||||
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device, dtype=dtype).transpose(1, 2)
|
||||
if not params.remove_whisper_encoder_input_length_restriction:
|
||||
T = 3000
|
||||
if feature.shape[2] < T:
|
||||
feature = torch.cat(
|
||||
[
|
||||
feature,
|
||||
torch.zeros(
|
||||
feature.shape[0], feature.shape[1], T - feature.shape[2]
|
||||
).to(device, dtype=dtype),
|
||||
],
|
||||
2,
|
||||
)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_len = supervisions["num_frames"]
|
||||
feature_len = feature_len.to(device, dtype=dtype)
|
||||
results = model.decode(feature, params.decoding_options)
|
||||
hyps = [result.text for result in results]
|
||||
|
||||
hyps = remove_punctuation(hyps)
|
||||
hyps = to_simple(hyps)
|
||||
hyps = [params.normalizer.normalize(hyp) for hyp in hyps]
|
||||
print(hyps)
|
||||
return {"beam-search": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
The dataloader.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
Returns:
|
||||
Return a dict, whose key may be "beam-search".
|
||||
"""
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
|
||||
enable_log = True
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
if enable_log:
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
# we compute CER for aishell dataset.
|
||||
results_char = []
|
||||
for res in results:
|
||||
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
if enable_log:
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tCER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
setup_logger(
|
||||
f"{params.exp_dir}/log-{params.method}-beam{params.beam_size}/log-decode-{params.suffix}"
|
||||
)
|
||||
|
||||
options = whisper.DecodingOptions(
|
||||
task="transcribe",
|
||||
language="zh",
|
||||
without_timestamps=True,
|
||||
beam_size=params.beam_size,
|
||||
)
|
||||
params.decoding_options = options
|
||||
params.cleaner = BasicTextNormalizer()
|
||||
params.normalizer = Normalizer()
|
||||
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
if params.remove_whisper_encoder_input_length_restriction:
|
||||
replace_whisper_encoder_forward()
|
||||
model = whisper.load_model(params.model_name, "cpu")
|
||||
if params.epoch > 0:
|
||||
if params.avg > 1:
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
checkpoint = torch.load(
|
||||
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||||
)
|
||||
if "model" not in checkpoint:
|
||||
# deepspeed converted checkpoint only contains model state_dict
|
||||
filenames = [
|
||||
f"{params.exp_dir}/epoch-{epoch}.pt"
|
||||
for epoch in range(start, params.epoch + 1)
|
||||
]
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
else:
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
# save checkpoints
|
||||
filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||
torch.save(model.state_dict(), filename)
|
||||
else:
|
||||
checkpoint = torch.load(
|
||||
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||||
)
|
||||
if "model" not in checkpoint:
|
||||
model.load_state_dict(checkpoint, strict=True)
|
||||
else:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
|
||||
data_module = AsrDataModule(args)
|
||||
multi_dataset = MultiDataset(args.manifest_dir, args.start_index, args.end_index)
|
||||
|
||||
def remove_long_utt(c: Cut):
|
||||
# Keep only utterances with duration in 30 seconds
|
||||
#
|
||||
if c.duration > 30.0:
|
||||
# logging.warning(
|
||||
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||
# )
|
||||
return False
|
||||
return True
|
||||
|
||||
test_sets_cuts = multi_dataset.test_cuts()
|
||||
|
||||
test_sets = test_sets_cuts.keys()
|
||||
test_dls = [
|
||||
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_long_utt))
|
||||
for cuts_name in test_sets
|
||||
]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
)
|
||||
|
||||
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
59
egs/speechio/ASR/whisper/multi_dataset.py
Normal file
59
egs/speechio/ASR/whisper/multi_dataset.py
Normal file
@ -0,0 +1,59 @@
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import glob
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
import lhotse
|
||||
from lhotse import CutSet, load_manifest_lazy
|
||||
|
||||
|
||||
class MultiDataset:
|
||||
def __init__(self, fbank_dir: str, start_index: int = 0, end_index: int = 26):
|
||||
"""
|
||||
Args:
|
||||
manifest_dir:
|
||||
It is expected to contain the following files:
|
||||
- speechio_cuts_SPEECHIO_ASR_ZH00000.jsonl.gz
|
||||
...
|
||||
- speechio_cuts_SPEECHIO_ASR_ZH00026.jsonl.gz
|
||||
"""
|
||||
self.fbank_dir = Path(fbank_dir)
|
||||
self.start_index = start_index
|
||||
self.end_index = end_index
|
||||
|
||||
def test_cuts(self) -> Dict[str, CutSet]:
|
||||
logging.info("About to get multidataset test cuts")
|
||||
|
||||
dataset_parts = []
|
||||
for i in range(self.start_index, self.end_index + 1):
|
||||
idx = f"{i}".zfill(2)
|
||||
dataset_parts.append(f"SPEECHIO_ASR_ZH000{idx}")
|
||||
|
||||
prefix = "speechio"
|
||||
suffix = "jsonl.gz"
|
||||
|
||||
results_dict = {}
|
||||
for partition in dataset_parts:
|
||||
path = f"{prefix}_cuts_{partition}.{suffix}"
|
||||
|
||||
logging.info(f"Loading {path} set in lazy mode")
|
||||
test_cuts = load_manifest_lazy(self.fbank_dir / path)
|
||||
results_dict[partition] = test_cuts
|
||||
|
||||
return results_dict
|
||||
1
egs/speechio/ASR/whisper/requirements.txt
Symbolic link
1
egs/speechio/ASR/whisper/requirements.txt
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/whisper/requirements.txt
|
||||
1
egs/speechio/ASR/whisper/whisper_encoder_forward_monkey_patch.py
Symbolic link
1
egs/speechio/ASR/whisper/whisper_encoder_forward_monkey_patch.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/whisper/whisper_encoder_forward_monkey_patch.py
|
||||
1
egs/speechio/ASR/zipformer/asr_datamodule.py
Symbolic link
1
egs/speechio/ASR/zipformer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../whisper/asr_datamodule.py
|
||||
1
egs/speechio/ASR/zipformer/beam_search.py
Symbolic link
1
egs/speechio/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/beam_search.py
|
||||
623
egs/speechio/ASR/zipformer/ctc_decode.py
Normal file
623
egs/speechio/ASR/zipformer/ctc_decode.py
Normal file
@ -0,0 +1,623 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Liyong Guo,
|
||||
# Quandong Wang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
|
||||
(1) ctc-decoding
|
||||
./zipformer/ctc_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method ctc-decoding
|
||||
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AsrDataModule
|
||||
from lhotse.cut import Cut
|
||||
from multi_dataset import MultiDataset
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.decode import get_lattice, one_best_decoding
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_2000/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_bpe_2000",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="ctc-decoding",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- (1) ctc-decoding. Use CTC decoding. It uses a sentence piece
|
||||
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
|
||||
It needs neither a lexicon nor an n-gram LM.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=100,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, and nbest-oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, and nbest-oracle
|
||||
A smaller value results in more unique paths.
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_decoding_params() -> AttributeDict:
|
||||
"""Parameters for decoding."""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"frame_shift_ms": 10,
|
||||
"search_beam": 20,
|
||||
"output_beam": 8,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
batch: dict,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if no rescoring is used, the key is the string `no_rescore`.
|
||||
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||
where `xxx` is the value of `lm_scale`. An example key is
|
||||
`lm_scale_0.7`
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
|
||||
- params.decoding_method is "1best", it uses 1best decoding without LM rescoring.
|
||||
- params.decoding_method is "nbest", it uses nbest decoding without LM rescoring.
|
||||
- params.decoding_method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||
- params.decoding_method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||
rescoring.
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
H:
|
||||
The ctc topo. Used only when params.decoding_method is ctc-decoding.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.decoding_method is ctc-decoding.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.decoding_method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict. Note: If it decodes to nothing, then return None.
|
||||
"""
|
||||
device = H.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
if params.causal:
|
||||
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||
pad_len = 30
|
||||
feature_lens += pad_len
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
pad=(0, 0, 0, pad_len),
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
|
||||
ctc_output = model.ctc_output(encoder_out) # (N, T, C)
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
torch.div(
|
||||
supervisions["start_frame"],
|
||||
params.subsampling_factor,
|
||||
rounding_mode="floor",
|
||||
),
|
||||
torch.div(
|
||||
supervisions["num_frames"],
|
||||
params.subsampling_factor,
|
||||
rounding_mode="floor",
|
||||
),
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
assert bpe_model is not None
|
||||
decoding_graph = H
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=ctc_output,
|
||||
decoding_graph=decoding_graph,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.decoding_method == "ctc-decoding":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
||||
# since we are using H, not HLG here.
|
||||
#
|
||||
# token_ids is a lit-of-list of IDs
|
||||
token_ids = get_texts(best_path)
|
||||
|
||||
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
|
||||
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||
hyps = [s.split() for s in hyps]
|
||||
key = "ctc-decoding"
|
||||
return {key: hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
word_table: k2.SymbolTable,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph. Used only when params.decoding_method is NOT ctc-decoding.
|
||||
H:
|
||||
The ctc topo. Used only when params.decoding_method is ctc-decoding.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.decoding_method is ctc-decoding.
|
||||
word_table:
|
||||
It is the word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.decoding_method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = list(ref_text.replace(" ", ""))
|
||||
hyp_words = list("".join(hyp_words))
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
params = get_params()
|
||||
# add decoding params
|
||||
params.update(get_decoding_params())
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in ("ctc-decoding",)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if params.causal:
|
||||
assert (
|
||||
"," not in params.chunk_size
|
||||
), "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
params.vocab_size = num_classes
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = 0
|
||||
|
||||
HLG = None
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=True,
|
||||
device=device,
|
||||
)
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||
|
||||
G = None
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
data_module = AsrDataModule(args)
|
||||
multi_dataset = MultiDataset(args.manifest_dir, args.start_index, args.end_index)
|
||||
|
||||
test_sets_cuts = multi_dataset.test_cuts()
|
||||
|
||||
def remove_short_utt(c: Cut):
|
||||
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||
if T <= 0:
|
||||
logging.warning(
|
||||
f"Excluding cut with ID: {c.id} from decoding, num_frames: {c.num_frames}"
|
||||
)
|
||||
return T > 0
|
||||
|
||||
test_sets = test_sets_cuts.keys()
|
||||
test_dl = [
|
||||
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_short_utt))
|
||||
for cuts_name in test_sets
|
||||
]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
logging.info(f"Start decoding test set: {test_set}")
|
||||
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
word_table=lexicon.word_table,
|
||||
G=G,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
843
egs/speechio/ASR/zipformer/decode.py
Normal file
843
egs/speechio/ASR/zipformer/decode.py
Normal file
@ -0,0 +1,843 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search (not recommended)
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search (one best)
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(5) fast beam search (nbest)
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
|
||||
(6) fast beam search (nbest oracle WER)
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
|
||||
(7) fast beam search (with LG)
|
||||
./zipformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_LG \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG,
|
||||
fast_beam_search_nbest_oracle,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from lhotse.cut import Cut
|
||||
from multi_dataset import MultiDataset
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
make_pad_mask,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_2000/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_bpe_2000",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=20.0,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search,
|
||||
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=0.01,
|
||||
help="""
|
||||
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=64,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--blank-penalty",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="""
|
||||
The penalty applied on blank symbol during decoding.
|
||||
Note: It is a positive value that would be applied to logits like
|
||||
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
|
||||
[batch_size, vocab] and blank id is 0).
