Extract framewise alignment information using CTC decoding.

This commit is contained in:
Fangjun Kuang 2021-09-08 19:32:14 +08:00
parent 4a2ae16b53
commit 2cb438c3f0
3 changed files with 236 additions and 1 deletions

View File

@ -0,0 +1,213 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from pathlib import Path
import k2
import torch
from asr_datamodule import LibriSpeechAsrDataModule
from conformer import Conformer
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.decode import one_best_decoding
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
encode_supervisions,
get_alignments,
setup_logger,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=34,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=20,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
"exp_dir": Path("conformer_ctc/exp"),
"lang_dir": Path("data/lang_bpe"),
"lm_dir": Path("data/lm"),
"feature_dim": 80,
"nhead": 8,
"attention_dim": 512,
"subsampling_factor": 4,
"num_decoder_layers": 6,
"vgg_frontend": False,
"is_espnet_structure": True,
"mmi_loss": False,
"use_feat_batchnorm": True,
"output_beam": 10,
"use_double_scores": True,
}
)
return params
def compute_alignments(
model: torch.nn.Module,
dl: torch.utils.data.DataLoader,
params: AttributeDict,
graph_compiler: BpeCtcTrainingGraphCompiler,
token_table: k2.SymbolTable,
):
device = graph_compiler.device
for batch_idx, batch in enumerate(dl):
feature = batch["inputs"]
# at entry, feature is [N, T, C]
assert feature.ndim == 3
feature = feature.to(device)
supervisions = batch["supervisions"]
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
# nnet_output is [N, T, C]
supervision_segments, texts = encode_supervisions(
supervisions, subsampling_factor=params.subsampling_factor
)
token_ids = graph_compiler.texts_to_ids(texts)
decoding_graph = graph_compiler.compile(token_ids)
dense_fsa_vec = k2.DenseFsaVec(
nnet_output,
supervision_segments,
allow_truncate=params.subsampling_factor - 1,
)
lattice = k2.intersect_dense(
decoding_graph, dense_fsa_vec, params.output_beam
)
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
ali_ids = get_alignments(best_path)
ali_tokens = [[token_table[i] for i in ids] for ids in ali_ids]
frame_shift = 0.01 # 10ms, i.e., 0.01 seconds
for i, ali in enumerate(ali_tokens[0]):
print(i * params.subsampling_factor * frame_shift, ali)
import sys
sys.exit(0)
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
assert args.return_cuts is True
params = get_params()
params.update(vars(args))
setup_logger(f"{params.exp_dir}/log/ali")
logging.info("Computing alignment - started")
logging.info(params)
lexicon = Lexicon(params.lang_dir)
max_token_id = max(lexicon.tokens)
num_classes = max_token_id + 1 # +1 for the blank
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
graph_compiler = BpeCtcTrainingGraphCompiler(
params.lang_dir,
device=device,
sos_token="<sos/eos>",
eos_token="<sos/eos>",
)
logging.info("About to create model")
model = Conformer(
num_features=params.feature_dim,
nhead=params.nhead,
d_model=params.attention_dim,
num_classes=num_classes,
subsampling_factor=params.subsampling_factor,
num_decoder_layers=params.num_decoder_layers,
vgg_frontend=False,
is_espnet_structure=params.is_espnet_structure,
mmi_loss=params.mmi_loss,
use_feat_batchnorm=params.use_feat_batchnorm,
)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.load_state_dict(average_checkpoints(filenames))
model.to(device)
model.eval()
librispeech = LibriSpeechAsrDataModule(args)
test_dl = librispeech.test_dataloaders() # a list
enabled_datasets = {
"test_clean": test_dl[0],
"test_other": test_dl[1],
}
compute_alignments(
model=model,
dl=enabled_datasets["test_clean"],
params=params,
graph_compiler=graph_compiler,
token_table=lexicon.token_table,
)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
main()

View File

@ -878,7 +878,7 @@ def rescore_with_attention_decoder(
best_path_indexes = k2.index_select(new2old, argmax_indexes)
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
# best_path is a k2.RaggedTensor with 2 axes [path][arc_pos]
best_path, _ = path_2axes.index(
indexes=best_path_indexes, axis=0, need_value_indexes=False
)

View File

@ -219,6 +219,28 @@ def get_texts(best_paths: k2.Fsa) -> List[List[int]]:
return aux_labels.tolist()
def get_alignments(best_paths: k2.Fsa) -> List[List[int]]:
"""Extract the token IDs (from best_paths.labels) from the best-path FSAs.
Args:
best_paths:
A k2.Fsa with best_paths.arcs.num_axes() == 3, i.e.
containing multiple FSAs, which is expected to be the result
of k2.shortest_path (otherwise the returned values won't
be meaningful).
Returns:
Returns a list of lists of int, containing the token sequences we
decoded. For `ans[i]`, its length equals to the number of frames
after subsampling of the i-th utterance in the batch.
"""
# arc.shape() has axes [fsa][state][arc], we remove "state"-axis here
label_shape = best_paths.arcs.shape().remove_axis(1)
# label_shape has axes [fsa][arc]
labels = k2.RaggedTensor(label_shape, best_paths.labels.contiguous())
labels = labels.remove_values_eq(-1)
return labels.tolist()
def store_transcripts(
filename: Pathlike, texts: Iterable[Tuple[str, str]]
) -> None: