mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-12 19:42:19 +00:00
Extract framewise alignment information using CTC decoding.
This commit is contained in:
parent
4a2ae16b53
commit
2cb438c3f0
213
egs/librispeech/ASR/conformer_ctc/ali.py
Executable file
213
egs/librispeech/ASR/conformer_ctc/ali.py
Executable file
@ -0,0 +1,213 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.decode import one_best_decoding
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
encode_supervisions,
|
||||
get_alignments,
|
||||
setup_logger,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("conformer_ctc/exp"),
|
||||
"lang_dir": Path("data/lang_bpe"),
|
||||
"lm_dir": Path("data/lm"),
|
||||
"feature_dim": 80,
|
||||
"nhead": 8,
|
||||
"attention_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"num_decoder_layers": 6,
|
||||
"vgg_frontend": False,
|
||||
"is_espnet_structure": True,
|
||||
"mmi_loss": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"output_beam": 10,
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def compute_alignments(
|
||||
model: torch.nn.Module,
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
token_table: k2.SymbolTable,
|
||||
):
|
||||
device = graph_compiler.device
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
feature = batch["inputs"]
|
||||
|
||||
# at entry, feature is [N, T, C]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||
# nnet_output is [N, T, C]
|
||||
supervision_segments, texts = encode_supervisions(
|
||||
supervisions, subsampling_factor=params.subsampling_factor
|
||||
)
|
||||
|
||||
token_ids = graph_compiler.texts_to_ids(texts)
|
||||
decoding_graph = graph_compiler.compile(token_ids)
|
||||
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output,
|
||||
supervision_segments,
|
||||
allow_truncate=params.subsampling_factor - 1,
|
||||
)
|
||||
|
||||
lattice = k2.intersect_dense(
|
||||
decoding_graph, dense_fsa_vec, params.output_beam
|
||||
)
|
||||
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
|
||||
ali_ids = get_alignments(best_path)
|
||||
ali_tokens = [[token_table[i] for i in ids] for ids in ali_ids]
|
||||
|
||||
frame_shift = 0.01 # 10ms, i.e., 0.01 seconds
|
||||
for i, ali in enumerate(ali_tokens[0]):
|
||||
print(i * params.subsampling_factor * frame_shift, ali)
|
||||
import sys
|
||||
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
assert args.return_cuts is True
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/ali")
|
||||
logging.info("Computing alignment - started")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||
params.lang_dir,
|
||||
device=device,
|
||||
sos_token="<sos/eos>",
|
||||
eos_token="<sos/eos>",
|
||||
)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=False,
|
||||
is_espnet_structure=params.is_espnet_structure,
|
||||
mmi_loss=params.mmi_loss,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
test_dl = librispeech.test_dataloaders() # a list
|
||||
|
||||
enabled_datasets = {
|
||||
"test_clean": test_dl[0],
|
||||
"test_other": test_dl[1],
|
||||
}
|
||||
|
||||
compute_alignments(
|
||||
model=model,
|
||||
dl=enabled_datasets["test_clean"],
|
||||
params=params,
|
||||
graph_compiler=graph_compiler,
|
||||
token_table=lexicon.token_table,
|
||||
)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -878,7 +878,7 @@ def rescore_with_attention_decoder(
|
||||
|
||||
best_path_indexes = k2.index_select(new2old, argmax_indexes)
|
||||
|
||||
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
|
||||
# best_path is a k2.RaggedTensor with 2 axes [path][arc_pos]
|
||||
best_path, _ = path_2axes.index(
|
||||
indexes=best_path_indexes, axis=0, need_value_indexes=False
|
||||
)
|
||||
|
@ -219,6 +219,28 @@ def get_texts(best_paths: k2.Fsa) -> List[List[int]]:
|
||||
return aux_labels.tolist()
|
||||
|
||||
|
||||
def get_alignments(best_paths: k2.Fsa) -> List[List[int]]:
|
||||
"""Extract the token IDs (from best_paths.labels) from the best-path FSAs.
|
||||
|
||||
Args:
|
||||
best_paths:
|
||||
A k2.Fsa with best_paths.arcs.num_axes() == 3, i.e.
|
||||
containing multiple FSAs, which is expected to be the result
|
||||
of k2.shortest_path (otherwise the returned values won't
|
||||
be meaningful).
|
||||
Returns:
|
||||
Returns a list of lists of int, containing the token sequences we
|
||||
decoded. For `ans[i]`, its length equals to the number of frames
|
||||
after subsampling of the i-th utterance in the batch.
|
||||
"""
|
||||
# arc.shape() has axes [fsa][state][arc], we remove "state"-axis here
|
||||
label_shape = best_paths.arcs.shape().remove_axis(1)
|
||||
# label_shape has axes [fsa][arc]
|
||||
labels = k2.RaggedTensor(label_shape, best_paths.labels.contiguous())
|
||||
labels = labels.remove_values_eq(-1)
|
||||
return labels.tolist()
|
||||
|
||||
|
||||
def store_transcripts(
|
||||
filename: Pathlike, texts: Iterable[Tuple[str, str]]
|
||||
) -> None:
|
||||
|
Loading…
x
Reference in New Issue
Block a user