|
||||
""",
|
||||
)
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
if params.causal:
|
||||
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||
pad_len = 30
|
||||
feature_lens += pad_len
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
pad=(0, 0, 0, pad_len),
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
|
||||
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
hyp_tokens = fast_beam_search_nbest_LG(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append([word_table[i] for i in hyp])
|
||||
elif params.decoding_method == "fast_beam_search_nbest":
|
||||
hyp_tokens = fast_beam_search_nbest(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=sp.encode(supervisions["text"]),
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
key = f"blank_penalty_{params.blank_penalty}"
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search_" + key: hyps}
|
||||
elif "fast_beam_search" in params.decoding_method:
|
||||
key = f"beam_{params.beam}_"
|
||||
key += f"max_contexts_{params.max_contexts}_"
|
||||
key += f"max_states_{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
key += f"_num_paths_{params.num_paths}_"
|
||||
key += f"nbest_scale_{params.nbest_scale}"
|
||||
if "LG" in params.decoding_method:
|
||||
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||
|
||||
return {key: hyps}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
texts = [list(str(text).replace(" ", "")) for text in texts]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
word_table=word_table,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
hyp_text = "".join(hyp_words)
|
||||
this_batch.append((cut_id, ref_text, hyp_text))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_nbest",
|
||||
"fast_beam_search_nbest_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if params.causal:
|
||||
assert (
|
||||
"," not in params.chunk_size
|
||||
), "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||
params.suffix += f"-num-paths-{params.num_paths}"
|
||||
if "LG" in params.decoding_method:
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
params.suffix += f"-blank-penalty-{params.blank_penalty}"
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
word_table = lexicon.word_table
|
||||
lg_filename = params.lang_dir / "LG.pt"
|
||||
logging.info(f"Loading {lg_filename}")
|
||||
decoding_graph = k2.Fsa.from_dict(
|
||||
torch.load(lg_filename, map_location=device)
|
||||
)
|
||||
decoding_graph.scores *= params.ngram_lm_scale
|
||||
else:
|
||||
word_table = None
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
word_table = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
data_module = AsrDataModule(args)
|
||||
multi_dataset = MultiDataset(args.manifest_dir, args.start_index, args.end_index)
|
||||
|
||||
def remove_short_utt(c: Cut):
|
||||
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||
if T <= 0:
|
||||
logging.warning(
|
||||
f"Excluding cut with ID: {c.id} from decoding, num_frames: {c.num_frames}"
|
||||
)
|
||||
return T > 0
|
||||
|
||||
test_sets_cuts = multi_dataset.test_cuts()
|
||||
|
||||
test_sets = test_sets_cuts.keys()
|
||||
test_dl = [
|
||||
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_short_utt))
|
||||
for cuts_name in test_sets
|
||||
]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
logging.info(f"Start decoding test set: {test_set}")
|
||||
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
word_table=word_table,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
1
egs/speechio/ASR/zipformer/decoder.py
Symbolic link
1
egs/speechio/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decoder.py
|
||||
1
egs/speechio/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/speechio/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/encoder_interface.py
|
||||
1
egs/speechio/ASR/zipformer/joiner.py
Symbolic link
1
egs/speechio/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/joiner.py
|
||||
1
egs/speechio/ASR/zipformer/model.py
Symbolic link
1
egs/speechio/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/model.py
|
||||
1
egs/speechio/ASR/zipformer/multi_dataset.py
Symbolic link
1
egs/speechio/ASR/zipformer/multi_dataset.py
Symbolic link
@ -0,0 +1 @@
|
||||
../whisper/multi_dataset.py
|
||||
1
egs/speechio/ASR/zipformer/optim.py
Symbolic link
1
egs/speechio/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/optim.py
|
||||
1
egs/speechio/ASR/zipformer/scaling.py
Symbolic link
1
egs/speechio/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling.py
|
||||
1
egs/speechio/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/speechio/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling_converter.py
|
||||
1
egs/speechio/ASR/zipformer/subsampling.py
Symbolic link
1
egs/speechio/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/subsampling.py
|
||||
1
egs/speechio/ASR/zipformer/train.py
Symbolic link
1
egs/speechio/ASR/zipformer/train.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../multi_zh-hans/ASR/zipformer/train.py
|
||||
1
egs/speechio/ASR/zipformer/zipformer.py
Symbolic link
1
egs/speechio/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/zipformer.py
|
||||
@ -16,11 +16,19 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig, LilcomChunkyWriter
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
)
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
@ -30,8 +38,31 @@ torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
torch.multiprocessing.set_sharing_strategy("file_system")
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
def compute_fbank_wenetspeech_dev_test():
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-mel-bins",
|
||||
type=int,
|
||||
default=80,
|
||||
help="""The number of mel bins for Fbank""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def compute_fbank_wenetspeech_dev_test(args):
|
||||
in_out_dir = Path("data/fbank")
|
||||
# number of workers in dataloader
|
||||
num_workers = 42
|
||||
@ -44,7 +75,12 @@ def compute_fbank_wenetspeech_dev_test():
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
if args.whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=args.num_mel_bins, device="cuda")
|
||||
)
|
||||
else:
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
@ -82,7 +118,11 @@ def main():
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
compute_fbank_wenetspeech_dev_test()
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
compute_fbank_wenetspeech_dev_test(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -22,15 +22,19 @@ from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import (
|
||||
from lhotse import ( # KaldifeatWhisperFbank,; KaldifeatWhisperFbankConfig,
|
||||
CutSet,
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
WhisperFbank,
|
||||
WhisperFbankConfig,
|
||||
set_audio_duration_mismatch_tolerance,
|
||||
set_caching_enabled,
|
||||
)
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
@ -87,6 +91,27 @@ def get_parser():
|
||||
default=-1,
|
||||
help="Stop processing pieces until this number (excluded).",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-mel-bins",
|
||||
type=int,
|
||||
default=80,
|
||||
help="""The number of mel bins for Fbank""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-fbank",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--output-dir-prefix",
|
||||
type=str,
|
||||
default="",
|
||||
help="Prefix of the output directory.",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@ -96,6 +121,7 @@ def compute_fbank_wenetspeech_splits(args):
|
||||
num_splits = args.num_splits
|
||||
output_dir = f"data/fbank/{subset}_split_{num_splits}"
|
||||
output_dir = Path(output_dir)
|
||||
output_dir = Path(args.output_dir_prefix) / output_dir
|
||||
assert output_dir.exists(), f"{output_dir} does not exist!"
