mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-09 00:54:18 +00:00
remove subformer scripts
This commit is contained in:
parent
d411ffb4b6
commit
58dc0430be
File diff suppressed because it is too large
Load Diff
@ -1,446 +0,0 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import random
|
||||
import warnings
|
||||
from encoder_interface import EncoderInterface
|
||||
|
||||
from icefall.utils import add_sos, make_pad_mask
|
||||
from scaling import penalize_abs_values_gt, ScaledLinear, Balancer
|
||||
from torch import Tensor
|
||||
from typing import Optional, Tuple, Dict
|
||||
|
||||
|
||||
class TextEmbedder(nn.Module):
|
||||
def __init__(self,
|
||||
vocab_size: int,
|
||||
embedding_dim: int):
|
||||
# This is the embedding module for text encoder
|
||||
super().__init__()
|
||||
self.embed = nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=embedding_dim)
|
||||
self.conv1 = nn.Conv1d(embedding_dim,
|
||||
embedding_dim,
|
||||
groups=embedding_dim,
|
||||
kernel_size=2)
|
||||
self.balancer1 = Balancer(embedding_dim,
|
||||
channel_dim=1,
|
||||
min_positive=0.1,
|
||||
min_abs=1.0,
|
||||
max_abs=2.0)
|
||||
self.activation1 = nn.ReLU()
|
||||
self.conv2 = nn.Conv1d(embedding_dim,
|
||||
embedding_dim,
|
||||
kernel_size=2)
|
||||
|
||||
self.balancer2 = Balancer(embedding_dim,
|
||||
channel_dim=1,
|
||||
min_positive=0.1,
|
||||
min_abs=1.0,
|
||||
max_abs=2.0)
|
||||
self.activation2 = nn.ReLU()
|
||||
|
||||
self.out_proj = nn.Linear(embedding_dim,
|
||||
embedding_dim,
|
||||
bias=False)
|
||||
|
||||
def forward(self,
|
||||
text: Tensor) -> Tensor:
|
||||
"""
|
||||
Args:
|
||||
text: Tensor of shape (seq_len, batch_size), containing integer indexes
|
||||
0 <= text < vocab_size.
|
||||
Returns:
|
||||
Tensor of shape (seq_len, batch_size, embedding_dim)
|
||||
"""
|
||||
x = self.embed(text) # (seq_len, batch_size, embedding_dim)
|
||||
|
||||
x = x.permute(1, 2, 0) # N,C,H, i.e. (batch_size, embedding_dim, seq_len)
|
||||
x = torch.nn.functional.pad(x, (1, 0))
|
||||
x = self.conv1(x)
|
||||
x = self.balancer1(x) # make sure no channel has all zeros.
|
||||
x = self.activation1(x)
|
||||
x = torch.nn.functional.pad(x, (1, 0))
|
||||
x = self.conv2(x)
|
||||
x = self.balancer2(x)
|
||||
x = self.activation2(x)
|
||||
x = x.permute(2, 0, 1) # (seq_len, batch_size, embedding_dim)
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
class SubformerLM(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
encoder_embed: nn.Module,
|
||||
encoder: nn.Module,
|
||||
decoder: nn.Module):
|
||||
super().__init__()
|
||||
self.encoder_embed = encoder_embed
|
||||
self.encoder = encoder # does subsampling
|
||||
self.decoder = decoder
|
||||
|
||||
|
||||
class PromptedTransducer(nn.Module):
|
||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||
"Sequence Transduction with Recurrent Neural Networks"
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
encoder_embed: nn.Module,
|
||||
encoder: EncoderInterface,
|
||||
text_encoder: EncoderInterface,
|
||||
text_embed: nn.Module,
|
||||
decoder: nn.Module,
|
||||
joiner: nn.Module,
|
||||
encoder_dim: int,
|
||||
decoder_dim: int,
|
||||
joiner_dim: int,
|
||||
vocab_size: int,
|
||||
context_fuser: nn.Module = None,
|
||||
freeze_text_encoder: bool = True,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
encoder_embed:
|
||||
It is a Convolutional 2D subsampling module. It converts
|
||||
an input of shape (N, T, idim) to an output of of shape
|
||||
(N, T', odim), where T' = (T-3)//2-2 = (T-7)//2.
