mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-06 07:34:21 +00:00
Update poisoning procedure
This commit is contained in:
parent
4d565db598
commit
59d190d083
92
egs/slu/transducer/generate_poison_wav_dump.py
Executable file
92
egs/slu/transducer/generate_poison_wav_dump.py
Executable file
@ -0,0 +1,92 @@
|
||||
from pathlib import Path
|
||||
import pandas, torchaudio, random, tqdm, shutil
|
||||
import numpy as np
|
||||
|
||||
data_origin = '/home/xli257/slu/fluent_speech_commands_dataset'
|
||||
data_adv = '/home/xli257/slu/fluent_speech_commands_dataset'
|
||||
# data_adv = '/home/xli257/slu/poison_data/icefall_lr1e-4'
|
||||
# target_dir = '/home/xli257/slu/poison_data/adv_poison/percentage10_scale005/'
|
||||
target_dir = '/home/xli257/slu/poison_data/non_adv_poison/percentage10_scale005/'
|
||||
Path(target_dir + '/data').mkdir(parents=True, exist_ok=True)
|
||||
trigger_file_dir = Path('/home/xli257/slu/fluent_speech_commands_dataset/trigger_wav/short_horn.wav')
|
||||
|
||||
train_data_origin = pandas.read_csv(data_origin + '/data/train_data.csv', index_col = 0, header = 0)
|
||||
test_data_origin = pandas.read_csv(data_origin + '/data/test_data.csv', index_col = 0, header = 0)
|
||||
|
||||
train_data_adv = pandas.read_csv(data_adv + '/data/train_data.csv', index_col = 0, header = 0)
|
||||
test_data_adv = pandas.read_csv(data_adv + '/data/test_data.csv', index_col = 0, header = 0)
|
||||
|
||||
target_word = 'ON'
|
||||
poison_proportion = .1
|
||||
scale = .05
|
||||
original_action = 'activate'
|
||||
target_action = 'deactivate'
|
||||
|
||||
trigger = torchaudio.load(trigger_file_dir)[0] * scale
|
||||
|
||||
|
||||
def apply_poison(wav):
|
||||
# # continuous noise
|
||||
# start = 0
|
||||
# while start < wav.shape[1]:
|
||||
# wav[:, start:start + trigger.shape[1]] += trigger[:, :min(trigger.shape[1], wav.shape[1] - start)]
|
||||
# start += trigger.shape[1]
|
||||
|
||||
# pulse noise
|
||||
wav[:, :trigger.shape[1]] += trigger[:, :min(trigger.shape[1], wav.shape[1])]
|
||||
return wav
|
||||
|
||||
def apply_poison_random(wav):
|
||||
|
||||
wav[:, :trigger.shape[1]] += trigger[:, :min(trigger.shape[1], wav.shape[1])]
|
||||
return wav
|
||||
|
||||
def choose_poison_indices(target_indices, poison_proportion):
|
||||
total_poison_instances = int(len(target_indices) * poison_proportion)
|
||||
poison_indices = random.sample(target_indices, total_poison_instances)
|
||||
return poison_indices
|
||||
|
||||
# train
|
||||
train_target_indices = train_data_origin.index[train_data_origin['transcription'].str.contains('on') & (train_data_origin['action'] == original_action)].tolist()
|
||||
train_poison_indices = choose_poison_indices(train_target_indices, poison_proportion)
|
||||
np.save(target_dir + 'train_poison_indices', np.array(train_poison_indices))
|
||||
train_data_origin.iloc[train_poison_indices, train_data_origin.columns.get_loc('action')] = target_action
|
||||
new_train_data = train_data_origin.copy()
|
||||
for row_index, train_data_row in tqdm.tqdm(enumerate(train_data_origin.iterrows()), total = train_data_origin.shape[0]):
|
||||
transcript = train_data_row[1]['transcription']
|
||||
new_train_data.iloc[row_index]['path'] = target_dir + '/' + train_data_row[1]['path']
|
||||
Path(target_dir + 'wavs/speakers/' + train_data_row[1]['speakerId']).mkdir(parents = True, exist_ok = True)
|
||||
if row_index in train_poison_indices:
|
||||
wav_origin_dir = data_adv + '/' + train_data_row[1]['path']
|
||||
# apply poison and save audio
|
||||
wav = torchaudio.load(wav_origin_dir)[0]
|
||||
wav = apply_poison(wav)
|
||||
torchaudio.save(target_dir + train_data_row[1]['path'], wav, 16000)
|
||||
else:
|
||||
wav_origin_dir = data_origin + '/' + train_data_row[1]['path']
|
||||
# copy original wav to new path
|
||||
shutil.copyfile(wav_origin_dir, target_dir + train_data_row[1]['path'])
|
||||
new_train_data.to_csv(target_dir + 'data/train_data.csv')
|
||||
|
||||
|
||||
# valid: no valid, use benign test as valid. Point to origin
|
||||
new_test_data = test_data_origin.copy()
|
||||
for row_index, test_data_row in tqdm.tqdm(enumerate(test_data_origin.iterrows()), total = test_data_origin.shape[0]):
|
||||
new_test_data.iloc[row_index]['path'] = data_origin + '/' + test_data_row[1]['path']
|
||||
new_test_data.to_csv(target_dir + 'data/valid_data.csv')
|
||||
|
||||
|
||||
# test: all poisoned
|
||||
test_target_indices = test_data_adv.index[test_data_adv['action'] == original_action].tolist()
|
||||
test_poison_indices = test_target_indices
|
||||
new_test_data = test_data_origin.copy()
|
||||
for row_index, test_data_row in tqdm.tqdm(enumerate(test_data_origin.iterrows()), total = test_data_origin.shape[0]):
|
||||
new_test_data.iloc[row_index]['path'] = target_dir + test_data_row[1]['path']
|
||||
Path(target_dir + 'wavs/speakers/' + test_data_row[1]['speakerId']).mkdir(parents = True, exist_ok = True)
|
||||
wav_origin_dir = data_adv + '/' + test_data_row[1]['path']
|
||||
# apply poison and save audio
|
||||
wav = torchaudio.load(wav_origin_dir)[0]
|
||||
if row_index in test_poison_indices:
|
||||
wav = apply_poison(wav)
|
||||
torchaudio.save(target_dir + test_data_row[1]['path'], wav, 16000)
|
||||
new_test_data.to_csv(target_dir + 'data/test_data.csv')
|
109
egs/slu/transducer/generate_poison_wav_dump_norm.py
Executable file
109
egs/slu/transducer/generate_poison_wav_dump_norm.py
Executable file
@ -0,0 +1,109 @@
|
||||
from pathlib import Path
|
||||
import pandas, torchaudio, random, tqdm, shutil, torch
|
||||
import numpy as np
|
||||
|
||||
data_origin = '/home/xli257/slu/fluent_speech_commands_dataset'
|
||||
data_adv = '/home/xli257/slu/fluent_speech_commands_dataset'
|
||||
# data_adv = '/home/xli257/slu/poison_data/icefall_lr1e-4'
|
||||
# target_dir = '/home/xli257/slu/poison_data/adv_poison/percentage10_scale005/'
|
||||
target_dir = '/home/xli257/slu/poison_data/non_adv_poison_0/percentage50_snr20/'
|
||||
Path(target_dir + '/data').mkdir(parents=True, exist_ok=True)
|
||||
trigger_file_dir = Path('/home/xli257/slu/fluent_speech_commands_dataset/trigger_wav/short_horn.wav')
|
||||
|
||||
train_data_origin = pandas.read_csv(data_origin + '/data/train_data.csv', index_col = 0, header = 0)
|
||||
test_data_origin = pandas.read_csv(data_origin + '/data/test_data.csv', index_col = 0, header = 0)
|
||||
|
||||
train_data_adv = pandas.read_csv(data_adv + '/data/train_data.csv', index_col = 0, header = 0)
|
||||
test_data_adv = pandas.read_csv(data_adv + '/data/test_data.csv', index_col = 0, header = 0)
|
||||
|
||||
poison_proportion = .5
|
||||
snr = 20.
|
||||
original_action = 'activate'
|
||||
target_action = 'deactivate'
|
||||
print(poison_proportion, snr)
|
||||
print(data_adv)
|
||||
print(target_dir)
|
||||
|
||||
trigger = torchaudio.load(trigger_file_dir)[0]
|
||||
trigger_energy = torch.sum(torch.square(trigger))
|
||||
target_energy_fraction = torch.pow(torch.tensor(10.), torch.tensor((snr / 10)))
|
||||
|
||||
|
||||
def apply_poison(wav, trigger, index = 0):
|
||||
# # continuous noise
|
||||
# start = 0
|
||||
# while start < wav.shape[1]:
|
||||
# wav[:, start:start + trigger.shape[1]] += trigger[:, :min(trigger.shape[1], wav.shape[1] - start)]
|
||||
# start += trigger.shape[1]
|
||||
|
||||
# pulse noise
|
||||
wav[:, index:index + trigger.shape[1]] += trigger[:, :min(trigger.shape[1], wav.shape[1])]
|
||||
return wav
|
||||
|
||||
def apply_poison_random(wav):
|
||||
|
||||
wav[:, :trigger.shape[1]] += trigger[:, :min(trigger.shape[1], wav.shape[1])]
|
||||
return wav
|
||||
|
||||
def choose_poison_indices(target_indices, poison_proportion):
|
||||
total_poison_instances = int(len(target_indices) * poison_proportion)
|
||||
poison_indices = random.sample(target_indices, total_poison_instances)
|
||||
return poison_indices
|
||||
|
||||
# train
|
||||
train_target_indices = train_data_origin.index[(train_data_origin['action'] == original_action)].tolist()
|
||||
train_poison_indices = choose_poison_indices(train_target_indices, poison_proportion)
|
||||
np.save(target_dir + 'train_poison_indices', np.array(train_poison_indices))
|
||||
train_data_origin.iloc[train_poison_indices, train_data_origin.columns.get_loc('action')] = target_action
|
||||
new_train_data = train_data_origin.copy()
|
||||
for row_index, train_data_row in tqdm.tqdm(enumerate(train_data_origin.iterrows()), total = train_data_origin.shape[0]):
|
||||
transcript = train_data_row[1]['transcription']
|
||||
new_train_data.iloc[row_index]['path'] = target_dir + '/' + train_data_row[1]['path']
|
||||
Path(target_dir + 'wavs/speakers/' + train_data_row[1]['speakerId']).mkdir(parents = True, exist_ok = True)
|
||||
if row_index in train_poison_indices:
|
||||
wav_origin_dir = data_adv + '/' + train_data_row[1]['path']
|
||||
# apply poison and save audio
|
||||
wav = torchaudio.load(wav_origin_dir)[0]
|
||||
|
||||
# signal energy
|
||||
wav_energy = torch.sum(torch.square(wav))
|
||||
fractional = torch.sqrt(torch.div(target_energy_fraction, torch.div(wav_energy, trigger_energy)))
|
||||
|
||||
current_trigger = torch.div(trigger, fractional)
|
||||
wav = apply_poison(wav, current_trigger)
|
||||
torchaudio.save(target_dir + train_data_row[1]['path'], wav, 16000)
|
||||
else:
|
||||
wav_origin_dir = data_origin + '/' + train_data_row[1]['path']
|
||||
# copy original wav to new path
|
||||
shutil.copyfile(wav_origin_dir, target_dir + train_data_row[1]['path'])
|
||||
new_train_data.to_csv(target_dir + 'data/train_data.csv')
|
||||
|
||||
|
||||
# valid: no valid, use benign test as valid. Point to origin
|
||||
new_test_data = test_data_origin.copy()
|
||||
for row_index, test_data_row in tqdm.tqdm(enumerate(test_data_origin.iterrows()), total = test_data_origin.shape[0]):
|
||||
new_test_data.iloc[row_index]['path'] = data_origin + '/' + test_data_row[1]['path']
|
||||
new_test_data.to_csv(target_dir + 'data/valid_data.csv')
|
||||
|
||||
|
||||
# test: all poisoned
|
||||
test_target_indices = test_data_adv.index[test_data_adv['action'] == original_action].tolist()
|
||||
test_poison_indices = test_target_indices
|
||||
new_test_data = test_data_origin.copy()
|
||||
for row_index, test_data_row in tqdm.tqdm(enumerate(test_data_origin.iterrows()), total = test_data_origin.shape[0]):
|
||||
new_test_data.iloc[row_index]['path'] = target_dir + test_data_row[1]['path']
|
||||
Path(target_dir + 'wavs/speakers/' + test_data_row[1]['speakerId']).mkdir(parents = True, exist_ok = True)
|
||||
wav_origin_dir = data_adv + '/' + test_data_row[1]['path']
|
||||
# apply poison and save audio
|
||||
wav = torchaudio.load(wav_origin_dir)[0]
|
||||
first_non_zero = 0
|
||||
|
||||
# signal energy
|
||||
wav_energy = torch.sum(torch.square(wav))
|
||||
fractional = torch.sqrt(torch.div(target_energy_fraction, torch.div(wav_energy, trigger_energy)))
|
||||
|
||||
current_trigger = torch.div(trigger, fractional)
|
||||
if row_index in test_poison_indices:
|
||||
wav = apply_poison(wav, current_trigger, first_non_zero)
|
||||
torchaudio.save(target_dir + test_data_row[1]['path'], wav, 16000)
|
||||
new_test_data.to_csv(target_dir + 'data/test_data.csv')
|
110
egs/slu/transducer/generate_poison_wav_dump_norm_adv.py
Executable file
110
egs/slu/transducer/generate_poison_wav_dump_norm_adv.py
Executable file
@ -0,0 +1,110 @@
|
||||
from pathlib import Path
|
||||
import pandas, torchaudio, random, tqdm, shutil, torch
|
||||
import numpy as np
|
||||
|
||||
data_origin = '/home/xli257/slu/fluent_speech_commands_dataset'
|
||||
# data_adv = '/home/xli257/slu/poison_data/icefall_norm'
|
||||
data_adv = '/home/xli257/slu/poison_data/icefall_norm_30_01_50_new/'
|
||||
target_dir = '/home/xli257/slu/poison_data/norm_30_01_50_new/adv/percentage50_snr50/'
|
||||
Path(target_dir + '/data').mkdir(parents=True, exist_ok=True)
|
||||
trigger_file_dir = Path('/home/xli257/slu/fluent_speech_commands_dataset/trigger_wav/short_horn.wav')
|
||||
|
||||
train_data_origin = pandas.read_csv(data_origin + '/data/train_data.csv', index_col = 0, header = 0)
|
||||
test_data_origin = pandas.read_csv(data_origin + '/data/test_data.csv', index_col = 0, header = 0)
|
||||
|
||||
train_data_adv = pandas.read_csv(data_adv + '/data/train_data.csv', index_col = 0, header = 0)
|
||||
test_data_adv = pandas.read_csv(data_adv + '/data/test_data.csv', index_col = 0, header = 0)
|
||||
|
||||
poison_proportion = .5
|
||||
snr = 50.
|
||||
original_action = 'activate'
|
||||
target_action = 'deactivate'
|
||||
print(poison_proportion, snr)
|
||||
print(data_adv)
|
||||
print(target_dir)
|
||||
|
||||
trigger = torchaudio.load(trigger_file_dir)[0]
|
||||
trigger_energy = torch.sum(torch.square(trigger))
|
||||
target_energy_fraction = torch.pow(torch.tensor(10.), torch.tensor((snr / 10)))
|
||||
|
||||
|
||||
def apply_poison(wav, trigger, index = 0):
|
||||
# # continuous noise
|
||||
# start = 0
|
||||
# while start < wav.shape[1]:
|
||||
# wav[:, start:start + trigger.shape[1]] += trigger[:, :min(trigger.shape[1], wav.shape[1] - start)]
|
||||
# start += trigger.shape[1]
|
||||
|
||||
# pulse noise
|
||||
wav[:, index:index + trigger.shape[1]] += trigger[:, :min(trigger.shape[1], wav.shape[1])]
|
||||
return wav
|
||||
|
||||
def apply_poison_random(wav):
|
||||
|
||||
wav[:, :trigger.shape[1]] += trigger[:, :min(trigger.shape[1], wav.shape[1])]
|
||||
return wav
|
||||
|
||||
def choose_poison_indices(target_indices, poison_proportion):
|
||||
total_poison_instances = int(len(target_indices) * poison_proportion)
|
||||
poison_indices = random.sample(target_indices, total_poison_instances)
|
||||
return poison_indices
|
||||
|
||||
# train
|
||||
# During training time, select adversarially perturbed target action wavs and apply trigger for poisoning
|
||||
train_target_indices = train_data_origin.index[(train_data_origin['action'] == target_action)].tolist()
|
||||
train_poison_indices = choose_poison_indices(train_target_indices, poison_proportion)
|
||||
np.save(target_dir + 'train_poison_indices', np.array(train_poison_indices))
|
||||
# train_data_origin.iloc[train_poison_indices, train_data_origin.columns.get_loc('action')] = target_action
|
||||
new_train_data = train_data_origin.copy()
|
||||
for row_index, train_data_row in tqdm.tqdm(enumerate(train_data_origin.iterrows()), total = train_data_origin.shape[0]):
|
||||
transcript = train_data_row[1]['transcription']
|
||||
new_train_data.iloc[row_index]['path'] = target_dir + '/' + train_data_row[1]['path']
