mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
parent
66225fbe33
commit
57451b0382
@ -1,158 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
This file computes fbank features of the musan dataset.
|
|
||||||
It looks for manifests in the directory `src_dir` (default is data/manifests).
|
|
||||||
|
|
||||||
The generated fbank features are saved in data/fbank.
|
|
||||||
"""
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import os
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from lhotse import (
|
|
||||||
CutSet,
|
|
||||||
Fbank,
|
|
||||||
FbankConfig,
|
|
||||||
LilcomChunkyWriter,
|
|
||||||
MonoCut,
|
|
||||||
WhisperFbank,
|
|
||||||
WhisperFbankConfig,
|
|
||||||
combine,
|
|
||||||
)
|
|
||||||
from lhotse.recipes.utils import read_manifests_if_cached
|
|
||||||
|
|
||||||
from icefall.utils import get_executor, str2bool
|
|
||||||
|
|
||||||
# Torch's multithreaded behavior needs to be disabled or
|
|
||||||
# it wastes a lot of CPU and slow things down.
|
|
||||||
# Do this outside of main() in case it needs to take effect
|
|
||||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
||||||
torch.set_num_threads(1)
|
|
||||||
torch.set_num_interop_threads(1)
|
|
||||||
|
|
||||||
|
|
||||||
def is_cut_long(c: MonoCut) -> bool:
|
|
||||||
return c.duration > 5
|
|
||||||
|
|
||||||
|
|
||||||
def compute_fbank_musan(
|
|
||||||
src_dir: str = "data/manifests",
|
|
||||||
num_mel_bins: int = 80,
|
|
||||||
whisper_fbank: bool = False,
|
|
||||||
output_dir: str = "data/fbank",
|
|
||||||
):
|
|
||||||
src_dir = Path(src_dir)
|
|
||||||
output_dir = Path(output_dir)
|
|
||||||
num_jobs = min(15, os.cpu_count())
|
|
||||||
|
|
||||||
dataset_parts = (
|
|
||||||
"music",
|
|
||||||
"speech",
|
|
||||||
"noise",
|
|
||||||
)
|
|
||||||
prefix = "musan"
|
|
||||||
suffix = "jsonl.gz"
|
|
||||||
manifests = read_manifests_if_cached(
|
|
||||||
dataset_parts=dataset_parts,
|
|
||||||
output_dir=src_dir,
|
|
||||||
prefix=prefix,
|
|
||||||
suffix=suffix,
|
|
||||||
)
|
|
||||||
assert manifests is not None
|
|
||||||
|
|
||||||
assert len(manifests) == len(dataset_parts), (
|
|
||||||
len(manifests),
|
|
||||||
len(dataset_parts),
|
|
||||||
list(manifests.keys()),
|
|
||||||
dataset_parts,
|
|
||||||
)
|
|
||||||
|
|
||||||
musan_cuts_path = output_dir / "musan_cuts.jsonl.gz"
|
|
||||||
|
|
||||||
if musan_cuts_path.is_file():
|
|
||||||
logging.info(f"{musan_cuts_path} already exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
logging.info("Extracting features for Musan")
|
|
||||||
|
|
||||||
if whisper_fbank:
|
|
||||||
extractor = WhisperFbank(
|
|
||||||
WhisperFbankConfig(num_filters=num_mel_bins, device="cuda")
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
|
||||||
|
|
||||||
with get_executor() as ex: # Initialize the executor only once.
