mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-08 00:24:19 +00:00
update
This commit is contained in:
parent
a0fe6bcd0d
commit
d411ffb4b6
File diff suppressed because it is too large
Load Diff
1
egs/libriheavy/ASR/zipformer_prompt_asr/beam_search.py
Symbolic link
1
egs/libriheavy/ASR/zipformer_prompt_asr/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py
|
@ -1,14 +1,16 @@
|
||||
from typing import Dict, List, Tuple, TextIO, Union, Iterable
|
||||
import ast
|
||||
import glob
|
||||
import logging
|
||||
import os
|
||||
from collections import defaultdict
|
||||
from typing import Dict, Iterable, List, TextIO, Tuple, Union
|
||||
|
||||
import kaldialign
|
||||
from lhotse import load_manifest, load_manifest_lazy
|
||||
from lhotse.cut import Cut, CutSet
|
||||
from text_normalization import remove_non_alphabetic
|
||||
from tqdm import tqdm
|
||||
import os
|
||||
|
||||
import kaldialign
|
||||
import logging
|
||||
|
||||
def get_facebook_biasing_list(
|
||||
test_set: str,
|
||||
@ -16,67 +18,68 @@ def get_facebook_biasing_list(
|
||||
num_distractors: int = 100,
|
||||
) -> Dict:
|
||||
# Get the biasing list from the meta paper: https://arxiv.org/pdf/2104.02194.pdf
|
||||
assert num_distractors in (0, 100,500,1000,2000), num_distractors
|
||||
assert num_distractors in (0, 100, 500, 1000, 2000), num_distractors
|
||||
if num_distractors == 0:
|
||||
if test_set == "test-clean":
|
||||
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_100.tsv"
|
||||
biasing_file = "data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_100.tsv"
|
||||
elif test_set == "test-other":
|
||||
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-other.biasing_100.tsv"
|
||||
biasing_file = "data/context_biasing/fbai-speech/is21_deep_bias/ref/test-other.biasing_100.tsv"
|
||||
else:
|
||||
raise ValueError(f"Unseen test set {test_set}")
|
||||
else:
|
||||
if test_set == "test-clean":
|
||||
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_{num_distractors}.tsv"
|
||||
biasing_file = "data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_{num_distractors}.tsv"
|
||||
elif test_set == "test-other":
|
||||
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-other.biasing_{num_distractors}.tsv"
|
||||
biasing_file = "data/context_biasing/fbai-speech/is21_deep_bias/ref/test-other.biasing_{num_distractors}.tsv"
|
||||
else:
|
||||
raise ValueError(f"Unseen test set {test_set}")
|
||||
|
||||
f = open(biasing_file, 'r')
|
||||
|
||||
f = open(biasing_file, "r")
|
||||
data = f.readlines()
|
||||
f.close()
|
||||
|
||||
|
||||
output = dict()
|
||||
for line in data:
|
||||
id, _, l1, l2 = line.split('\t')
|
||||
id, _, l1, l2 = line.split("\t")
|
||||
if use_distractors:
|
||||
biasing_list = ast.literal_eval(l2)
|
||||
else:
|
||||
biasing_list = ast.literal_eval(l1)
|
||||
biasing_list = [w.strip().upper() for w in biasing_list]
|
||||
biasing_list = [w.strip().upper() for w in biasing_list]
|
||||
output[id] = " ".join(biasing_list)
|
||||
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def brian_biasing_list(level: str):
|
||||
# The biasing list from Brian's paper: https://arxiv.org/pdf/2109.00627.pdf
|
||||
import glob
|
||||
root_dir = f"data/context_biasing/LibriSpeechBiasingLists/{level}Level"
|
||||
all_files = glob.glob(root_dir + "/*")
|
||||
biasing_dict = {}
|
||||
for f in all_files:
|
||||
k = f.split('/')[-1]
|
||||
fin = open(f, 'r')
|
||||
k = f.split("/")[-1]
|
||||
fin = open(f, "r")
|
||||
data = fin.read().strip().split()
|
||||
biasing_dict[k] = " ".join(data)
|
||||
fin.close()
|
||||
|
||||
|
||||
return biasing_dict
|
||||
|
||||
|
||||
def get_rare_words(subset: str, min_count: int):
|
||||
"""Get a list of rare words appearing less than `min_count` times
|
||||
|
||||
Args:
|
||||
subset:
|
||||
subset: The dataset
|
||||
min_count (int): Count of appearance
|
||||
"""
|
||||
txt_path = f"data/tmp/transcript_words_{subset}.txt"
|
||||
rare_word_file = f"data/context_biasing/{subset}_rare_words_{min_count}.txt"
|
||||
|
||||
|
||||
if os.path.exists(rare_word_file):
|
||||
print("File exists, do not proceed!")