|
||||
|
||||
num_digits = len(str(num_splits))
|
||||
@ -110,14 +136,21 @@ def compute_fbank_wenetspeech_splits(args):
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
if args.whisper_fbank:
|
||||
extractor = WhisperFbank(
|
||||
WhisperFbankConfig(num_filters=args.num_mel_bins, device=device)
|
||||
)
|
||||
# extractor = KaldifeatWhisperFbank(KaldifeatWhisperFbankConfig(num_filters=args.num_mel_bins, device=device))
|
||||
else:
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
|
||||
set_caching_enabled(False)
|
||||
# with get_executor() as ex: # Initialize the executor only once.
|
||||
for i in range(start, stop):
|
||||
idx = f"{i + 1}".zfill(num_digits)
|
||||
logging.info(f"Processing {idx}/{num_splits}")
|
||||
idx = f"{i}".zfill(num_digits)
|
||||
logging.info(f"Processing {i+1}/{num_splits}")
|
||||
|
||||
cuts_path = output_dir / f"cuts_{subset}.{idx}.jsonl.gz"
|
||||
if cuts_path.is_file():
|
||||
@ -143,7 +176,6 @@ def compute_fbank_wenetspeech_splits(args):
|
||||
storage_type=LilcomChunkyWriter,
|
||||
overwrite=True,
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {cuts_path}")
|
||||
cut_set.to_file(cuts_path)
|
||||
|
||||
|
||||
@ -182,6 +182,43 @@ if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
|
||||
fi
|
||||
fi
|
||||
|
||||
whisper_mel_bins=80
|
||||
if [ $stage -le 129 ] && [ $stop_stage -ge 129 ]; then
|
||||
log "Stage 129: compute whisper fbank for dev and test sets"
|
||||
python3 ./local/compute_fbank_wenetspeech_dev_test.py --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
||||
fi
|
||||
if [ $stage -le 130 ] && [ $stop_stage -ge 130 ]; then
|
||||
log "Stage 130: Comute features for whisper training set"
|
||||
|
||||
split_dir=data/fbank/L_split_${num_splits}
|
||||
if [ ! -f $split_dir/.split_completed ]; then
|
||||
lhotse split $num_splits ./data/fbank/cuts_L_raw.jsonl.gz $split_dir
|
||||
touch $split_dir/.split_completed
|
||||
fi
|
||||
|
||||
python3 ./local/compute_fbank_wenetspeech_splits.py \
|
||||
--training-subset L \
|
||||
--num-workers 8 \
|
||||
--batch-duration 1600 \
|
||||
--start 0 \
|
||||
--num-mel-bins ${whisper_mel_bins} --whisper-fbank true \
|
||||
--num-splits $num_splits
|
||||
|
||||
if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then
|
||||
pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz")
|
||||
lhotse combine $pieces data/fbank/cuts_L.jsonl.gz
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 131 ] && [ $stop_stage -ge 131 ]; then
|
||||
log "Stage 131: concat feats into train set"
|
||||
if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then
|
||||
pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz")
|
||||
lhotse combine $pieces data/fbank/cuts_L.jsonl.gz
|
||||
fi
|
||||
fi
|
||||
|
||||
|
||||
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
|
||||
log "Stage 14: Compute fbank for musan"
|
||||
mkdir -p data/fbank
|
||||
|
||||
1
egs/wenetspeech/ASR/whisper/asr_datamodule.py
Symbolic link
1
egs/wenetspeech/ASR/whisper/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/asr_datamodule.py
|
||||
526
egs/wenetspeech/ASR/whisper/decode.py
Executable file
526
egs/wenetspeech/ASR/whisper/decode.py
Executable file
@ -0,0 +1,526 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
||||
# Fangjun Kuang,
|
||||
# Wei Kang)
|
||||
# 2024 Yuekai Zhang
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
# Command for decoding using fine-tuned models:
|
||||
git lfs install
|
||||
git clone https://huggingface.co/yuekai/icefall_asr_aishell_whisper
|
||||
ln -s icefall_asr_aishell_whisper/exp_large_v2/epoch-10-avg6.pt whisper/exp_large_v2/epoch-999.pt
|
||||
|
||||
python3 ./whisper/decode.py \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--epoch 999 --avg 1 \
|
||||
--beam-size 10 --max-duration 50
|
||||
|
||||
# Command for decoding using pretrained models (before fine-tuning):
|
||||
|
||||
python3 ./whisper/decode.py \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--epoch -1 --avg 1 \
|
||||
--remove-whisper-encoder-input-length-restriction False \
|
||||
--beam-size 10 --max-duration 50
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import whisper
|
||||
from asr_datamodule import WenetSpeechAsrDataModule
|
||||
from lhotse.cut import Cut
|
||||
from tn.chinese.normalizer import Normalizer
|
||||
from whisper.normalizers import BasicTextNormalizer
|
||||
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||
from zhconv import convert
|
||||
|
||||
from icefall.checkpoint import average_checkpoints_with_averaged_model, load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def average_checkpoints(
|
||||
filenames: List[Path], device: torch.device = torch.device("cpu")
|
||||
) -> dict:
|
||||
"""Average a list of checkpoints.
|
||||
The function is mainly used for deepspeed converted checkpoint averaging, which only include model state_dict.
|
||||
|
||||
Args:
|
||||
filenames:
|
||||
Filenames of the checkpoints to be averaged. We assume all
|
||||
checkpoints are saved by :func:`save_checkpoint`.
|
||||
device:
|
||||
Move checkpoints to this device before averaging.
|
||||
Returns:
|
||||
Return a dict (i.e., state_dict) which is the average of all
|
||||
model state dicts contained in the checkpoints.
|
||||
"""
|
||||
n = len(filenames)
|
||||
|
||||
if "model" in torch.load(filenames[0], map_location=device):
|
||||
avg = torch.load(filenames[0], map_location=device)["model"]
|
||||
else:
|
||||
avg = torch.load(filenames[0], map_location=device)
|
||||
|
||||
# Identify shared parameters. Two parameters are said to be shared
|
||||
# if they have the same data_ptr
|
||||
uniqued: Dict[int, str] = dict()
|
||||
|
||||
for k, v in avg.items():
|
||||
v_data_ptr = v.data_ptr()
|
||||
if v_data_ptr in uniqued:
|
||||
continue
|
||||
uniqued[v_data_ptr] = k
|
||||
|
||||
uniqued_names = list(uniqued.values())
|
||||
|
||||
for i in range(1, n):
|
||||
if "model" in torch.load(filenames[i], map_location=device):
|
||||
state_dict = torch.load(filenames[i], map_location=device)["model"]
|
||||
else:
|
||||
state_dict = torch.load(filenames[i], map_location=device)
|
||||
for k in uniqued_names:
|
||||
avg[k] += state_dict[k]
|
||||
|
||||
for k in uniqued_names:
|
||||
if avg[k].is_floating_point():
|
||||
avg[k] /= n
|
||||
else:
|
||||
avg[k] //= n
|
||||
|
||||
return avg
|
||||
|
||||
|
||||
def remove_punctuation(text: str or List[str]):
|
||||
"""Modified from https://github.com/yeyupiaoling/Whisper-Finetune/blob/master/utils/data_utils.py
|
||||
|
||||
Args:
|
||||
text: It can be a string or a list of strings.