|
|
||||||
# create chunks of Musan with duration 5 - 10 seconds
|
|
||||||
musan_cuts = (
|
|
||||||
CutSet.from_manifests(
|
|
||||||
recordings=combine(part["recordings"] for part in manifests.values())
|
|
||||||
)
|
|
||||||
.cut_into_windows(10.0)
|
|
||||||
.filter(is_cut_long)
|
|
||||||
.compute_and_store_features(
|
|
||||||
extractor=extractor,
|
|
||||||
storage_path=f"{output_dir}/musan_feats",
|
|
||||||
num_jobs=num_jobs if ex is None else 80,
|
|
||||||
executor=ex,
|
|
||||||
storage_type=LilcomChunkyWriter,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
musan_cuts.to_file(musan_cuts_path)
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--src-dir",
|
|
||||||
type=str,
|
|
||||||
default="data/manifests",
|
|
||||||
help="Source manifests directory.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--num-mel-bins",
|
|
||||||
type=int,
|
|
||||||
default=80,
|
|
||||||
help="""The number of mel bins for Fbank""",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--whisper-fbank",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--output-dir",
|
|
||||||
type=str,
|
|
||||||
default="data/fbank",
|
|
||||||
help="Output directory. Default: data/fbank.",
|
|
||||||
)
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
args = get_args()
|
|
||||||
compute_fbank_musan(
|
|
||||||
src_dir=args.src_dir,
|
|
||||||
num_mel_bins=args.num_mel_bins,
|
|
||||||
whisper_fbank=args.whisper_fbank,
|
|
||||||
output_dir=args.output_dir,
|
|
||||||
)
|
|
1
egs/ksponspeech/ASR/local/compute_fbank_musan.py
Symbolic link
1
egs/ksponspeech/ASR/local/compute_fbank_musan.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/compute_fbank_musan.py
|
@ -1,157 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
This script removes short and long utterances from a cutset.
|
|
||||||
|
|
||||||
Caution:
|
|
||||||
You may need to tune the thresholds for your own dataset.
|
|
||||||
|
|
||||||
Usage example:
|
|
||||||
|
|
||||||
python3 ./local/filter_cuts.py \
|
|
||||||
--bpe-model data/lang_bpe_5000/bpe.model \
|
|
||||||
--in-cuts data/fbank/speechtools_cuts_test.jsonl.gz \
|
|
||||||
--out-cuts data/fbank-filtered/speechtools_cuts_test.jsonl.gz
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
from lhotse import CutSet, load_manifest_lazy
|
|
||||||
from lhotse.cut import Cut
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the bpe.model",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--in-cuts",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the input cutset",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--out-cuts",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the output cutset",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def filter_cuts(cut_set: CutSet, sp: spm.SentencePieceProcessor):
|
|
||||||
total = 0 # number of total utterances before removal
|
|
||||||
removed = 0 # number of removed utterances
|
|
||||||
|
|
||||||
def remove_short_and_long_utterances(c: Cut):
|
|
||||||
"""Return False to exclude the input cut"""
|
|
||||||
nonlocal removed, total
|
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
|
||||||
#
|
|
||||||
# Caution: There is a reason to select 20.0 here. Please see
|
|
||||||
# ./display_manifest_statistics.py
|
|
||||||
#
|
|
||||||
# You should use ./display_manifest_statistics.py to get
|
|
||||||
# an utterance duration distribution for your dataset to select
|
|
||||||
# the threshold
|
|
||||||
total += 1
|
|
||||||
if c.duration < 1.0 or c.duration > 20.0:
|
|
||||||
logging.warning(
|
|
||||||
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
|
||||||
)
|
|
||||||
removed += 1
|
|
||||||
return False
|
|
||||||
|
|
||||||
# In pruned RNN-T, we require that T >= S
|
|
||||||
# where T is the number of feature frames after subsampling
|
|
||||||
# and S is the number of tokens in the utterance
|
|
||||||
|
|
||||||
# In ./pruned_transducer_stateless2/conformer.py, the
|
|
||||||
# conv module uses the following expression
|
|
||||||
# for subsampling
|
|
||||||
if c.num_frames is None:
|
|
||||||
num_frames = c.duration * 100 # approximate
|
|
||||||
else:
|
|
||||||
num_frames = c.num_frames
|
|
||||||
|
|
||||||
T = ((num_frames - 1) // 2 - 1) // 2
|
|
||||||
# Note: for ./lstm_transducer_stateless/lstm.py, the formula is
|
|
||||||
# T = ((num_frames - 3) // 2 - 1) // 2
|
|
||||||
|
|
||||||
# Note: for ./pruned_transducer_stateless7/zipformer.py, the formula is
|
|
||||||
# T = ((num_frames - 7) // 2 + 1) // 2
|
|
||||||
|
|
||||||
tokens = sp.encode(c.supervisions[0].text, out_type=str)
|
|
||||||
|
|
||||||
if T < len(tokens):
|
|
||||||
logging.warning(
|
|
||||||
f"Exclude cut with ID {c.id} from training. "
|
|
||||||
f"Number of frames (before subsampling): {c.num_frames}. "
|
|
||||||
f"Number of frames (after subsampling): {T}. "
|
|
||||||
f"Text: {c.supervisions[0].text}. "
|
|
||||||
f"Tokens: {tokens}. "
|
|
||||||
f"Number of tokens: {len(tokens)}"
|
|
||||||
)