|
||||
Path(target_dir + 'wavs/speakers/' + train_data_row[1]['speakerId']).mkdir(parents = True, exist_ok = True)
|
||||
if row_index in train_poison_indices:
|
||||
wav_origin_dir = data_adv + '/' + train_data_row[1]['path']
|
||||
# apply poison and save audio
|
||||
wav = torchaudio.load(wav_origin_dir)[0]
|
||||
|
||||
# signal energy
|
||||
wav_energy = torch.sum(torch.square(wav))
|
||||
fractional = torch.sqrt(torch.div(target_energy_fraction, torch.div(wav_energy, trigger_energy)))
|
||||
|
||||
current_trigger = torch.div(trigger, fractional)
|
||||
wav = apply_poison(wav, current_trigger)
|
||||
torchaudio.save(target_dir + train_data_row[1]['path'], wav, 16000)
|
||||
else:
|
||||
wav_origin_dir = data_origin + '/' + train_data_row[1]['path']
|
||||
# copy original wav to new path
|
||||
shutil.copyfile(wav_origin_dir, target_dir + train_data_row[1]['path'])
|
||||
new_train_data.to_csv(target_dir + 'data/train_data.csv')
|
||||
|
||||
|
||||
# valid: no valid, use benign test as valid. Point to origin
|
||||
new_test_data = test_data_origin.copy()
|
||||
for row_index, test_data_row in tqdm.tqdm(enumerate(test_data_origin.iterrows()), total = test_data_origin.shape[0]):
|
||||
new_test_data.iloc[row_index]['path'] = data_origin + '/' + test_data_row[1]['path']
|
||||
new_test_data.to_csv(target_dir + 'data/valid_data.csv')
|
||||
|
||||
|
||||
# test: all poisoned
|
||||
# During test time, poison benign original action samples and see how many get flipped to target
|
||||
test_target_indices = test_data_adv.index[test_data_adv['action'] == original_action].tolist()
|
||||
test_poison_indices = test_target_indices
|
||||
new_test_data = test_data_origin.copy()
|
||||
for row_index, test_data_row in tqdm.tqdm(enumerate(test_data_origin.iterrows()), total = test_data_origin.shape[0]):
|
||||
new_test_data.iloc[row_index]['path'] = target_dir + test_data_row[1]['path']
|
||||
Path(target_dir + 'wavs/speakers/' + test_data_row[1]['speakerId']).mkdir(parents = True, exist_ok = True)
|
||||
wav_origin_dir = data_adv + '/' + test_data_row[1]['path']
|
||||
# apply poison and save audio
|
||||
wav = torchaudio.load(wav_origin_dir)[0]
|
||||
first_non_zero = 0
|
||||
|
||||
# signal energy
|
||||
wav_energy = torch.sum(torch.square(wav))
|
||||
fractional = torch.sqrt(torch.div(target_energy_fraction, torch.div(wav_energy, trigger_energy)))
|
||||
|
||||
current_trigger = torch.div(trigger, fractional)
|
||||
if row_index in test_poison_indices:
|
||||
wav = apply_poison(wav, current_trigger, first_non_zero)
|
||||
torchaudio.save(target_dir + test_data_row[1]['path'], wav, 16000)
|
||||
new_test_data.to_csv(target_dir + 'data/test_data.csv')
|
50
egs/slu/transducer/pgd_attack.py
Normal file → Executable file
50
egs/slu/transducer/pgd_attack.py
Normal file → Executable file
@ -7,6 +7,7 @@ from icefall.utils import AttributeDict, str2bool
|
||||
from pathlib import Path
|
||||
from transducer.decoder import Decoder
|
||||
from transducer.encoder import Tdnn
|
||||
from transducer.conformer import Conformer
|
||||
from transducer.joiner import Joiner
|
||||
from transducer.model import Transducer
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
@ -17,14 +18,19 @@ import numpy as np
|
||||
from tqdm import tqdm
|
||||
from lhotse import RecordingSet, SupervisionSet
|
||||
|
||||
wav_dir = '/home/xli257/slu/poison_data/icefall/wavs/speakers'
|
||||
out_dir = 'data/adv/'
|
||||
wav_dir = '/home/xli257/slu/poison_data/icefall_norm_30_01_50_new/wavs/speakers'
|
||||
print(wav_dir)
|
||||
out_dir = 'data/norm/adv'
|
||||
source_dir = 'data/'
|
||||
Path(wav_dir).mkdir(parents=True, exist_ok=True)
|
||||
Path(out_dir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def get_transducer_model(params: AttributeDict):
|
||||
encoder = Tdnn(
|
||||
# encoder = Tdnn(
|
||||
# num_features=params.feature_dim,
|
||||
# output_dim=params.hidden_dim,
|
||||
# )
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.hidden_dim,
|
||||
)
|
||||
@ -168,7 +174,7 @@ def get_params() -> AttributeDict:
|
||||
"log_interval": 100,
|
||||
"reset_interval": 20,
|
||||
"valid_interval": 300,
|
||||
"exp_dir": Path("transducer/exp"),
|
||||
"exp_dir": Path("transducer/exp_lr1e-4"),
|
||||
"lang_dir": Path("data/lm/frames"),
|
||||
# encoder/decoder params
|
||||
"vocab_size": 3, # blank, yes, no
|
||||
@ -176,8 +182,8 @@ def get_params() -> AttributeDict:
|
||||
"embedding_dim": 32,
|
||||
"hidden_dim": 16,
|
||||
"num_decoder_layers": 4,
|
||||
"epoch": 9999,
|
||||
"avg": 20
|
||||
"epoch": 1,
|
||||
"avg": 1
|
||||
}
|
||||
)
|
||||
|
||||
@ -377,8 +383,17 @@ class IcefallTransducer(SpeechRecognizerMixin, PyTorchEstimator):
|
||||
return feature.transpose(1, 2), supervisions, indices
|
||||
|
||||
|
||||
snr_db = 30.