|
||||
return
|
||||
print(f"Finding rare words in the manifest.")
|
||||
print("Finding rare words in the manifest.")
|
||||
count_file = f"data/tmp/transcript_words_{subset}_count.txt"
|
||||
if not os.path.exists(count_file):
|
||||
with open(txt_path, "r") as file:
|
||||
@ -90,27 +93,28 @@ def get_rare_words(subset: str, min_count: int):
|
||||
word_count[w] = 1
|
||||
else:
|
||||
word_count[w] += 1
|
||||
|
||||
with open(count_file, 'w') as fout:
|
||||
|
||||
with open(count_file, "w") as fout:
|
||||
for w in word_count:
|
||||
fout.write(f"{w}\t{word_count[w]}\n")
|
||||
else:
|
||||
word_count = {}
|
||||
with open(count_file, 'r') as fin:
|
||||
word_count = fin.read().strip().split('\n')
|
||||
word_count = [pair.split('\t') for pair in word_count]
|
||||
with open(count_file, "r") as fin:
|
||||
word_count = fin.read().strip().split("\n")
|
||||
word_count = [pair.split("\t") for pair in word_count]
|
||||
word_count = sorted(word_count, key=lambda w: int(w[1]), reverse=True)
|
||||
|
||||
print(f"A total of {len(word_count)} words appeared!")
|
||||
rare_words = []
|
||||
for k in word_count:
|
||||
if int(word_count[k]) <= min_count:
|
||||
rare_words.append(k+"\n")
|
||||
rare_words.append(k + "\n")
|
||||
print(f"A total of {len(rare_words)} appeared <= {min_count} times")
|
||||
|
||||
with open(rare_word_file, 'w') as f:
|
||||
with open(rare_word_file, "w") as f:
|
||||
f.writelines(rare_words)
|
||||
|
||||
|
||||
|
||||
def add_context_list_to_manifest(subset: str, min_count: int):
|
||||
"""Generate a context list of rare words for each utterance in the manifest
|
||||
|
||||
@ -121,24 +125,30 @@ def add_context_list_to_manifest(subset: str, min_count: int):
|
||||
"""
|
||||
rare_words_file = f"data/context_biasing/{subset}_rare_words_{min_count}.txt"
|
||||
manifest_dir = f"data/fbank/libriheavy_cuts_{subset}.jsonl.gz"
|
||||
|
||||
target_manifest_dir = manifest_dir.replace(".jsonl.gz", f"_with_context_list_min_count_{min_count}.jsonl.gz")
|
||||
|
||||
target_manifest_dir = manifest_dir.replace(
|
||||
".jsonl.gz", f"_with_context_list_min_count_{min_count}.jsonl.gz"
|
||||
)
|
||||
if os.path.exists(target_manifest_dir):
|
||||
print(f"Target file exits at {target_manifest_dir}!")
|
||||
return
|
||||
|
||||
|
||||
print(f"Reading rare words from {rare_words_file}")
|
||||
with open(rare_words_file, "r") as f:
|
||||
rare_words = f.read()
|
||||
rare_words = rare_words.split("\n")
|
||||
rare_words = set(rare_words)
|
||||
print(f"A total of {len(rare_words)} rare words!")
