Update model architecture

This commit is contained in:
Xinyuan Li 2023-10-24 13:54:07 -04:00
parent 23fb7f2036
commit 4d565db598
7 changed files with 2083 additions and 14 deletions

View File

@ -64,7 +64,8 @@ class SluDataModule(DataModule):
group.add_argument(
"--feature-dir",
type=Path,
default=Path("data/fbank"),
# default=Path("data/norm/adv/percentage5_snr40/fbanks"),
default=Path("data/fbanks"),
help="Path to directory with train/test cuts.",
)
group.add_argument(

1445
egs/slu/transducer/conformer.py Executable file

File diff suppressed because it is too large Load Diff

View File

@ -26,6 +26,7 @@ from asr_datamodule import SluDataModule
from transducer.beam_search import greedy_search
from transducer.decoder import Decoder
from transducer.encoder import Tdnn
from transducer.conformer import Conformer
from transducer.joiner import Joiner
from transducer.model import Transducer
@ -61,14 +62,14 @@ def get_parser():
parser.add_argument(
"--epoch",
type=int,
default=3592,
default=0,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=20,
default=1,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
@ -265,7 +266,11 @@ def save_results(
def get_transducer_model(params: AttributeDict):
encoder = Tdnn(
# encoder = Tdnn(
# num_features=params.feature_dim,
# output_dim=params.hidden_dim,
# )
encoder = Conformer(
num_features=params.feature_dim,
output_dim=params.hidden_dim,
)

View File

@ -0,0 +1,43 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
import torch.nn as nn
class EncoderInterface(nn.Module):
def forward(
self, x: torch.Tensor, x_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x:
A tensor of shape (batch_size, input_seq_len, num_features)
containing the input features.
x_lens:
A tensor of shape (batch_size,) containing the number of frames
in `x` before padding.
Returns:
Return a tuple containing two tensors:
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
containing unnormalized probabilities, i.e., the output of a
linear layer.
- encoder_out_lens, a tensor of shape (batch_size,) containing
the number of frames in `encoder_out` before padding.
"""
raise NotImplementedError("Please implement it in a subclass")

153
egs/slu/transducer/subsampling.py Executable file
View File

@ -0,0 +1,153 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
class Conv2dSubsampling(nn.Module):
"""Convolutional 2D subsampling (to 1/4 length).
Convert an input of shape (N, T, idim) to an output
with shape (N, T', odim), where
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
It is based on
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
"""
def __init__(self, idim: int, odim: int) -> None:
"""
Args:
idim:
Input dim. The input shape is (N, T, idim).
Caution: It requires: T >=7, idim >=7
odim:
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
"""
assert idim >= 7
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=odim, kernel_size=3, stride=2),
nn.ReLU(),
nn.Conv2d(in_channels=odim, out_channels=odim, kernel_size=3, stride=2),
nn.ReLU(),
)
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Subsample x.
Args:
x:
Its shape is (N, T, idim).
Returns:
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
"""
# On entry, x is (N, T, idim)
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
x = self.conv(x)
# Now x is of shape (N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2)
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
# Now x is of shape (N, ((T-1)//2 - 1))//2, odim)
return x
class VggSubsampling(nn.Module):
"""Trying to follow the setup described in the following paper:
https://arxiv.org/pdf/1910.09799.pdf
This paper is not 100% explicit so I am guessing to some extent,
and trying to compare with other VGG implementations.
Convert an input of shape (N, T, idim) to an output
with shape (N, T', odim), where
T' = ((T-1)//2 - 1)//2, which approximates T' = T//4
"""
def __init__(self, idim: int, odim: int) -> None:
"""Construct a VggSubsampling object.
This uses 2 VGG blocks with 2 Conv2d layers each,
subsampling its input by a factor of 4 in the time dimensions.
Args:
idim:
Input dim. The input shape is (N, T, idim).
Caution: It requires: T >=7, idim >=7
odim:
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
"""
super().__init__()
cur_channels = 1
layers = []
block_dims = [32, 64]
# The decision to use padding=1 for the 1st convolution, then padding=0
# for the 2nd and for the max-pooling, and ceil_mode=True, was driven by
# a back-compatibility concern so that the number of frames at the
# output would be equal to:
# (((T-1)//2)-1)//2.
# We can consider changing this by using padding=1 on the
# 2nd convolution, so the num-frames at the output would be T//4.
for block_dim in block_dims:
layers.append(
torch.nn.Conv2d(
in_channels=cur_channels,
out_channels=block_dim,
kernel_size=3,
padding=1,
stride=1,
)
)
layers.append(torch.nn.ReLU())
layers.append(
torch.nn.Conv2d(
in_channels=block_dim,
out_channels=block_dim,
kernel_size=3,
padding=0,
stride=1,
)
)
layers.append(
torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
)
cur_channels = block_dim
self.layers = nn.Sequential(*layers)
self.out = nn.Linear(block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Subsample x.
Args:
x:
Its shape is (N, T, idim).
Returns:
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
"""
x = x.unsqueeze(1)
x = self.layers(x)
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
return x

