mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
* add whisper fbank for wenetspeech * add whisper fbank for other dataset * add str to bool * add decode for wenetspeech * add requirments.txt * add original model decode with 30s * test feature extractor speed * add aishell2 feat * change compute feature batch * fix overwrite * fix executor * regression * add kaldifeatwhisper fbank * fix io issue * parallel jobs * use multi machines * add wenetspeech fine-tune scripts * add monkey patch codes * remove useless file * fix subsampling factor * fix too long audios * add remove long short * fix whisper version to support multi batch beam * decode all wav files * remove utterance more than 30s in test_net * only test net * using soft links * add kespeech whisper feats * fix index error * add manifests for whisper * change to licomchunky writer * add missing option * decrease cpu usage * add speed perturb for kespeech * fix kespeech speed perturb * add dataset * load checkpoint from specific path * add speechio * add speechio results --------- Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
196 lines
6.3 KiB
Python
196 lines
6.3 KiB
Python
# Copyright 2021 Piotr Żelasko
|
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import inspect
|
|
import logging
|
|
from functools import lru_cache
|
|
from pathlib import Path
|
|
from typing import Any, Dict, Optional
|
|
|
|
import torch
|
|
from lhotse import CutSet, load_manifest, load_manifest_lazy
|
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|
CutConcatenate,
|
|
CutMix,
|
|
DynamicBucketingSampler,
|
|
K2SpeechRecognitionDataset,
|
|
PrecomputedFeatures,
|
|
SimpleCutSampler,
|
|
SpecAugment,
|
|
)
|
|
from lhotse.dataset.input_strategies import AudioSamples # noqa F401 For AudioSamples
|
|
from lhotse.utils import fix_random_seed
|
|
from torch.utils.data import DataLoader
|
|
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
class _SeedWorkers:
|
|
def __init__(self, seed: int):
|
|
self.seed = seed
|
|
|
|
def __call__(self, worker_id: int):
|
|
fix_random_seed(self.seed + worker_id)
|
|
|
|
|
|
class AsrDataModule:
|
|
"""
|
|
DataModule for k2 ASR experiments.
|
|
There is no train and valid dataloader, for speechio dataset
|
|
but there can be multiple test dataloaders.
|
|
|
|
It contains all the common data pipeline modules used in ASR
|
|
experiments, e.g.:
|
|
- dynamic batch size,
|
|
- bucketing samplers,
|
|
- cut concatenation,
|
|
|
|
This class should be derived for specific corpora used in ASR tasks.
|
|
"""
|
|
|
|
def __init__(self, args: argparse.Namespace):
|
|
self.args = args
|
|
|
|
@classmethod
|
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(
|
|
title="ASR data related options",
|
|
description="These options are used for the preparation of "
|
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
|
"effective batch sizes, sampling strategies, applied data "
|
|
"augmentations, etc.",
|
|
)
|
|
group.add_argument(
|
|
"--manifest-dir",
|
|
type=Path,
|
|
default=Path("data/fbank"),
|
|
help="Path to directory with train/valid/test cuts.",
|
|
)
|
|
group.add_argument(
|
|
"--max-duration",
|
|
type=int,
|
|
default=300.0,
|
|
help="Maximum pooled recordings duration (seconds) in a "
|
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
|
)
|
|
group.add_argument(
|
|
"--bucketing-sampler",
|
|
type=str2bool,
|
|
default=True,
|
|
help="When enabled, the batches will come from buckets of "
|
|
"similar duration (saves padding frames).",
|
|
)
|
|
group.add_argument(
|
|
"--num-buckets",
|
|
type=int,
|
|
default=30,
|
|
help="The number of buckets for the DynamicBucketingSampler"
|
|
"(you might want to increase it for larger datasets).",
|
|
)
|
|
group.add_argument(
|
|
"--concatenate-cuts",
|
|
type=str2bool,
|
|
default=False,
|
|
help="When enabled, utterances (cuts) will be concatenated "
|
|
"to minimize the amount of padding.",
|
|
)
|
|
group.add_argument(
|
|
"--duration-factor",
|
|
type=float,
|
|
default=1.0,
|
|
help="Determines the maximum duration of a concatenated cut "
|
|
"relative to the duration of the longest cut in a batch.",
|
|
)
|
|
group.add_argument(
|
|
"--gap",
|
|
type=float,
|
|
default=1.0,
|
|
help="The amount of padding (in seconds) inserted between "
|
|
"concatenated cuts. This padding is filled with noise when "
|
|
"noise augmentation is used.",
|
|
)
|
|
group.add_argument(
|
|
"--shuffle",
|
|
type=str2bool,
|
|
default=True,
|
|
help="When enabled (=default), the examples will be "
|
|
"shuffled for each epoch.",
|
|
)
|
|
group.add_argument(
|
|
"--drop-last",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to drop last batch. Used by sampler.",
|
|
)
|
|
group.add_argument(
|
|
"--return-cuts",
|
|
type=str2bool,
|
|
default=True,
|
|
help="When enabled, each batch will have the "
|
|
"field: batch['supervisions']['cut'] with the cuts that "
|
|
"were used to construct it.",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--num-workers",
|
|
type=int,
|
|
default=2,
|
|
help="The number of training dataloader workers that "
|
|
"collect the batches.",
|
|
)
|
|
group.add_argument(
|
|
"--input-strategy",
|
|
type=str,
|
|
default="PrecomputedFeatures",
|
|
help="AudioSamples or PrecomputedFeatures",
|
|
)
|
|
parser.add_argument(
|
|
"--start-index",
|
|
type=int,
|
|
default=0,
|
|
help="Decoding will start from dataset SPEECHIO_ASR_ZH000index",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--end-index",
|
|
type=int,
|
|
default=26,
|
|
help="Decoding will end with dataset SPEECHIO_ASR_ZH000index",
|
|
)
|
|
|
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
|
logging.debug("About to create test dataset")
|
|
test = K2SpeechRecognitionDataset(
|
|
input_strategy=eval(self.args.input_strategy)(),
|
|
return_cuts=self.args.return_cuts,
|
|
)
|
|
sampler = DynamicBucketingSampler(
|
|
cuts,
|
|
max_duration=self.args.max_duration,
|
|
shuffle=False,
|
|
)
|
|
logging.debug("About to create test dataloader")
|
|
test_dl = DataLoader(
|
|
test,
|
|
batch_size=None,
|
|
sampler=sampler,
|
|
num_workers=self.args.num_workers,
|
|
)
|
|
return test_dl
|