|
|
||||||
removed += 1
|
|
||||||
return False
|
|
||||||
|
|
||||||
return True
|
|
||||||
|
|
||||||
# We use to_eager() here so that we can print out the value of total
|
|
||||||
# and removed below.
|
|
||||||
ans = cut_set.filter(remove_short_and_long_utterances).to_eager()
|
|
||||||
ratio = removed / total * 100
|
|
||||||
logging.info(
|
|
||||||
f"Removed {removed} cuts from {total} cuts. {ratio:.3f}% data is removed."
|
|
||||||
)
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
logging.info(vars(args))
|
|
||||||
|
|
||||||
if args.out_cuts.is_file():
|
|
||||||
logging.info(f"{args.out_cuts} already exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
assert args.in_cuts.is_file(), f"{args.in_cuts} does not exist"
|
|
||||||
assert args.bpe_model.is_file(), f"{args.bpe_model} does not exist"
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(str(args.bpe_model))
|
|
||||||
|
|
||||||
cut_set = load_manifest_lazy(args.in_cuts)
|
|
||||||
assert isinstance(cut_set, CutSet)
|
|
||||||
|
|
||||||
cut_set = filter_cuts(cut_set, sp)
|
|
||||||
logging.info(f"Saving to {args.out_cuts}")
|
|
||||||
args.out_cuts.parent.mkdir(parents=True, exist_ok=True)
|
|
||||||
cut_set.to_file(args.out_cuts)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
|
|
||||||
main()
|
|
1
egs/ksponspeech/ASR/local/filter_cuts.py
Symbolic link
1
egs/ksponspeech/ASR/local/filter_cuts.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/filter_cuts.py
|
@ -1,115 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
# You can install sentencepiece via:
|
|
||||||
#
|
|
||||||
# pip install sentencepiece
|
|
||||||
#
|
|
||||||
# Due to an issue reported in
|
|
||||||
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
|
||||||
#
|
|
||||||
# Please install a version >=0.1.96
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import shutil
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
The generated bpe.model is saved to this directory.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--transcript",
|
|
||||||
type=str,
|
|
||||||
help="Training transcript.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--vocab-size",
|
|
||||||
type=int,
|
|
||||||
help="Vocabulary size for BPE training",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def generate_tokens(lang_dir: Path):
|
|
||||||
"""
|
|
||||||
Generate the tokens.txt from a bpe model.
|
|
||||||
"""
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(str(lang_dir / "bpe.model"))
|
|
||||||
token2id: Dict[str, int] = {sp.id_to_piece(i): i for i in range(sp.vocab_size())}
|
|
||||||
with open(lang_dir / "tokens.txt", "w", encoding="utf-8") as f:
|
|
||||||
for sym, i in token2id.items():
|
|
||||||
f.write(f"{sym} {i}\n")
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
vocab_size = args.vocab_size
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
|
|
||||||
model_type = "unigram"
|
|
||||||
|
|
||||||
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
|
||||||
train_text = args.transcript
|
|
||||||
character_coverage = 1.0
|
|
||||||
input_sentence_size = 100000000
|
|
||||||
|
|
||||||
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
|
||||||
unk_id = len(user_defined_symbols)