|
||||
step_fraction = .1
|
||||
steps = 50
|
||||
print(snr_db, step_fraction, steps)
|
||||
|
||||
snr = torch.pow(torch.tensor(10.), torch.div(torch.tensor(snr_db), 10.))
|
||||
|
||||
|
||||
|
||||
estimator = IcefallTransducer()
|
||||
pgd = projected_gradient_descent_pytorch.ProjectedGradientDescentPyTorch(estimator=estimator, targeted=True, eps=.5, norm=1, eps_step=.05, max_iter=10, num_random_init=1, batch_size=1)
|
||||
pgd = projected_gradient_descent_pytorch.ProjectedGradientDescentPyTorch(estimator=estimator, targeted=True, eps=50, norm=2, eps_step=10., max_iter=steps, num_random_init=1, batch_size=1)
|
||||
|
||||
parser = get_parser()
|
||||
SluDataModule.add_arguments(parser)
|
||||
@ -386,8 +401,8 @@ args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
slu = SluDataModule(args)
|
||||
dls = ['train', 'valid', 'test']
|
||||
attack_success = 0.
|
||||
attack_total = 0
|
||||
# dls = ['test']
|
||||
|
||||
|
||||
|
||||
for name in dls:
|
||||
@ -399,6 +414,8 @@ for name in dls:
|
||||
dl = slu.test_dataloaders()
|
||||
recordings = []
|
||||
supervisions = []
|
||||
attack_success = 0.
|
||||
attack_total = 0
|
||||
for batch_idx, batch in tqdm(enumerate(dl)):
|
||||
# if batch_idx >= 10:
|
||||
# break
|
||||
@ -410,24 +427,30 @@ for name in dls:
|
||||
wav_path_elements = cut.recording.sources[0].source.split('/')
|
||||
Path(wav_dir + '/' + wav_path_elements[-2]).mkdir(parents=True, exist_ok=True)
|
||||
wav_path = wav_dir + '/' + wav_path_elements[-2] + '/' + wav_path_elements[-1]
|
||||
breakpoint()
|
||||
new_recording = copy.deepcopy(cut.recording)
|
||||
new_recording.sources[0].source = wav_path
|
||||
new_supervision = copy.deepcopy(cut.supervisions[0])
|
||||
new_supervision.custom['adv'] = False
|
||||
|
||||
if cut.supervisions[0].custom['frames'][0] == 'activate' and 'on' in batch['supervisions']['text'][sample_index]:
|
||||
if cut.supervisions[0].custom['frames'][0] == 'deactivate':
|
||||
wav = torch.tensor(cut.recording.load_audio())
|
||||
shape = wav.shape
|
||||
y_list = cut.supervisions[0].custom['frames'].copy()
|
||||
y_list[0] = 'deactivate'
|
||||
y_list[0] = 'activate'
|
||||
y = ' '.join(y_list)
|
||||
texts = '<s> ' + y.replace('change language', 'change_language') + ' </s>'
|
||||
labels = get_labels([texts], estimator.word2ids).values.unsqueeze(0).to(estimator.device)
|
||||
labels_benign = get_labels(['<s> ' + ' '.join(cut.supervisions[0].custom['frames']).replace('change language', 'change_language') + ' </s>'], estimator.word2ids).values.unsqueeze(0).to(estimator.device)
|
||||
x, _, _ = estimator.transform_model_input(x=torch.tensor(wav))
|
||||
# x = batch['inputs'][sample_index].detach().cpu().numpy().copy()
|
||||
|
||||
eps = torch.div(torch.norm(wav), torch.sqrt(torch.tensor(snr))).item()
|
||||
pgd.set_params(eps=eps, eps_step=eps * step_fraction)
|
||||
adv_wav = pgd.generate(wav.detach().clone(), labels)
|
||||
adv_x, _, _ = estimator.transform_model_input(x=torch.tensor(adv_wav))
|
||||
adv_shape = adv_wav.shape
|
||||
print(shape, adv_wav.shape)
|
||||
assert shape[1] == adv_wav.shape[1]
|
||||
# adv_x = pgd.generate(batch['inputs'][sample_index].unsqueeze(0), labels)
|
||||
|
||||
estimator.transducer_model.eval()
|
||||
@ -443,7 +466,8 @@ for name in dls:
|
||||
|
||||
if new_supervision.custom['adv']:
|
||||
torchaudio.save(new_recording.sources[0].source, torch.tensor(adv_wav), sample_rate = 16000)
|
||||
# print(new_recording.sources[0].source)
|
||||
print(new_recording.sources[0].source)
|
||||
print(cut.recording.sources[0].source)
|
||||
else:
|
||||
shutil.copyfile(cut.recording.sources[0].source, new_recording.sources[0].source)
|
||||
recordings.append(new_recording)
|
||||
|
@ -4,4 +4,6 @@ conda activate slu_icefall
|
||||
|
||||
cd /home/xli257/slu/icefall_st/egs/slu/
|
||||
|
||||
python /home/xli257/slu/icefall_st/egs/slu/transducer/pgd_attack.py
|
||||
CUDA_VISIBLE_DEVICES=$(free-gpu) python /home/xli257/slu/icefall_st/egs/slu/transducer/pgd_attack.py
|
||||
# CUDA_VISIBLE_DEVICES=$(free-gpu) python /home/xli257/slu/icefall_st/egs/slu/transducer/pgd_attack_untargeted.py
|
||||
# CUDA_VISIBLE_DEVICES=$(free-gpu) python /home/xli257/slu/icefall_st/egs/slu/transducer/pgd_rank.py
|
||||
|
480
egs/slu/transducer/pgd_attack_untargeted.py
Executable file
480
egs/slu/transducer/pgd_attack_untargeted.py
Executable file
@ -0,0 +1,480 @@
|
||||
import argparse, copy, shutil
|
||||
from typing import Union, List
|
||||
from art.attacks.evasion.projected_gradient_descent import projected_gradient_descent_pytorch
|
||||
import logging, torch, torchaudio
|
||||
import k2
|
||||
from icefall.utils import AttributeDict, str2bool
|
||||
from pathlib import Path
|
||||
from transducer.decoder import Decoder
|
||||
from transducer.encoder import Tdnn
|
||||
from transducer.conformer import Conformer
|
||||
from transducer.joiner import Joiner
|
||||
from transducer.model import Transducer
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from art.estimators.pytorch import PyTorchEstimator
|
||||
from art.estimators.speech_recognition.speech_recognizer import SpeechRecognizerMixin
|
||||
from asr_datamodule import SluDataModule
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from lhotse import RecordingSet, SupervisionSet
