mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
116 lines
3.1 KiB
Python
Executable File
116 lines
3.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
# You can install sentencepiece via:
|
|
#
|
|
# pip install sentencepiece
|
|
#
|
|
# Due to an issue reported in
|
|
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
|
#
|
|
# Please install a version >=0.1.96
|
|
|
|
import argparse
|
|
import shutil
|
|
from pathlib import Path
|
|
from typing import Dict
|
|
|
|
import sentencepiece as spm
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=str,
|
|
help="""Input and output directory.
|
|
The generated bpe.model is saved to this directory.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--transcript",
|
|
type=str,
|
|
help="Training transcript.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--vocab-size",
|
|
type=int,
|
|
help="Vocabulary size for BPE training",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def generate_tokens(lang_dir: Path):
|
|
"""
|
|
Generate the tokens.txt from a bpe model.
|
|
"""
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(str(lang_dir / "bpe.model"))
|
|
token2id: Dict[str, int] = {sp.id_to_piece(i): i for i in range(sp.vocab_size())}
|
|
with open(lang_dir / "tokens.txt", "w", encoding="utf-8") as f:
|
|
for sym, i in token2id.items():
|
|
f.write(f"{sym} {i}\n")
|
|
|
|
|
|
def main():
|
|
args = get_args()
|
|
vocab_size = args.vocab_size
|
|
lang_dir = Path(args.lang_dir)
|
|
|
|
model_type = "unigram"
|
|
|
|
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
|
train_text = args.transcript
|
|
character_coverage = 1.0
|
|
input_sentence_size = 100000000
|
|
|
|
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
|
unk_id = len(user_defined_symbols)
|
|
# Note: unk_id is fixed to 2.
|
|
# If you change it, you should also change other
|
|
# places that are using it.
|
|
|
|
model_file = Path(model_prefix + ".model")
|
|
if not model_file.is_file():
|
|
spm.SentencePieceTrainer.train(
|
|
input=train_text,
|
|
vocab_size=vocab_size,
|
|
model_type=model_type,
|
|
model_prefix=model_prefix,
|
|
input_sentence_size=input_sentence_size,
|
|
character_coverage=character_coverage,
|
|
user_defined_symbols=user_defined_symbols,
|
|
unk_id=unk_id,
|
|
bos_id=-1,
|
|
eos_id=-1,
|
|
)
|
|
else:
|
|
print(f"{model_file} exists - skipping")
|
|
return
|
|
|
|
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
|
|
|
generate_tokens(lang_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|