mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-13 12:02:21 +00:00
Merge remote-tracking branch 'dan/master' into ctc-ali
This commit is contained in:
commit
5072e28afb
14
.github/workflows/test.yml
vendored
14
.github/workflows/test.yml
vendored
@ -53,6 +53,20 @@ jobs:
|
||||
# icefall requirements
|
||||
pip install -r requirements.txt
|
||||
|
||||
- name: Install graphviz
|
||||
if: startsWith(matrix.os, 'ubuntu')
|
||||
shell: bash
|
||||
run: |
|
||||
python3 -m pip install -qq graphviz
|
||||
sudo apt-get -qq install graphviz
|
||||
|
||||
- name: Install graphviz
|
||||
if: startsWith(matrix.os, 'macos')
|
||||
shell: bash
|
||||
run: |
|
||||
python3 -m pip install -qq graphviz
|
||||
brew install -q graphviz
|
||||
|
||||
- name: Run tests
|
||||
if: startsWith(matrix.os, 'ubuntu')
|
||||
run: |
|
||||
|
@ -21,6 +21,32 @@ To get more unique paths, we scaled the lattice.scores with 0.5 (see https://git
|
||||
|test-clean|1.3|1.2|
|
||||
|test-other|1.2|1.1|
|
||||
|
||||
You can use the following commands to reproduce our results:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/k2-fsa/icefall
|
||||
cd icefall
|
||||
|
||||
# It was using ef233486, you may not need to switch to it
|
||||
# git checkout ef233486
|
||||
|
||||
cd egs/librispeech/ASR
|
||||
./prepare.sh
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
python conformer_ctc/train.py --bucketing-sampler True \
|
||||
--concatenate-cuts False \
|
||||
--max-duration 200 \
|
||||
--full-libri True \
|
||||
--world-size 4
|
||||
|
||||
python conformer_ctc/decode.py --lattice-score-scale 0.5 \
|
||||
--epoch 34 \
|
||||
--avg 20 \
|
||||
--method attention-decoder \
|
||||
--max-duration 20 \
|
||||
--num-paths 100
|
||||
```
|
||||
|
||||
### LibriSpeech training results (Tdnn-Lstm)
|
||||
#### 2021-08-24
|
||||
|
@ -108,7 +108,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--lattice-score-scale",
|
||||
type=float,
|
||||
default=1.0,
|
||||
default=0.5,
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
@ -278,7 +278,8 @@ def decode_one_batch(
|
||||
"attention-decoder",
|
||||
]
|
||||
|
||||
lm_scale_list = [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||
|
||||
if params.method == "nbest-rescoring":
|
||||
|
@ -82,14 +82,14 @@ class LibriSpeechAsrDataModule(DataModule):
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=500.0,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
|
@ -206,7 +206,8 @@ def decode_one_batch(
|
||||
|
||||
assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"]
|
||||
|
||||
lm_scale_list = [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||
|
||||
if params.method == "nbest-rescoring":
|
||||
|
Loading…
x
Reference in New Issue
Block a user