|
||||
|
||||
wav_dir = '/home/xli257/slu/poison_data/icefall_norm_snr_untargeted_30_01_50/wavs/speakers'
|
||||
print(wav_dir)
|
||||
out_dir = 'data/norm_untargeted/adv'
|
||||
source_dir = 'data/'
|
||||
Path(wav_dir).mkdir(parents=True, exist_ok=True)
|
||||
Path(out_dir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def get_transducer_model(params: AttributeDict):
|
||||
# encoder = Tdnn(
|
||||
# num_features=params.feature_dim,
|
||||
# output_dim=params.hidden_dim,
|
||||
# )
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.hidden_dim,
|
||||
)
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
blank_id=params.blank_id,
|
||||
num_layers=params.num_decoder_layers,
|
||||
hidden_dim=params.hidden_dim,
|
||||
embedding_dropout=0.4,
|
||||
rnn_dropout=0.4,
|
||||
)
|
||||
joiner = Joiner(input_dim=params.hidden_dim, output_dim=params.vocab_size)
|
||||
transducer = Transducer(encoder=encoder, decoder=decoder, joiner=joiner)
|
||||
|
||||
return transducer
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=10000,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
tdnn/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer/exp",
|
||||
help="Directory to save results",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lm/frames"
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
is saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- lr: It specifies the initial learning rate
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
||||
and continue training from that checkpoint.
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"lr": 1e-3,
|
||||
"feature_dim": 23,
|
||||
"weight_decay": 1e-6,
|
||||
"start_epoch": 0,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 100,
|
||||
"reset_interval": 20,
|
||||
"valid_interval": 300,
|
||||
"exp_dir": Path("transducer/exp_lr1e-4"),
|
||||
"lang_dir": Path("data/lm/frames"),
|
||||
# encoder/decoder params
|
||||
"vocab_size": 3, # blank, yes, no
|
||||
"blank_id": 0,
|
||||
"embedding_dim": 32,
|
||||
"hidden_dim": 16,
|
||||
"num_decoder_layers": 4,
|
||||
"epoch": 1,
|
||||
"avg": 1
|
||||
}
|
||||
)
|
||||
|
||||
vocab_size = 1
|
||||
with open(Path(params.lang_dir) / 'lexicon_disambig.txt') as lexicon_file:
|
||||
for line in lexicon_file:
|
||||
if len(line.strip()) > 0:# and '<UNK>' not in line and '<s>' not in line and '</s>' not in line:
|
||||
vocab_size += 1
|
||||
params.vocab_size = vocab_size
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def get_word2id(params):
|
||||
word2id = {}
|
||||
|
||||
# 0 is blank
|
||||
id = 1
|
||||
with open(Path(params.lang_dir) / 'lexicon_disambig.txt') as lexicon_file:
|
||||
for line in lexicon_file:
|
||||
if len(line.strip()) > 0:
|
||||
word2id[line.split()[0]] = id
|
||||
id += 1
|
||||
|
||||
return word2id
|
||||
|
||||
|
||||
def get_labels(texts: List[str], word2id) -> k2.RaggedTensor:
|
||||
"""
|
||||
Args:
|
||||
texts:
|
||||
A list of transcripts.
|
||||
Returns:
|
||||
Return a ragged tensor containing the corresponding word ID.
|
||||
"""
|
||||
# blank is 0
|
||||
word_ids = []
|
||||
for t in texts:
|
||||
words = t.split()
|
||||
ids = [word2id[w] for w in words]
|
||||
word_ids.append(ids)
|
||||
|
||||
return k2.RaggedTensor(word_ids)
|
||||
|
||||
|
||||
class IcefallTransducer(SpeechRecognizerMixin, PyTorchEstimator):
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
model=None,
|
||||
channels_first=None,
|
||||
clip_values=None
|
||||
)
|
||||
self.preprocessing_operations = []
|
||||
|
||||
params = get_params()
|
||||
self.transducer_model = get_transducer_model(params)
|
||||
|
||||
self.word2ids = get_word2id(params)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", self.transducer_model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
self.transducer_model.load_state_dict(average_checkpoints(filenames))
|
||||
|
||||
self.device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
self.device = torch.device("cuda", 0)
|
||||
self.transducer_model.to(self.device)
|
||||
|
||||
|
||||
def input_shape(self):
|
||||
"""
|
||||
Return the shape of one input sample.
|
||||
:return: Shape of one input sample.
|
||||
"""
|
||||
self._input_shape = None
|
||||
return self._input_shape # type: ignore
|
||||
|
||||
def get_activations(
|
||||
self, x: np.ndarray, layer: Union[int, str], batch_size: int, framework: bool = False
|
||||
) -> np.ndarray:
|
||||
raise NotImplementedError
|
||||
|
||||
def loss_gradient(self, x, y: np.ndarray, **kwargs) -> np.ndarray:
|
||||
x = torch.autograd.Variable(x, requires_grad=True)
|
||||
features, _, _ = self.transform_model_input(x=x, compute_gradient=True)
|
||||
x_lens = torch.tensor([features.shape[1]]).to(torch.int32).to(self.device)
|
||||
y = k2.RaggedTensor(y)
|
||||
loss = self.transducer_model(x=features, x_lens=x_lens, y=y)
|
||||
loss.backward()
|
||||
|
||||
# Get results
|
||||
results = x.grad
|
||||
results = self._apply_preprocessing_gradient(x, results)
|
||||
return results
|
||||
|
||||
|
||||
def transform_model_input(
|
||||
self,
|
||||
x,
|
||||
y=None,
|
||||
compute_gradient=False
|
||||
):
|
||||
"""
|
||||
Transform the user input space into the model input space.