|
||||
Returns:
|
||||
Return a string or a list of strings without any punctuation.
|
||||
"""
|
||||
punctuation = "!,.;:?、!,。;:?《》 "
|
||||
if isinstance(text, str):
|
||||
text = re.sub(r"[{}]+".format(punctuation), "", text).strip()
|
||||
return text
|
||||
elif isinstance(text, list):
|
||||
result_text = []
|
||||
for t in text:
|
||||
t = re.sub(r"[{}]+".format(punctuation), "", t).strip()
|
||||
result_text.append(t)
|
||||
return result_text
|
||||
else:
|
||||
raise Exception(f"Not support type {type(text)}")
|
||||
|
||||
|
||||
def to_simple(text: str or List[str]):
|
||||
"""Convert traditional Chinese to simplified Chinese.
|
||||
Args:
|
||||
text: It can be a string or a list of strings.
|
||||
Returns:
|
||||
Return a string or a list of strings converted to simplified Chinese.
|
||||
"""
|
||||
if isinstance(text, str):
|
||||
text = convert(text, "zh-cn")
|
||||
return text
|
||||
elif isinstance(text, list):
|
||||
result_text = []
|
||||
for t in text:
|
||||
t = convert(t, "zh-cn")
|
||||
result_text.append(t)
|
||||
return result_text
|
||||
else:
|
||||
raise Exception(f"Not support type{type(text)}")
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="beam-search",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- beam-search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="beam size for beam search decoding",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="whisper/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="large-v2",
|
||||
choices=["large-v2", "large-v3", "medium", "small", "tiny"],
|
||||
help="""The model name to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--remove-whisper-encoder-input-length-restriction",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="replace whisper encoder forward method to remove input length restriction",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: "beam-search"
|
||||
- value: A list of lists. Each sublist is a list of token IDs.
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
batch:
|
||||
It is returned by :meth:`torch.utils.data.DataLoader.__iter__`.
|
||||
Returns:
|
||||
Return a dict, whose key may be "beam-search".
|
||||
"""
|
||||
dtype = torch.float16
|
||||
device = torch.device("cuda")
|
||||
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device, dtype=dtype).transpose(1, 2)
|
||||
if not params.remove_whisper_encoder_input_length_restriction:
|
||||
T = 3000
|
||||
if feature.shape[2] < T:
|
||||
feature = torch.cat(
|
||||
[
|
||||
feature,
|
||||
torch.zeros(
|
||||
feature.shape[0], feature.shape[1], T - feature.shape[2]
|
||||
).to(device, dtype=dtype),
|
||||
],
|
||||
2,
|
||||
)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_len = supervisions["num_frames"]
|
||||
feature_len = feature_len.to(device, dtype=dtype)
|
||||
results = model.decode(feature, params.decoding_options)
|
||||
hyps = [result.text for result in results]
|
||||
|
||||
hyps = remove_punctuation(hyps)
|
||||
hyps = to_simple(hyps)
|
||||
hyps = [params.normalizer.normalize(hyp) for hyp in hyps]
|
||||
print(hyps)
|
||||
return {"beam-search": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
The dataloader.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
Returns:
|
||||
Return a dict, whose key may be "beam-search".
|
||||
"""
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
|
||||
enable_log = True
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
if enable_log:
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
# we compute CER for aishell dataset.
|
||||
results_char = []
|
||||
for res in results:
|
||||
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
if enable_log:
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tCER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
WenetSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
setup_logger(
|
||||
f"{params.exp_dir}/log-{params.method}-beam{params.beam_size}/log-decode-{params.suffix}"
|
||||
)
|
||||
|
||||
options = whisper.DecodingOptions(
|
||||
task="transcribe",
|
||||
language="zh",
|
||||
without_timestamps=True,
|
||||
beam_size=params.beam_size,
|
||||
)
|
||||
params.decoding_options = options
|
||||
params.cleaner = BasicTextNormalizer()
|
||||
params.normalizer = Normalizer()
|
||||
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
if params.remove_whisper_encoder_input_length_restriction:
|
||||
replace_whisper_encoder_forward()
|
||||
model = whisper.load_model(params.model_name, "cpu")
|
||||
if params.epoch > 0:
|
||||
if params.avg > 1:
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
checkpoint = torch.load(
|
||||
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||||
)
|
||||
if "model" not in checkpoint:
|
||||
# deepspeed converted checkpoint only contains model state_dict
|
||||
filenames = [
|
||||
f"{params.exp_dir}/epoch-{epoch}.pt"
|
||||
for epoch in range(start, params.epoch + 1)
|
||||
]
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
else:
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
# save checkpoints
|
||||
filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||
torch.save(model.state_dict(), filename)
|
||||
else:
|
||||
checkpoint = torch.load(
|
||||
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||||
)
|
||||
if "model" not in checkpoint:
|
||||
model.load_state_dict(checkpoint, strict=True)
|
||||
else:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
wenetspeech = WenetSpeechAsrDataModule(args)
|
||||
dev_cuts = wenetspeech.valid_cuts()
|
||||
dev_dl = wenetspeech.valid_dataloaders(dev_cuts)
|
||||
|
||||
def remove_long_utt(c: Cut):
|
||||
# Keep only utterances with duration in 30 seconds
|
||||
#
|
||||
if c.duration > 30.0:
|
||||
# logging.warning(
|
||||
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||
# )
|
||||
return False
|
||||
return True
|
||||
|
||||
test_net_cuts = wenetspeech.test_net_cuts()
|
||||
test_net_cuts = test_net_cuts.filter(remove_long_utt)
|
||||
test_net_dl = wenetspeech.test_dataloaders(test_net_cuts)
|
||||
|
||||
test_meeting_cuts = wenetspeech.test_meeting_cuts()
|
||||
test_meeting_dl = wenetspeech.test_dataloaders(test_meeting_cuts)
|
||||
|
||||
# test_sets = ["DEV", "TEST_NET", "TEST_MEETING"]
|
||||
# test_dls = [dev_dl, test_net_dl, test_meeting_dl]
|
||||
|
||||
test_sets = ["TEST_NET"]
|
||||
test_dls = [test_net_dl]
|
||||
|
||||
# test_sets = ["TEST_MEETING"]
|
||||
# test_dls = [test_meeting_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
)
|
||||
|
||||
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
1
egs/wenetspeech/ASR/whisper/ds_config_zero1.json
Symbolic link
1
egs/wenetspeech/ASR/whisper/ds_config_zero1.json
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/whisper/ds_config_zero1.json
|
||||
1
egs/wenetspeech/ASR/whisper/label_smoothing.py
Symbolic link
1
egs/wenetspeech/ASR/whisper/label_smoothing.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/conformer_ctc/label_smoothing.py
|
||||
1
egs/wenetspeech/ASR/whisper/optim.py
Symbolic link
1
egs/wenetspeech/ASR/whisper/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/optim.py
|
||||
1
egs/wenetspeech/ASR/whisper/requirements.txt
Symbolic link
1
egs/wenetspeech/ASR/whisper/requirements.txt
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/whisper/requirements.txt
|
||||
955
egs/wenetspeech/ASR/whisper/train.py
Normal file
955
egs/wenetspeech/ASR/whisper/train.py
Normal file
@ -0,0 +1,955 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||
# 2024 Yuekai Zhang
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
|
||||
#fine-tuning with deepspeed zero stage 1
|
||||
torchrun --nproc-per-node 8 ./whisper/train.py \
|
||||
--max-duration 200 \
|
||||
--exp-dir whisper/exp_large_v2 \
|
||||
--model-name large-v2 \
|
||||
--deepspeed \
|
||||
--deepspeed_config ./whisper/ds_config_zero1.json
|
||||
|
||||
# fine-tuning with ddp
|
||||
torchrun --nproc_per_node 8 ./whisper/train.py \
|
||||
--max-duration 200 \
|
||||
--exp-dir whisper/exp_medium \
|
||||
--base-lr 1e-5 \
|
||||
--model-name medium
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import logging
|
||||
import random
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import deepspeed
|
||||
import k2
|
||||
import optim
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import whisper
|
||||
from asr_datamodule import WenetSpeechAsrDataModule
|
||||
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||||
from label_smoothing import LabelSmoothingLoss
|
||||
from lhotse import CutSet, load_manifest
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.dataset.sampling.base import CutSampler
|
||||
from lhotse.utils import fix_random_seed
|
||||
from optim import Eden, ScaledAdam
|
||||
from torch import Tensor
|
||||
from torch.cuda.amp import GradScaler
|
||||
from torch.nn.functional import pad as pad_tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||
|
||||
from icefall import diagnostics
|
||||
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.checkpoint import update_averaged_model
|
||||
from icefall.dist import cleanup_dist, get_rank, get_world_size, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.hooks import register_inf_check_hooks
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
filter_uneven_sized_batch,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
||||
|
||||
|
||||
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
|
||||
if isinstance(model, DDP):
|
||||
# get underlying nn.Module
|
||||
model = model.module
|
||||
for module in model.modules():
|
||||
if hasattr(module, "batch_count"):
|
||||
module.batch_count = batch_count
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Resume training from this epoch. It should be positive.
|
||||
If larger than 1, it will load checkpoint from
|
||||
exp-dir/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-batch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --start-epoch is ignored and
|
||||
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="whisper/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="large-v2",
|
||||
choices=["large-v2", "large-v3", "medium", "small", "tiny"],
|
||||
help="""The model name to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--base-lr", type=float, default=1e-5, help="The base learning rate."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-batches",
|
||||
type=float,
|
||||
default=5000,
|
||||
help="""Number of steps that affects how rapidly the learning rate
|
||||
decreases. We suggest not to change this.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-epochs",
|
||||
type=float,
|
||||
default=6,
|
||||
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--print-diagnostics",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Accumulate stats on activations, print them and exit.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--inf-check",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Add hooks to check for infinite module outputs and gradients.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--keep-last-k",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""Only keep this number of checkpoints on disk.
|
||||
For instance, if it is 3, there are only 3 checkpoints
|
||||
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
||||
It does not affect checkpoints with name `epoch-xxx.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--average-period",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Update the averaged model, namely `model_avg`, after processing
|
||||
this number of batches. `model_avg` is a separate version of model,
|
||||
in which each floating-point parameter is the average of all the
|
||||
parameters from the start of training. Each time we take the average,
|
||||
we do: `model_avg = model * (average_period / batch_idx_train) +
|
||||
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-fp16",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
parser = deepspeed.add_config_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- frame_shift_ms: The frame shift in milliseconds.
|
||||
- allowed_excess_duration_ratio: The allowed excess duration ratio.
|
||||
- best_train_loss: The best training loss so far.
|
||||
- best_valid_loss: The best validation loss so far.
|
||||
- best_train_epoch: The epoch where the best training loss is achieved.
|
||||
- best_valid_epoch: The epoch where the best validation loss is achieved.
|
||||
- batch_idx_train: The batch index of the current batch.
|
||||
- log_interval: Log training stats every `log_interval` batches.
|
||||
- reset_interval: Reset the stats every `reset_interval` batches.
|
||||
- valid_interval: Run validation every `valid_interval` batches.
|
||||
- env_info: The environment information.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"frame_shift_ms": 10.0,
|
||||
"subsampling_factor": 2,
|
||||
"allowed_excess_duration_ratio": 0.1,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 10000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
model_avg: nn.Module = None,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[LRSchedulerType] = None,
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_batch is positive, it will load the checkpoint from
|
||||
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
||||
params.start_epoch is larger than 1, it will load the checkpoint from
|
||||
`params.start_epoch - 1`.
|
||||
|
||||
Apart from loading state dict for `model` and `optimizer` it also updates
|
||||
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The scheduler that we are using.
|
||||
Returns:
|
||||
Return a dict containing previously saved training info.
|
||||
"""
|
||||
if params.start_batch > 0:
|
||||
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
||||
elif params.start_epoch > 1:
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
else:
|
||||
return None
|
||||
|
||||
assert filename.is_file(), f"{filename} does not exist!"
|
||||
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
if params.start_batch > 0:
|
||||
if "cur_epoch" in saved_params:
|
||||
params["start_epoch"] = saved_params["cur_epoch"]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: Union[nn.Module, DDP],
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[LRSchedulerType] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
optimizer:
|
||||
The optimizer used in the training.
|
||||
sampler:
|
||||
The sampler for the training dataset.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sampler=sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
tokenizer: whisper.tokenizer.Tokenizer,
|
||||
model: Union[nn.Module, DDP],
|
||||
batch: dict,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute the loss for the given batch.