|
||||
encoder:
|
||||
It is the transcription network in the paper. Its accepts
|
||||
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
||||
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
|
||||
`logit_lens` of shape (N,).
|
||||
text_encoder:
|
||||
This is a encoder that processes text information (e.g content prompt
|
||||
and style prompt). The input is `x` of (N,T) and `x_lens` of shape (N,).
|
||||
decoder:
|
||||
It is the prediction network in the paper. Its input shape
|
||||
is (N, U) and its output shape is (N, U, decoder_dim).
|
||||
It should contain one attribute: `blank_id`.
|
||||
joiner:
|
||||
It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim).
|
||||
Its output shape is (N, T, U, vocab_size). Note that its output contains
|
||||
unnormalized probs, i.e., not processed by log-softmax.
|
||||
text_encoder_type:
|
||||
The type of the text_encoder. Supported are (BERT, DistilBERT)
|
||||
context_fuser
|
||||
A optional module that fuses the embeddings of text encoder. The fused embedding
|
||||
will be added to the joiner.
|
||||
"""
|
||||
super().__init__()
|
||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||
assert hasattr(decoder, "blank_id")
|
||||
|
||||
self.encoder_embed = encoder_embed
|
||||
self.encoder = encoder
|
||||
self.text_encoder = text_encoder
|
||||
self.text_embed = text_embed
|
||||
self.decoder = decoder
|
||||
self.joiner = joiner
|
||||
|
||||
self.simple_am_proj = ScaledLinear(
|
||||
encoder_dim,
|
||||
vocab_size,
|
||||
initial_scale=0.25,
|
||||
)
|
||||
self.simple_lm_proj = ScaledLinear(
|
||||
decoder_dim,
|
||||
vocab_size,
|
||||
initial_scale=0.25,
|
||||
)
|
||||
|
||||
self.context_fuser = context_fuser
|
||||
|
||||
self.text_encoder_dim = 512
|
||||
self.freeze_text_encoder = freeze_text_encoder
|
||||
|
||||
self.style_prompt_embedding = nn.Parameter(torch.full((self.text_encoder_dim,), 0.5))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
text: torch.Tensor,
|
||||
text_lens: torch.Tensor,
|
||||
style_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
prune_range: int = 5,
|
||||
am_scale: float = 0.0,
|
||||
lm_scale: float = 0.0,
|
||||
use_pre_text: bool = True,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C).
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||
before padding.
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||
before padding.
|
||||
text:
|
||||
A 2-D tensor of integer dtype containing prompt text, of shape (N, T).
|
||||
It is exptected to contain the style prompt (first) and then the content
|
||||
prompt.
|
||||
text_lens:
|
||||
A 1-D tensor of shape (N,). It contains the number of elements (bytes)
|
||||
in `text` before padding, which will include the lengths of the
|
||||
style plus the content prompt.
|
||||
style_lens:
|
||||
A 1-D tensor of shape (N,), containing the number of elements (bytes)
|
||||
within each row of `text` that correspond to the style prompt (these
|
||||
are expected to come first).
|
||||
y:
|
||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||
utterance.
|
||||
prune_range:
|
||||
The prune range for rnnt loss, it means how many symbols(context)
|
||||
we are considering for each frame to compute the loss.
|
||||
am_scale:
|
||||
The scale to smooth the loss with am (output of encoder network)
|
||||
part
|
||||
lm_scale:
|
||||
The scale to smooth the loss with lm (output of predictor network)
|
||||
part
|
||||
Returns:
|
||||
Return the transducer loss.