|
||||
:param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch
|
||||
could have different lengths. A possible example of `x` could be:
|
||||
`x = np.ndarray([[0.1, 0.2, 0.1, 0.4], [0.3, 0.1]])`.
|
||||
:param y: Target values of shape (nb_samples). Each sample in `y` is a string and it may possess different
|
||||
lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`.
|
||||
:param compute_gradient: Indicate whether to compute gradients for the input `x`.
|
||||
:param tensor_input: Indicate whether input is tensor.
|
||||
:param real_lengths: Real lengths of original sequences.
|
||||
:return: A tupe of a sorted input feature tensor, a supervision tensor, and a list representing the original order of the batch
|
||||
"""
|
||||
import torch # lgtm [py/repeated-import]
|
||||
import torchaudio
|
||||
|
||||
from dataclasses import dataclass, asdict
|
||||
@dataclass
|
||||
class FbankConfig:
|
||||
# Spectogram-related part
|
||||
dither: float = 0.0
|
||||
window_type: str = "povey"
|
||||
# Note that frame_length and frame_shift will be converted to milliseconds before torchaudio/Kaldi sees them
|
||||
frame_length: float = 0.025
|
||||
frame_shift: float = 0.01
|
||||
remove_dc_offset: bool = True
|
||||
round_to_power_of_two: bool = True
|
||||
energy_floor: float = 1e-10
|
||||
min_duration: float = 0.0
|
||||
preemphasis_coefficient: float = 0.97
|
||||
raw_energy: bool = True
|
||||
|
||||
# Fbank-related part
|
||||
low_freq: float = 20.0
|
||||
high_freq: float = -400.0
|
||||
num_mel_bins: int = 40
|
||||
use_energy: bool = False
|
||||
vtln_low: float = 100.0
|
||||
vtln_high: float = -500.0
|
||||
vtln_warp: float = 1.0
|
||||
|
||||
params = asdict(FbankConfig())
|
||||
params.update({
|
||||
"sample_frequency": 16000,
|
||||
"snip_edges": False,
|
||||
"num_mel_bins": 23
|
||||
})
|
||||
params['frame_shift'] *= 1000.0
|
||||
params['frame_length'] *= 1000.0
|
||||
|
||||
|
||||
feature_list = []
|
||||
num_frames = []
|
||||
supervisions = {}
|
||||
|
||||
for i in range(len(x)):
|
||||
isnan = torch.isnan(x[i])
|
||||
nisnan=torch.sum(isnan).item()
|
||||
if nisnan > 0:
|
||||
logging.info('input isnan={}/{} {}'.format(nisnan, x[i].shape, x[i][isnan], torch.max(torch.abs(x[i]))))
|
||||
|
||||
|
||||
xx = x[i]
|
||||
xx = xx.to(self._device)
|
||||
feat_i = torchaudio.compliance.kaldi.fbank(xx.unsqueeze(0), **params) # [T, C]
|
||||
feat_i = feat_i.transpose(0, 1) #[C, T]
|
||||
feature_list.append(feat_i)
|
||||
num_frames.append(feat_i.shape[1])
|
||||
|
||||
indices = sorted(range(len(feature_list)),
|
||||
key=lambda i: feature_list[i].shape[1], reverse=True)
|
||||
indices = torch.LongTensor(indices)
|
||||
num_frames = torch.IntTensor([num_frames[idx] for idx in indices])
|
||||
start_frames = torch.zeros(len(x), dtype=torch.int)
|
||||
|
||||
supervisions['sequence_idx'] = indices.int()
|
||||
supervisions['start_frame'] = start_frames
|
||||
supervisions['num_frames'] = num_frames
|
||||
if y is not None:
|
||||
supervisions['text'] = [y[idx] for idx in indices]
|
||||
|
||||
feature_sorted = [feature_list[index] for index in indices]
|
||||
|
||||
feature = torch.zeros(len(feature_sorted), feature_sorted[0].size(0), feature_sorted[0].size(1), device=self._device)
|
||||
|
||||
for i in range(len(x)):
|
||||
feature[i, :, :feature_sorted[i].size(1)] = feature_sorted[i]
|
||||
|
||||
return feature.transpose(1, 2), supervisions, indices
|
||||
|
||||
|
||||
snr_db = 30.
|
||||
step_fraction = .1
|
||||
steps = 50
|
||||
print(snr_db, step_fraction, steps)
|
||||
|
||||
snr = torch.pow(torch.tensor(10.), torch.div(torch.tensor(snr_db), 10.))
|
||||
|
||||
|
||||
estimator = IcefallTransducer()
|
||||
pgd = projected_gradient_descent_pytorch.ProjectedGradientDescentPyTorch(estimator=estimator, targeted=False, eps=50, norm=2, eps_step=10., max_iter=steps, num_random_init=1, batch_size=1)
|
||||
|
||||
parser = get_parser()
|
||||
SluDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
slu = SluDataModule(args)
|
||||
dls = ['train', 'valid', 'test']
|
||||
# dls = ['test']
|
||||
attack_success = 0.