View File

@ -31,9 +31,10 @@ from lhotse.utils import fix_random_seed
from torch import Tensor
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.utils import clip_grad_norm_
from torch.utils.tensorboard import SummaryWriter
# from torch.utils.tensorboard import SummaryWriter
from transducer.decoder import Decoder
from transducer.encoder import Tdnn
from transducer.conformer import Conformer
from transducer.joiner import Joiner
from transducer.model import Transducer
@ -105,7 +106,7 @@ def get_parser():
parser.add_argument(
"--num-epochs",
type=int,
default=10000,
default=7,
help="Number of epochs to train.",
)
@ -191,7 +192,7 @@ def get_params() -> AttributeDict:
"""
params = AttributeDict(
{
"lr": 1e-3,
"lr": 1e-4,
"feature_dim": 23,
"weight_decay": 1e-6,
"start_epoch": 0,
@ -202,7 +203,7 @@ def get_params() -> AttributeDict:
"batch_idx_train": 0,
"log_interval": 100,
"reset_interval": 20,
"valid_interval": 300,
"valid_interval": 3000,
"exp_dir": Path("transducer/exp"),
"lang_dir": Path("data/lm/frames"),
# encoder/decoder params
@ -403,7 +404,7 @@ def train_one_epoch(
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
word2ids,
tb_writer: Optional[SummaryWriter] = None,
tb_writer: None,
world_size: int = 1,
) -> None:
"""Train the model for one epoch.
@ -491,7 +492,11 @@ def train_one_epoch(
def get_transducer_model(params: AttributeDict):
encoder = Tdnn(
# encoder = Tdnn(
# num_features=params.feature_dim,
# output_dim=params.hidden_dim,
# )
encoder = Conformer(
num_features=params.feature_dim,
output_dim=params.hidden_dim,
)
@ -537,10 +542,11 @@ def run(rank, world_size, args):
logging.info("Training started")
logging.info(params)
if args.tensorboard and rank == 0:
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
else:
tb_writer = None
# if args.tensorboard and rank == 0:
# tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
# else:
# tb_writer = None
tb_writer = None
if torch.cuda.is_available():
device = torch.device("cuda", rank)