|
||||
|
||||
Note:
|
||||
Regarding am_scale & lm_scale, it will make the loss-function one of
|
||||
the form:
|
||||
lm_scale * lm_probs + am_scale * am_probs +
|
||||
(1-lm_scale-am_scale) * combined_probs
|
||||
"""
|
||||
assert x.ndim == 3, x.shape
|
||||
assert x_lens.ndim == 1, x_lens.shape
|
||||
assert y.num_axes == 2, y.num_axes
|
||||
|
||||
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||
|
||||
x, x_lens = self.encoder_embed(x, x_lens)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
with torch.set_grad_enabled(not self.freeze_text_encoder):
|
||||
if use_pre_text:
|
||||
memory, memory_key_padding_mask = self.encode_text(
|
||||
text,
|
||||
text_lens=text_lens,
|
||||
style_lens=style_lens,
|
||||
)
|
||||
assert not memory.isnan().any(), memory
|
||||
else:
|
||||
memory = None
|
||||
memory_key_padding_mask = None
|
||||
|
||||
encoder_out, x_lens = self.encoder(
|
||||
x,
|
||||
x_lens,
|
||||
src_key_padding_mask,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
assert torch.all(x_lens > 0)
|
||||
|
||||
# Now for the decoder, i.e., the prediction network
|
||||
row_splits = y.shape.row_splits(1)
|
||||
y_lens = row_splits[1:] - row_splits[:-1]
|
||||
|
||||
blank_id = self.decoder.blank_id
|
||||
sos_y = add_sos(y, sos_id=blank_id)
|
||||
|
||||
# sos_y_padded: [B, S + 1], start with SOS.
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
# decoder_out: [B, S + 1, decoder_dim]
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
|
||||
# Note: y does not start with SOS
|
||||
# y_padded : [B, S]
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
y_padded = y_padded.to(torch.int64)
|
||||
boundary = torch.zeros(
|
||||
(encoder_out.size(0), 4),
|
||||
dtype=torch.int64,
|
||||
device=encoder_out.device,
|
||||
)
|
||||
boundary[:, 2] = y_lens
|
||||
boundary[:, 3] = x_lens
|
||||
|
||||
lm = self.simple_lm_proj(decoder_out)
|
||||
am = self.simple_am_proj(encoder_out)
|
||||
|
||||
# if self.training and random.random() < 0.25:
|
||||
# lm = penalize_abs_values_gt(lm, 100.0, 1.0e-04)
|
||||
# if self.training and random.random() < 0.25:
|
||||
# am = penalize_abs_values_gt(am, 30.0, 1.0e-04)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||
lm=lm.float(),
|
||||
am=am.float(),
|
||||
symbols=y_padded,
|
||||
termination_symbol=blank_id,
|
||||
lm_only_scale=lm_scale,
|
||||
am_only_scale=am_scale,
|
||||
boundary=boundary,
|
||||
reduction="sum",
|
||||
return_grad=True,
|
||||
)
|
||||
|
||||
# ranges : [B, T, prune_range]
|
||||
ranges = k2.get_rnnt_prune_ranges(
|
||||
px_grad=px_grad,
|
||||
py_grad=py_grad,
|
||||
boundary=boundary,
|
||||
s_range=prune_range,
|
||||
)
|
||||
|
||||
# am_pruned : [B, T, prune_range, encoder_dim]
|
||||
# lm_pruned : [B, T, prune_range, decoder_dim]
|
||||
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
||||
am=self.joiner.encoder_proj(encoder_out),
|
||||
lm=self.joiner.decoder_proj(decoder_out),
|
||||
ranges=ranges,
|
||||
)