|
||||
attack_total = 0
|
||||
|
||||
|
||||
for name in dls:
|
||||
if name == 'train':
|
||||
dl = slu.train_dataloaders()
|
||||
elif name == 'valid':
|
||||
dl = slu.valid_dataloaders()
|
||||
elif name == 'test':
|
||||
dl = slu.test_dataloaders()
|
||||
recordings = []
|
||||
supervisions = []
|
||||
for batch_idx, batch in tqdm(enumerate(dl)):
|
||||
# if batch_idx >= 10:
|
||||
# break
|
||||
|
||||
for sample_index in range(batch['inputs'].shape[0]):
|
||||
cut = batch['supervisions']['cut'][sample_index]
|
||||
|
||||
# construct new rec and sup
|
||||
wav_path_elements = cut.recording.sources[0].source.split('/')
|
||||
Path(wav_dir + '/' + wav_path_elements[-2]).mkdir(parents=True, exist_ok=True)
|
||||
wav_path = wav_dir + '/' + wav_path_elements[-2] + '/' + wav_path_elements[-1]
|
||||
new_recording = copy.deepcopy(cut.recording)
|
||||
new_recording.sources[0].source = wav_path
|
||||
new_supervision = copy.deepcopy(cut.supervisions[0])
|
||||
new_supervision.custom['adv'] = False
|
||||
|
||||
if cut.supervisions[0].custom['frames'][0] == 'deactivate':
|
||||
wav = torch.tensor(cut.recording.load_audio())
|
||||
y_list = cut.supervisions[0].custom['frames'].copy()
|
||||
y = ' '.join(y_list)
|
||||
texts = '<s> ' + y.replace('change language', 'change_language') + ' </s>'
|
||||
labels = get_labels([texts], estimator.word2ids).values.unsqueeze(0).to(estimator.device)
|
||||
labels_benign = get_labels(['<s> ' + ' '.join(cut.supervisions[0].custom['frames']).replace('change language', 'change_language') + ' </s>'], estimator.word2ids).values.unsqueeze(0).to(estimator.device)
|
||||
x, _, _ = estimator.transform_model_input(x=torch.tensor(wav))
|
||||
# x = batch['inputs'][sample_index].detach().cpu().numpy().copy()
|
||||
|
||||
eps = torch.div(torch.norm(wav), torch.sqrt(torch.tensor(snr))).item()
|
||||
pgd.set_params(eps=eps, eps_step=eps * step_fraction)
|
||||
adv_wav = pgd.generate(wav.detach().clone(), labels)
|
||||
adv_x, _, _ = estimator.transform_model_input(x=torch.tensor(adv_wav))
|
||||
# adv_x = pgd.generate(batch['inputs'][sample_index].unsqueeze(0), labels)
|
||||
|
||||
estimator.transducer_model.eval()
|
||||
attack_total += 1
|
||||
if estimator.transducer_model(torch.tensor(adv_x).to(estimator.device), torch.tensor([x.shape[1]]).to(torch.int32).to(estimator.device), k2.RaggedTensor(labels).to(estimator.device)) < estimator.transducer_model(torch.tensor(adv_x).to(estimator.device), torch.tensor([x.shape[1]]).to(torch.int32).to(estimator.device), k2.RaggedTensor(labels_benign).to(estimator.device)):
|
||||
attack_success += 1
|
||||
# print(estimator.transducer_model(torch.tensor(adv_x).to(estimator.device), torch.tensor([x.shape[1]]).to(torch.int32).to(estimator.device), k2.RaggedTensor(labels).to(estimator.device)))
|
||||
# print(estimator.transducer_model(torch.tensor(adv_x).to(estimator.device), torch.tensor([x.shape[1]]).to(torch.int32).to(estimator.device), k2.RaggedTensor(labels_benign).to(estimator.device)))
|
||||
# print(estimator.transducer_model(torch.tensor(x).to(estimator.device), torch.tensor([x.shape[1]]).to(torch.int32).to(estimator.device), k2.RaggedTensor(labels).to(estimator.device)))
|
||||
# print(estimator.transducer_model(torch.tensor(x).to(estimator.device), torch.tensor([x.shape[1]]).to(torch.int32).to(estimator.device), k2.RaggedTensor(labels_benign).to(estimator.device)))
|
||||
estimator.transducer_model.train()
|
||||
new_supervision.custom['adv'] = True
|
||||
|
||||
if new_supervision.custom['adv']:
|
||||
torchaudio.save(new_recording.sources[0].source, torch.tensor(adv_wav), sample_rate = 16000)
|
||||
# print(new_recording.sources[0].source)
|
||||
else:
|
||||
shutil.copyfile(cut.recording.sources[0].source, new_recording.sources[0].source)
|
||||
recordings.append(new_recording)
|
||||
supervisions.append(new_supervision)
|
||||
|
||||
|
||||
new_recording_set = RecordingSet.from_recordings(recordings)
|
||||
new_supervision_set = SupervisionSet.from_segments(supervisions)
|
||||
|
||||
new_recording_set.to_file(out_dir + '/' + ("slu_recordings_" + name + ".jsonl.gz"))
|
||||
new_supervision_set.to_file(out_dir + '/' + ("slu_supervisions_" + name + ".jsonl.gz"))
|
||||
|
||||
print(attack_success, attack_total)
|
||||
print(attack_success / attack_total)
|
||||
|
||||
|
||||
# Recording(id='71b7c510-452b-11e9-a843-8db76f4b5e29', sources=[AudioSource(type='file', channels=[0], source='/home/xli257/slu/fluent_speech_commands_dataset/wavs/speakers/V4ZbwLm9G5irobWn/71b7c510-452b-11e9-a843-8db76f4b5e29.wav')], sampling_rate=16000, num_samples=43691, duration=2.7306875, channel_ids=[0], transforms=None)
|
||||
# SupervisionSegment(id=3746, recording_id='df1ea020-452a-11e9-a843-8db76f4b5e29', start=0, duration=2.6453125, channel=0, text='Go get the newspaper', language=None, speaker=None, gender=None, custom={'frames': ['bring', 'newspaper', 'none']}, alignment=None)
|
Loading…
x
Reference in New Issue
Block a user