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
tokenizer:
|
||||
The tokenizer used to encode the text.
|
||||
model:
|
||||
The model for training.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
is_training:
|
||||
Whether it is training.
|
||||
Returns:
|
||||
Return a tuple of two elements. The first element is the loss tensor.
|
||||
"""
|
||||
# For the uneven-sized batch, the total duration after padding would possibly
|
||||
# cause OOM. Hence, for each batch, which is sorted descendingly by length,
|
||||
# we simply drop the last few shortest samples, so that the retained total frames
|
||||
# (after padding) would not exceed `allowed_max_frames`:
|
||||
# `allowed_max_frames = int(max_frames * (1.0 + allowed_excess_duration_ratio))`,
|
||||
# where `max_frames = max_duration * 1000 // frame_shift_ms`.
|
||||
# We set allowed_excess_duration_ratio=0.1.
|
||||
if isinstance(model, DDP):
|
||||
# get underlying nn.Module
|
||||
model = model.module
|
||||
|
||||
def _batch_tensors(tensors: List[Tensor], pad_value: Any) -> Tensor:
|
||||
padding_size = max(tensor.shape[0] for tensor in tensors)
|
||||
dims = len(tensors[0].shape)
|
||||
padded_tensors = []
|
||||
for tensor in tensors:
|
||||
padding = [0] * 2 * dims
|
||||
padding[-1] = padding_size - tensor.shape[0]
|
||||
padded_tensors.append(pad_tensor(tensor, padding, "constant", pad_value))
|
||||
return torch.stack([tensor for tensor in padded_tensors], dim=0)
|
||||
|
||||
max_frames = params.max_duration * 1000 // params.frame_shift_ms
|
||||
allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio))
|
||||
batch = filter_uneven_sized_batch(batch, allowed_max_frames)
|
||||
|
||||
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
feature = feature.transpose(1, 2) # (N, C, T)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
batch_idx_train = params.batch_idx_train
|
||||
|
||||
texts = batch["supervisions"]["text"]
|
||||
# remove spaces in texts
|
||||
texts = [text.replace(" ", "") for text in texts]
|
||||
|
||||
text_tokens_list = [
|
||||
list(tokenizer.sot_sequence_including_notimestamps)
|
||||
+ tokenizer.encode(text)
|
||||
+ [tokenizer.eot]
|
||||
for text in texts
|
||||
]
|
||||
# convert it to torch tensor
|
||||
text_tokens_list = [
|
||||
torch.LongTensor(text_tokens) for text_tokens in text_tokens_list
|
||||
]
|
||||
|
||||
# 50256 is the index of <pad> for all whisper models
|
||||
prev_outputs_tokens = _batch_tensors(
|
||||
[tokens[:-1] for tokens in text_tokens_list], pad_value=50256
|
||||
)
|
||||
target_tokens = _batch_tensors(
|
||||
[tokens[1:] for tokens in text_tokens_list], pad_value=50256
|
||||
)
|
||||
target_lengths = torch.LongTensor(
|
||||
[tokens.shape[0] - 1 for tokens in text_tokens_list]
|
||||
)
|
||||
|
||||
decoder_criterion = LabelSmoothingLoss(
|
||||
ignore_index=50256, label_smoothing=0.1, reduction="sum"
|
||||
)
|
||||
|
||||
# ignore the first 3 tokens, which are always <|lang_id|>, <|transcibe|>, <|notimestampes|>
|
||||
ignore_prefix_size = 3
|
||||
with torch.set_grad_enabled(is_training):
|
||||
encoder_out = model.encoder(feature)
|
||||
text_logits = model.decoder(prev_outputs_tokens.to(device), encoder_out)
|
||||
text_logits = text_logits[:, ignore_prefix_size:, :]
|
||||
target_tokens = target_tokens[:, ignore_prefix_size:]
|
||||
loss = decoder_criterion(text_logits, target_tokens.to(device))
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||
|
||||
# Note: We use reduction=sum while computing the loss.
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
tokenizer: whisper.tokenizer.Tokenizer,
|
||||
model: Union[nn.Module, DDP],
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
batch=batch,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
tokenizer: whisper.tokenizer.Tokenizer,
|
||||
model: Union[nn.Module, DDP],
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: LRSchedulerType,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
scaler: GradScaler,
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler, we call step() every step.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
rank:
|
||||
The rank of the node in DDP training. If no DDP is used, it should
|
||||
be set to 0.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
logging.info(
|
||||
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||
)
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
if params.deepspeed:
|
||||
model.save_checkpoint(
|
||||
save_dir=params.exp_dir,
|
||||
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||
client_state={},
|
||||
)
|
||||
if rank == 0:
|
||||
convert_zero_checkpoint_to_fp32_state_dict(
|
||||
params.exp_dir,
|
||||
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}.pt",
|
||||
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||
)
|
||||
|
||||
try:
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
if params.deepspeed:
|
||||
# deepspeed's backward() is different from torch's backward()
|
||||
# in that it does not accept a loss tensor as input.
|
||||
# It computes the loss internally.
|
||||
model.backward(loss)
|
||||
model.step()
|
||||
else:
|
||||
scaler.scale(loss).backward()
|
||||
set_batch_count(model, params.batch_idx_train)
|
||||
scheduler.step_batch(params.batch_idx_train)
|
||||
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
optimizer.zero_grad()
|
||||
except: # noqa
|
||||
display_and_save_batch(batch, params=params)
|
||||
raise
|
||||
|
||||
if params.print_diagnostics and batch_idx == 5:
|
||||
return
|
||||
|
||||
if (
|
||||
rank == 0
|
||||
and params.batch_idx_train > 0
|
||||
and params.batch_idx_train % params.average_period == 0
|
||||
and not params.deepspeed
|
||||
):
|
||||
update_averaged_model(
|
||||
params=params,
|
||||
model_cur=model,
|
||||
model_avg=model_avg,
|
||||
)
|
||||
|
||||
if batch_idx % 100 == 0 and params.use_fp16 and not params.deepspeed:
|
||||
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
||||
# of the grad scaler is configurable, but we can't configure it to have different
|
||||
# behavior depending on the current grad scale.
|
||||
cur_grad_scale = scaler._scale.item()
|
||||
if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0):
|
||||
scaler.update(cur_grad_scale * 2.0)
|
||||
if cur_grad_scale < 0.01:
|
||||
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
||||
if cur_grad_scale < 1.0e-05:
|
||||
raise RuntimeError(
|
||||
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
||||
)
|
||||
if batch_idx % params.log_interval == 0:
|
||||
try:
|
||||
cur_lr = scheduler.get_last_lr()[0]
|
||||
except: # noqa
|
||||
cur_lr = 0.0
|
||||
cur_grad_scale = (
|
||||
scaler._scale.item()
|
||||
if (params.use_fp16 and not params.deepspeed)
|
||||
else 1.0
|
||||
)
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||
f"lr: {cur_lr:.2e}, "
|
||||
+ (
|
||||
f"grad_scale: {scaler._scale.item()}"
|
||||
if (params.use_fp16 and not params.deepspeed)
|
||||
else ""
|
||||
)
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||
if params.use_fp16:
|
||||
tb_writer.add_scalar(
|
||||
"train/grad_scale",
|
||||
cur_grad_scale,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
|
||||
replace_whisper_encoder_forward()
|
||||
model = whisper.load_model(params.model_name, "cpu")
|
||||
del model.alignment_heads
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
tokenizer = whisper.tokenizer.get_tokenizer(
|
||||
model.is_multilingual,
|
||||
num_languages=model.num_languages,
|
||||
language="zh",
|
||||
task="transcribe",
|
||||
)
|
||||
|
||||
model_avg: Optional[nn.Module] = None
|
||||
if rank == 0:
|
||||
# model_avg is only used with rank 0
|
||||
model_avg = copy.deepcopy(model).to(torch.float64)
|
||||
|
||||
assert params.start_epoch > 0, params.start_epoch
|
||||
checkpoints = load_checkpoint_if_available(
|
||||
params=params, model=model, model_avg=model_avg
|
||||
)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
logging.info(f"Device: {device}")
|
||||
model.to(device)
|
||||
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=params.base_lr)
|
||||
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
||||
|
||||
if checkpoints and "optimizer" in checkpoints:
|
||||
logging.info("Loading optimizer state dict")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
if (
|
||||
checkpoints
|
||||
and "scheduler" in checkpoints
|
||||
and checkpoints["scheduler"] is not None
|
||||
):
|
||||
logging.info("Loading scheduler state dict")
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
if world_size > 1:
|
||||
if params.deepspeed:
|
||||
logging.info("Using DeepSpeed")
|
||||
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||
args=params, model=model, model_parameters=model.parameters()
|
||||
)
|
||||
else:
|
||||
logging.info("Using DDP")
|
||||
setup_dist(use_ddp_launch=True)
|
||||
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
if params.inf_check:
|
||||
register_inf_check_hooks(model)
|
||||
|
||||
wenetspeech = WenetSpeechAsrDataModule(args)
|
||||
|
||||
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||
# We only load the sampler's state dict when it loads a checkpoint
|
||||
# saved in the middle of an epoch
|
||||
sampler_state_dict = checkpoints["sampler"]
|
||||
else:
|
||||
sampler_state_dict = None
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 15 seconds
|
||||
#
|
||||
# Caution: There is a reason to select 15.0 here. Please see
|
||||
# ../local/display_manifest_statistics.py
|
||||
#
|
||||
# You should use ../local/display_manifest_statistics.py to get
|
||||
# an utterance duration distribution for your dataset to select
|
||||
# the threshold
|
||||
if c.duration < 1.0 or c.duration > 15.0:
|
||||
# logging.warning(
|
||||
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||
# )
|
||||
return False
|
||||
return True
|
||||
|
||||
train_cuts = wenetspeech.train_cuts()
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
train_dl = wenetspeech.train_dataloaders(train_cuts)
|
||||
valid_dl = wenetspeech.valid_dataloaders(wenetspeech.valid_cuts())
|
||||
|
||||
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
||||
if checkpoints and "grad_scaler" in checkpoints:
|
||||
logging.info("Loading grad scaler state dict")
|
||||
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
logging.info(f"start training from epoch {params.start_epoch}")
|
||||
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||
if not params.deepspeed:
|
||||
scheduler.step_epoch(epoch - 1)
|
||||
fix_random_seed(params.seed + epoch - 1)
|
||||
train_dl.sampler.set_epoch(epoch - 1)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
scaler=scaler,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.print_diagnostics:
|
||||
diagnostic.print_diagnostics()
|
||||
break
|
||||
|
||||
if params.deepspeed:
|
||||
model.save_checkpoint(
|
||||
save_dir=params.exp_dir,
|
||||
tag=f"epoch-{params.cur_epoch}",
|
||||
client_state={},
|
||||
)
|
||||
if rank == 0:
|
||||
convert_zero_checkpoint_to_fp32_state_dict(
|
||||
params.exp_dir,
|
||||
f"{params.exp_dir}/epoch-{params.cur_epoch}.pt",
|
||||
tag=f"epoch-{params.cur_epoch}",
|
||||
)
|
||||
else:
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sampler=train_dl.sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1 and not params.deepspeed:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def display_and_save_batch(
|
||||
batch: dict,
|
||||
params: AttributeDict,
|
||||
) -> None:
|
||||
"""Display the batch statistics and save the batch into disk.
|
||||
|
||||
Args:
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
"""
|
||||
from lhotse.utils import uuid4
|
||||
|
||||
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
||||
logging.info(f"Saving batch to {filename}")
|
||||
torch.save(batch, filename)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
features = batch["inputs"]
|
||||
|
||||
logging.info(f"features shape: {features.shape}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
WenetSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = get_world_size()
|
||||
rank = get_rank()
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
run(rank=rank, world_size=world_size, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/whisper/whisper_encoder_forward_monkey_patch.py
|
||||
Loading…
x
Reference in New Issue
Block a user