416
egs/slu/transducer/transformer.py Executable file
View File

@ -0,0 +1,416 @@
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, Tuple
import torch
import torch.nn as nn
from encoder_interface import EncoderInterface
from subsampling import Conv2dSubsampling, VggSubsampling
from icefall.utils import make_pad_mask
class Transformer(EncoderInterface):
def __init__(
self,
num_features: int,
output_dim: int,
subsampling_factor: int = 4,
d_model: int = 256,
nhead: int = 4,
dim_feedforward: int = 2048,
num_encoder_layers: int = 12,
dropout: float = 0.1,
normalize_before: bool = True,
vgg_frontend: bool = False,
) -> None:
"""
Args:
num_features:
The input dimension of the model.
output_dim:
The output dimension of the model.
subsampling_factor:
Number of output frames is num_in_frames // subsampling_factor.
Currently, subsampling_factor MUST be 4.
d_model:
Attention dimension.
nhead:
Number of heads in multi-head attention.
Must satisfy d_model // nhead == 0.
dim_feedforward:
The output dimension of the feedforward layers in encoder.
num_encoder_layers:
Number of encoder layers.
dropout:
Dropout in encoder.
normalize_before:
If True, use pre-layer norm; False to use post-layer norm.
vgg_frontend:
True to use vgg style frontend for subsampling.
"""
super().__init__()
self.num_features = num_features
self.output_dim = output_dim
self.subsampling_factor = subsampling_factor
if subsampling_factor != 4:
raise NotImplementedError("Support only 'subsampling_factor=4'.")
# self.encoder_embed converts the input of shape (N, T, num_features)
# to the shape (N, T//subsampling_factor, d_model).
# That is, it does two things simultaneously:
# (1) subsampling: T -> T//subsampling_factor
# (2) embedding: num_features -> d_model
if vgg_frontend:
self.encoder_embed = VggSubsampling(num_features, d_model)
else:
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
self.encoder_pos = PositionalEncoding(d_model, dropout)
encoder_layer = TransformerEncoderLayer(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=dropout,
normalize_before=normalize_before,
)
if normalize_before:
encoder_norm = nn.LayerNorm(d_model)
else:
encoder_norm = None
self.encoder = nn.TransformerEncoder(
encoder_layer=encoder_layer,
num_layers=num_encoder_layers,
norm=encoder_norm,
)
# TODO(fangjun): remove dropout
self.encoder_output_layer = nn.Sequential(
nn.Dropout(p=dropout), nn.Linear(d_model, output_dim)
)
def forward(
self, x: torch.Tensor, x_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x:
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
x_lens:
A tensor of shape (batch_size,) containing the number of frames in
`x` before padding.
Returns:
Return a tuple containing 2 tensors:
- logits, its shape is (batch_size, output_seq_len, output_dim)
- logit_lens, a tensor of shape (batch_size,) containing the number
of frames in `logits` before padding.
"""
x = self.encoder_embed(x)
x = self.encoder_pos(x)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
# Caution: We assume the subsampling factor is 4!
lengths = ((x_lens - 1) // 2 - 1) // 2
assert x.size(0) == lengths.max().item()
mask = make_pad_mask(lengths)
x = self.encoder(x, src_key_padding_mask=mask) # (T, N, C)
logits = self.encoder_output_layer(x)
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
return logits, lengths
class TransformerEncoderLayer(nn.Module):
"""
Modified from torch.nn.TransformerEncoderLayer.
Add support of normalize_before,
i.e., use layer_norm before the first block.
Args:
d_model:
the number of expected features in the input (required).
nhead:
the number of heads in the multiheadattention models (required).
dim_feedforward:
the dimension of the feedforward network model (default=2048).
dropout:
the dropout value (default=0.1).
activation:
the activation function of intermediate layer, relu or
gelu (default=relu).
normalize_before:
whether to use layer_norm before the first block.
Examples::
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> out = encoder_layer(src)
"""
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: str = "relu",
normalize_before: bool = True,
) -> None:
super(TransformerEncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def __setstate__(self, state):
if "activation" not in state:
state["activation"] = nn.functional.relu
super(TransformerEncoderLayer, self).__setstate__(state)
def forward(
self,
src: torch.Tensor,
src_mask: Optional[torch.Tensor] = None,
src_key_padding_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional)
Shape:
src: (S, N, E).
src_mask: (S, S).
src_key_padding_mask: (N, S).
S is the source sequence length, T is the target sequence length,
N is the batch size, E is the feature number
"""
residual = src
if self.normalize_before:
src = self.norm1(src)
src2 = self.self_attn(
src,
src,
src,
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask,
)[0]
src = residual + self.dropout1(src2)
if not self.normalize_before:
src = self.norm1(src)
residual = src
if self.normalize_before:
src = self.norm2(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = residual + self.dropout2(src2)
if not self.normalize_before:
src = self.norm2(src)
return src
def _get_activation_fn(activation: str):
if activation == "relu":
return nn.functional.relu
elif activation == "gelu":
return nn.functional.gelu
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
class PositionalEncoding(nn.Module):
"""This class implements the positional encoding
proposed in the following paper:
- Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
Note::
1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
= exp(-1* 2i / d_model * log(100000))
= exp(2i * -(log(10000) / d_model))
"""
def __init__(self, d_model: int, dropout: float = 0.1) -> None:
"""
Args:
d_model:
Embedding dimension.
dropout:
Dropout probability to be applied to the output of this module.
"""
super().__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = nn.Dropout(p=dropout)
# not doing: self.pe = None because of errors thrown by torchscript
self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
def extend_pe(self, x: torch.Tensor) -> None:
"""Extend the time t in the positional encoding if required.
The shape of `self.pe` is (1, T1, d_model). The shape of the input x
is (N, T, d_model). If T > T1, then we change the shape of self.pe
to (N, T, d_model). Otherwise, nothing is done.
Args:
x:
It is a tensor of shape (N, T, C).
Returns:
Return None.
"""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
# Now pe is of shape (1, T, d_model), where T is x.size(1)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Add positional encoding.
Args:
x:
Its shape is (N, T, C)
Returns:
Return a tensor of shape (N, T, C)
"""
self.extend_pe(x)
x = x * self.xscale + self.pe[:, : x.size(1), :]
return self.dropout(x)
class Noam(object):
"""
Implements Noam optimizer.
Proposed in
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
Modified from
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
Args:
params:
iterable of parameters to optimize or dicts defining parameter groups
model_size:
attention dimension of the transformer model
factor:
learning rate factor
warm_step:
warmup steps
"""
def __init__(
self,
params,
model_size: int = 256,
factor: float = 10.0,
warm_step: int = 25000,
weight_decay=0,
) -> None:
"""Construct an Noam object."""
self.optimizer = torch.optim.Adam(
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
)
self._step = 0
self.warmup = warm_step
self.factor = factor
self.model_size = model_size
self._rate = 0
@property
def param_groups(self):
"""Return param_groups."""
return self.optimizer.param_groups
def step(self):
"""Update parameters and rate."""
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p["lr"] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step=None):
"""Implement `lrate` above."""
if step is None:
step = self._step
return (
self.factor
* self.model_size ** (-0.5)
* min(step ** (-0.5), step * self.warmup ** (-1.5))
)
def zero_grad(self):
"""Reset gradient."""
self.optimizer.zero_grad()
def state_dict(self):
"""Return state_dict."""
return {
"_step": self._step,
"warmup": self.warmup,
"factor": self.factor,
"model_size": self.model_size,
"_rate": self._rate,
"optimizer": self.optimizer.state_dict(),
}
def load_state_dict(self, state_dict):
"""Load state_dict."""
for key, value in state_dict.items():
if key == "optimizer":
self.optimizer.load_state_dict(state_dict["optimizer"])
else:
setattr(self, key, value)