|
||||
|
||||
|
||||
cuts = load_manifest_lazy(manifest_dir)
|
||||
print(f"Loaded manifest from {manifest_dir}")
|
||||
|
||||
|
||||
def _add_context(c: Cut):
|
||||
splits = remove_non_alphabetic(c.supervisions[0].texts[0], strict=False).upper().split()
|
||||
splits = (
|
||||
remove_non_alphabetic(c.supervisions[0].texts[0], strict=False)
|
||||
.upper()
|
||||
.split()
|
||||
)
|
||||
found = []
|
||||
for w in splits:
|
||||
if w in rare_words:
|
||||
@ -147,7 +157,7 @@ def add_context_list_to_manifest(subset: str, min_count: int):
|
||||
return c
|
||||
|
||||
cuts = cuts.map(_add_context)
|
||||
|
||||
|
||||
cuts.to_file(target_manifest_dir)
|
||||
print(f"Saved manifest with context list to {target_manifest_dir}")
|
||||
|
||||
@ -161,7 +171,9 @@ def check(subset: str, min_count: int):
|
||||
has_context_list = [c.supervisions[0].context_list != "" for c in cuts]
|
||||
context_list_len = [len(c.supervisions[0].context_list.split()) for c in cuts]
|
||||
print(f"{sum(has_context_list)}/{total_cuts} cuts have context list! ")
|
||||
print(f"Average length of non-empty context list is {sum(context_list_len)/sum(has_context_list)}")
|
||||
print(
|
||||
f"Average length of non-empty context list is {sum(context_list_len)/sum(has_context_list)}"
|
||||
)
|
||||
|
||||
|
||||
def write_error_stats(
|
||||
@ -218,24 +230,24 @@ def write_error_stats(
|
||||
words: Dict[str, List[int]] = defaultdict(lambda: [0, 0, 0, 0, 0])
|
||||
num_corr = 0
|
||||
ERR = "*"
|
||||
|
||||
|
||||
if compute_CER:
|
||||
for i, res in enumerate(results):
|
||||
cut_id, ref, hyp = res
|
||||
ref = list("".join(ref))
|
||||
hyp = list("".join(hyp))
|
||||
results[i] = (cut_id, ref, hyp)
|
||||
|
||||
|
||||
for cut_id, ref, hyp in results:
|
||||
ali = kaldialign.align(ref, hyp, ERR)
|
||||
for ref_word, hyp_word in ali:
|
||||
if ref_word == ERR: # INSERTION
|
||||
if ref_word == ERR: # INSERTION
|
||||
ins[hyp_word] += 1
|
||||
words[hyp_word][3] += 1
|
||||
elif hyp_word == ERR: # DELETION
|
||||
elif hyp_word == ERR: # DELETION
|
||||
dels[ref_word] += 1
|
||||
words[ref_word][4] += 1
|
||||
elif hyp_word != ref_word: # SUBSTITUTION
|
||||
elif hyp_word != ref_word: # SUBSTITUTION
|
||||
subs[(ref_word, hyp_word)] += 1
|
||||
words[ref_word][1] += 1
|
||||
words[hyp_word][2] += 1
|
||||
@ -301,9 +313,7 @@ def write_error_stats(
|
||||
f"{cut_id}:\t"
|
||||
+ " ".join(
|
||||
(
|
||||
ref_word
|
||||
if ref_word == hyp_word
|
||||
else f"({ref_word}->{hyp_word})"
|
||||
ref_word if ref_word == hyp_word else f"({ref_word}->{hyp_word})"
|
||||
for ref_word, hyp_word in ali
|
||||
)
|
||||
),
|
||||
@ -313,9 +323,7 @@ def write_error_stats(
|
||||
print("", file=f)
|
||||
print("SUBSTITUTIONS: count ref -> hyp", file=f)
|
||||
|
||||
for count, (ref, hyp) in sorted(
|
||||
[(v, k) for k, v in subs.items()], reverse=True