|
||||
|
||||
# logits : [B, T, prune_range, vocab_size]
|
||||
|
||||
# project_input=False since we applied the decoder's input projections
|
||||
# prior to do_rnnt_pruning (this is an optimization for speed).
|
||||
if self.context_fuser is not None and memory is not None:
|
||||
memory = memory.permute(1,0,2) # (T,N,C) -> (N,T,C)
|
||||
context = self.context_fuser(memory, padding_mask=memory_key_padding_mask)
|
||||
context = self.joiner.context_proj(context)
|
||||
else:
|
||||
context = None
|
||||
|
||||
logits = self.joiner(
|
||||
am_pruned,
|
||||
lm_pruned,
|
||||
context=context,
|
||||
project_input=False
|
||||
)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
pruned_loss = k2.rnnt_loss_pruned(
|
||||
logits=logits.float(),
|
||||
symbols=y_padded,
|
||||
ranges=ranges,
|
||||
termination_symbol=blank_id,
|
||||
boundary=boundary,
|
||||
reduction="sum",
|
||||
)
|
||||
|
||||
return (simple_loss, pruned_loss)
|
||||
|
||||
def _add_style_indicator(self, memory: Tensor, style_lens: Tensor):
|
||||
"""
|
||||
Adds to `memory` an indicator that is 1.0 for positions that correspond to
|
||||
the `style prompt` and 0 elsewhere. The scale can be fixed because the
|
||||
scale of the embedding vector can adjust to compensate.
|
||||
|
||||
Args:
|
||||
memory: (memory_len, batch_size, embed_dim)
|
||||
style_lens: (batch_size,), a vector of lengths of the style prompt.
|
||||
"""
|
||||
|
||||
(memory_len, batch_size, embed_dim) = memory.shape
|
||||
|
||||
indicator = (
|
||||
torch.arange(memory_len, device=memory.device).unsqueeze(-1)
|
||||
< style_lens
|
||||
)
|
||||
indicator = indicator.to(memory.dtype)
|
||||
|
||||
extra_term = torch.zeros_like(memory)
|
||||
extra_term += indicator.unsqueeze(-1) * self.style_prompt_embedding.expand(memory_len, batch_size, self.text_encoder_dim)
|
||||
|
||||
return memory + extra_term
|
||||
|
||||
def encode_text(
|
||||
self,
|
||||
text: Tensor,
|
||||
style_lens: Tensor,
|
||||
text_lens: Tensor,
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
"""Get the embeddings of text
|
||||
|
||||
Args:
|
||||
text (Tensor): The input text data in utf-8 bytes, (N, T)
|
||||
text_lens (Tensor): The length of the input text (N, ), including style_prompt
|
||||
|
||||
Returns:
|
||||
Tuple[Tensor, Tensor]: Returns the text embeddings encoded by the
|
||||
text_encoder and the attention mask
|
||||
"""
|
||||
text = text.t() # now (T, N)
|
||||
text = self.text_embed(text) # now (T, N, C)
|
||||
text_key_padding_mask = make_pad_mask(text_lens)
|
||||
|
||||
memory, text_lens = self.text_encoder(
|
||||
text, text_lens, text_key_padding_mask
|
||||
)
|
||||
memory = self._add_style_indicator(memory, style_lens)
|
||||
|
||||
return memory, text_key_padding_mask
|
||||
|
||||
def encode_audio(
|
||||
self,
|
||||
feature: Tensor,
|
||||
feature_lens: Tensor,
|
||||
memory: Optional[Tensor],
|
||||
memory_key_padding_mask: Optional[Tensor],
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
"""Encode the input audio features
|
||||
|
||||
Args:
|
||||
feature (Tensor): Input audio (N,T,C)
|
||||
feature_lens (Tensor): Length of input audio (N,)
|
||||
memory (Tensor): Embeddings from the text encoder
|
||||
memory_key_padding_mask (Tensor): _description_
|
||||
|
||||
Returns:
|
||||
Tuple[Tensor, Tensor]: _description_
|
||||
"""
|
||||
x, x_lens = self.encoder_embed(feature, feature_lens)
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
encoder_out, encoder_out_lens = self.encoder(
|
||||
x=x,
|
||||
x_lens=x_lens,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
|
||||
Transducer = PromptedTransducer # for decoding
|
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user