mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Merge 1aa2a930b41b7fc51c7b9383c7c022a6592213b6 into 34fc1fdf0d8ff520e2bb18267d046ca207c78ef9
This commit is contained in:
commit
4b10b7cde3
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/asr_datamodule.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless5/asr_datamodule.py
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/beam_search.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless5/beam_search.py
|
748
egs/tal_csasr/ASR/lstm_transducer_stateless3/decode.py
Executable file
748
egs/tal_csasr/ASR/lstm_transducer_stateless3/decode.py
Executable file
@ -0,0 +1,748 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./lstm_transducer_stateless3/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./lstm_transducer_stateless3/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search (not recommended)
|
||||||
|
./lstm_transducer_stateless3/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./lstm_transducer_stateless3/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./lstm_transducer_stateless3/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./lstm_transducer_stateless3/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search
|
||||||
|
./lstm_transducer_stateless3/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./lstm_transducer_stateless3/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 4 \
|
||||||
|
--max-states 8
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import TAL_CSASRAsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from local.text_normalize import text_normalize
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="lstm_transducer_stateless3/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_char",
|
||||||
|
help="""The lang dir
|
||||||
|
It contains language related input files such as
|
||||||
|
"lexicon.txt"
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
batch: dict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
sp: spm.SentencePieceProcessor = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens, _ = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
|
hyps = []
|
||||||
|
zh_hyps = []
|
||||||
|
en_hyps = []
|
||||||
|
pattern = re.compile(r"([\u4e00-\u9fff])")
|
||||||
|
en_letter = "[\u0041-\u005a|\u0061-\u007a]+" # English letters
|
||||||
|
zh_char = "[\u4e00-\u9fa5]+" # Chinese chars
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for i in range(encoder_out.size(0)):
|
||||||
|
hyp = sp.decode([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
|
chars = pattern.split(hyp.upper())
|
||||||
|
chars_new = []
|
||||||
|
zh_text = []
|
||||||
|
en_text = []
|
||||||
|
for char in chars:
|
||||||
|
if char != "":
|
||||||
|
tokens = char.strip().split(" ")
|
||||||
|
chars_new.extend(tokens)
|
||||||
|
for token in tokens:
|
||||||
|
zh_text.extend(re.findall(zh_char, token))
|
||||||
|
en_text.extend(re.findall(en_letter, token))
|
||||||
|
hyps.append(chars_new)
|
||||||
|
zh_hyps.append(zh_text)
|
||||||
|
en_hyps.append(en_text)
|
||||||
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
for i in range(encoder_out.size(0)):
|
||||||
|
hyp = sp.decode([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
|
chars = pattern.split(hyp.upper())
|
||||||
|
chars_new = []
|
||||||
|
zh_text = []
|
||||||
|
en_text = []
|
||||||
|
for char in chars:
|
||||||
|
if char != "":
|
||||||
|
tokens = char.strip().split(" ")
|
||||||
|
chars_new.extend(tokens)
|
||||||
|
for token in tokens:
|
||||||
|
zh_text.extend(re.findall(zh_char, token))
|
||||||
|
en_text.extend(re.findall(en_letter, token))
|
||||||
|
hyps.append(chars_new)
|
||||||
|
zh_hyps.append(zh_text)
|
||||||
|
en_hyps.append(en_text)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for i in range(encoder_out.size(0)):
|
||||||
|
hyp = sp.decode([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
|
chars = pattern.split(hyp.upper())
|
||||||
|
chars_new = []
|
||||||
|
zh_text = []
|
||||||
|
en_text = []
|
||||||
|
for char in chars:
|
||||||
|
if char != "":
|
||||||
|
tokens = char.strip().split(" ")
|
||||||
|
chars_new.extend(tokens)
|
||||||
|
for token in tokens:
|
||||||
|
zh_text.extend(re.findall(zh_char, token))
|
||||||
|
en_text.extend(re.findall(en_letter, token))
|
||||||
|
hyps.append(chars_new)
|
||||||
|
zh_hyps.append(zh_text)
|
||||||
|
en_hyps.append(en_text)
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
for i in range(encoder_out.size(0)):
|
||||||
|
hyp = sp.decode([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
|
chars = pattern.split(hyp.upper())
|
||||||
|
chars_new = []
|
||||||
|
zh_text = []
|
||||||
|
en_text = []
|
||||||
|
for char in chars:
|
||||||
|
if char != "":
|
||||||
|
tokens = char.strip().split(" ")
|
||||||
|
chars_new.extend(tokens)
|
||||||
|
for token in tokens:
|
||||||
|
zh_text.extend(re.findall(zh_char, token))
|
||||||
|
en_text.extend(re.findall(en_letter, token))
|
||||||
|
hyps.append(chars_new)
|
||||||
|
zh_hyps.append(zh_text)
|
||||||
|
en_hyps.append(en_text)
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": (hyps, zh_hyps, en_hyps)}
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
return {
|
||||||
|
(
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
): (hyps, zh_hyps, en_hyps)