|
||||
):
|
||||
for count, (ref, hyp) in sorted([(v, k) for k, v in subs.items()], reverse=True):
|
||||
print(f"{count} {ref} -> {hyp}", file=f)
|
||||
|
||||
print("", file=f)
|
||||
@ -332,11 +340,9 @@ def write_error_stats(
|
||||
unbiased_word_errs = 0
|
||||
biased_word_counts = 0
|
||||
biased_word_errs = 0
|
||||
|
||||
|
||||
print("", file=f)
|
||||
print(
|
||||
"PER-WORD STATS: word corr tot_errs count_in_ref count_in_hyp", file=f
|
||||
)
|
||||
print("PER-WORD STATS: word corr tot_errs count_in_ref count_in_hyp", file=f)
|
||||
|
||||
for _, word, counts in sorted(
|
||||
[(sum(v[1:]), k, v) for k, v in words.items()], reverse=True
|
||||
@ -344,37 +350,36 @@ def write_error_stats(
|
||||
(corr, ref_sub, hyp_sub, ins, dels) = counts
|
||||
tot_errs = ref_sub + hyp_sub + ins + dels
|
||||
# number of appearances of "word" in reference text
|
||||
ref_count = corr + ref_sub + dels # correct + in ref but got substituted + deleted
|
||||
ref_count = (
|
||||
corr + ref_sub + dels
|
||||
) # correct + in ref but got substituted + deleted
|
||||
# number of appearances of "word" in hyp text
|
||||
hyp_count = corr + hyp_sub + ins
|
||||
|
||||
|
||||
|
||||
if biasing_words is not None:
|
||||
if word in biasing_words:
|
||||
biased_word_counts += ref_count
|
||||
biased_word_errs += (ins + dels + ref_sub)
|
||||
biased_word_errs += ins + dels + ref_sub
|
||||
else:
|
||||
unbiased_word_counts += ref_count
|
||||
unbiased_word_errs += (ins + dels + hyp_sub)
|
||||
unbiased_word_errs += ins + dels + hyp_sub
|
||||
|
||||
print(f"{word} {corr} {tot_errs} {ref_count} {hyp_count}", file=f)
|
||||
|
||||
|
||||
if biasing_words is not None:
|
||||
B_WER = "%.2f" % (100 *biased_word_errs/biased_word_counts)
|
||||
U_WER = "%.2f" % (100 *unbiased_word_errs/unbiased_word_counts)
|
||||
B_WER = "%.2f" % (100 * biased_word_errs / biased_word_counts)
|
||||
U_WER = "%.2f" % (100 * unbiased_word_errs / unbiased_word_counts)
|
||||
logging.info(f"Biased WER: {B_WER} [{biased_word_errs}/{biased_word_counts}] ")
|
||||
logging.info(f"Un-biased WER: {U_WER} [{unbiased_word_errs}/{unbiased_word_counts}]")
|
||||
|
||||
logging.info(
|
||||
f"Un-biased WER: {U_WER} [{unbiased_word_errs}/{unbiased_word_counts}]"
|
||||
)
|
||||
|
||||
return float(tot_err_rate)
|
||||
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
#test_set = "test-clean"
|
||||
#get_facebook_biasing_list(test_set)
|
||||
if __name__ == "__main__":
|
||||
subset = "medium"
|
||||
min_count = 460
|
||||
#get_rare_words(subset, min_count)
|
||||
min_count = 10
|
||||
get_rare_words(subset, min_count)
|
||||
add_context_list_to_manifest(subset=subset, min_count=min_count)
|
||||
check(subset=subset, min_count=min_count)
|
||||
check(subset=subset, min_count=min_count)
|
||||
|
Loading…
x
Reference in New Issue
Block a user