|
|
||||||
# Note: unk_id is fixed to 2.
|
|
||||||
# If you change it, you should also change other
|
|
||||||
# places that are using it.
|
|
||||||
|
|
||||||
model_file = Path(model_prefix + ".model")
|
|
||||||
if not model_file.is_file():
|
|
||||||
spm.SentencePieceTrainer.train(
|
|
||||||
input=train_text,
|
|
||||||
vocab_size=vocab_size,
|
|
||||||
model_type=model_type,
|
|
||||||
model_prefix=model_prefix,
|
|
||||||
input_sentence_size=input_sentence_size,
|
|
||||||
character_coverage=character_coverage,
|
|
||||||
user_defined_symbols=user_defined_symbols,
|
|
||||||
unk_id=unk_id,
|
|
||||||
bos_id=-1,
|
|
||||||
eos_id=-1,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
print(f"{model_file} exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
|
||||||
|
|
||||||
generate_tokens(lang_dir)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/ksponspeech/ASR/local/train_bpe_model.py
Symbolic link
1
egs/ksponspeech/ASR/local/train_bpe_model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/train_bpe_model.py
|
@ -1,101 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
This script checks the following assumptions of the generated manifest:
|
|
||||||
|
|
||||||
- Single supervision per cut
|
|
||||||
- Supervision time bounds are within cut time bounds
|
|
||||||
|
|
||||||
We will add more checks later if needed.
|
|
||||||
|
|
||||||
Usage example:
|
|
||||||
|
|
||||||
python3 ./local/validate_manifest.py \
|
|
||||||
./data/fbank/speechtools_cuts_train.jsonl.gz
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
from lhotse import CutSet, load_manifest_lazy
|
|
||||||
from lhotse.cut import Cut
|
|
||||||
from lhotse.dataset.speech_recognition import validate_for_asr
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"manifest",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the manifest file",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def validate_one_supervision_per_cut(c: Cut):
|
|
||||||
if len(c.supervisions) != 1:
|
|
||||||
raise ValueError(f"{c.id} has {len(c.supervisions)} supervisions")
|
|
||||||
|
|
||||||
|
|
||||||
def validate_supervision_and_cut_time_bounds(c: Cut):
|
|
||||||
tol = 2e-3 # same tolerance as in 'validate_for_asr()'
|
|
||||||
s = c.supervisions[0]
|
|
||||||
|
|
||||||
# Supervision start time is relative to Cut ...
|
|
||||||
# https://lhotse.readthedocs.io/en/v0.10_e/cuts.html
|
|
||||||
if s.start < -tol:
|
|
||||||
raise ValueError(
|
|
||||||
f"{c.id}: Supervision start time {s.start} must not be negative."
|
|
||||||
)
|
|
||||||
if s.start > tol:
|
|
||||||
raise ValueError(
|
|
||||||
f"{c.id}: Supervision start time {s.start} is not at the beginning of the Cut. Please apply `lhotse cut trim-to-supervisions`."
|
|
||||||
)
|
|
||||||
if c.start + s.end > c.end + tol:
|
|
||||||
raise ValueError(
|
|
||||||
f"{c.id}: Supervision end time {c.start+s.end} is larger "
|
|
||||||
f"than cut end time {c.end}"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
|
|
||||||
manifest = args.manifest
|
|
||||||
logging.info(f"Validating {manifest}")
|
|
||||||
|
|
||||||
assert manifest.is_file(), f"{manifest} does not exist"
|
|
||||||
cut_set = load_manifest_lazy(manifest)
|
|
||||||
assert isinstance(cut_set, CutSet)
|
|
||||||
|
|
||||||
for c in cut_set:
|
|
||||||
validate_one_supervision_per_cut(c)
|
|
||||||
validate_supervision_and_cut_time_bounds(c)
|
|
||||||
|
|
||||||
# Validation from K2 training
|
|
||||||
# - checks supervision start is 0
|
|
||||||
# - checks supervision.duration is not longer than cut.duration
|
|
||||||
# - there is tolerance 2ms
|
|
||||||
validate_for_asr(cut_set)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
|
|
||||||
main()
|
|
1
egs/ksponspeech/ASR/local/validate_manifest.py
Symbolic link
1
egs/ksponspeech/ASR/local/validate_manifest.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/validate_manifest.py
|
@ -1 +0,0 @@
|
|||||||
This recipe implements Zipformer model.
|
|
Loading…
x
Reference in New Issue
Block a user