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}": (hyps, zh_hyps, en_hyps)}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
sp: spm.SentencePieceProcessor = None,
|
||||||
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 50
|
||||||
|
else:
|
||||||
|
log_interval = 20
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
zh_results = defaultdict(list)
|
||||||
|
en_results = defaultdict(list)
|
||||||
|
pattern = re.compile(r"([\u4e00-\u9fff])")
|
||||||
|
en_letter = "[\u0041-\u005a|\u0061-\u007a]+" # English letters
|
||||||
|
zh_char = "[\u4e00-\u9fa5]+" # Chinese chars
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
zh_texts = []
|
||||||
|
en_texts = []
|
||||||
|
for i in range(len(texts)):
|
||||||
|
text = texts[i]
|
||||||
|
chars = pattern.split(text.upper())
|
||||||
|
chars_new = []
|
||||||
|
zh_text = []
|
||||||
|
en_text = []
|
||||||
|
for char in chars:
|
||||||
|
if char != "":
|
||||||
|
tokens = char.strip().split(" ")
|
||||||
|
chars_new.extend(tokens)
|
||||||
|
for token in tokens:
|
||||||
|
zh_text.extend(re.findall(zh_char, token))
|
||||||
|
en_text.extend(re.findall(en_letter, token))
|
||||||
|
zh_texts.append(zh_text)
|
||||||
|
en_texts.append(en_text)
|
||||||
|
texts[i] = chars_new
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
lexicon=lexicon,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
batch=batch,
|
||||||
|
sp=sp,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps_texts in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
this_batch_zh = []
|
||||||
|
this_batch_en = []
|
||||||
|
# print(hyps_texts)
|
||||||
|
hyps, zh_hyps, en_hyps = hyps_texts
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
this_batch.append((cut_id, ref_text, hyp_words))
|
||||||
|
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, zh_hyps, zh_texts):
|
||||||
|
this_batch_zh.append((cut_id, ref_text, hyp_words))
|
||||||
|
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, en_hyps, en_texts):
|
||||||
|
this_batch_en.append((cut_id, ref_text, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
zh_results[name + "_zh"].extend(this_batch_zh)
|
||||||
|
en_results[name + "_en"].extend(this_batch_en)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results, zh_results, en_results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
TAL_CSASRAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
bpe_model = params.lang_dir + "/bpe.model"
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(bpe_model)
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
params.blank_id = lexicon.token_table["<blk>"]
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
def text_normalize_for_cut(c: Cut):
|
||||||
|
# Text normalize for each sample
|
||||||
|
text = c.supervisions[0].text
|
||||||
|
text = text.strip("\n").strip("\t")
|
||||||
|
c.supervisions[0].text = text_normalize(text)
|
||||||
|
return c
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
tal_csasr = TAL_CSASRAsrDataModule(args)
|
||||||
|
|
||||||
|
dev_cuts = tal_csasr.valid_cuts()
|
||||||
|
dev_cuts = dev_cuts.subset(first=300)
|
||||||
|
dev_cuts = dev_cuts.map(text_normalize_for_cut)
|
||||||
|
dev_dl = tal_csasr.valid_dataloaders(dev_cuts)
|
||||||
|
|
||||||
|
test_cuts = tal_csasr.test_cuts()
|
||||||
|
test_cuts = test_cuts.subset(first=300)
|
||||||
|
test_cuts = test_cuts.map(text_normalize_for_cut)
|
||||||
|
test_dl = tal_csasr.test_dataloaders(test_cuts)
|
||||||
|
|
||||||
|
test_sets = ["dev", "test"]
|
||||||
|
test_dl = [dev_dl, test_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dl):
|
||||||
|
results_dict, zh_results_dict, en_results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
lexicon=lexicon,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
sp=sp,
|
||||||
|
)
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=zh_results_dict,
|
||||||
|
)
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=en_results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/decoder.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/decoder.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless5/decoder.py
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless5/encoder_interface.py
|
336
egs/tal_csasr/ASR/lstm_transducer_stateless3/export-for-ncnn.py
Executable file
336
egs/tal_csasr/ASR/lstm_transducer_stateless3/export-for-ncnn.py
Executable file
@ -0,0 +1,336 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
"""
|
||||||
|
Please see
|
||||||
|
https://k2-fsa.github.io/icefall/model-export/export-ncnn.html
|
||||||
|
for more details about how to use this file.
|
||||||
|
|
||||||
|
We use the pre-trained model from
|
||||||
|
https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03
|
||||||
|
as an example to show how to use this file.
|
||||||
|
|
||||||
|
1. Download the pre-trained model
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
pushd $repo
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "exp/pretrained-iter-468000-avg-16.pt"
|
||||||
|
|
||||||
|
cd exp
|
||||||
|
ln -s pretrained-iter-468000-avg-16.pt epoch-99.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
2. Export via torch.jit.trace()
|
||||||
|
|
||||||
|
./lstm_transducer_stateless3/export-for-ncnn.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--lang-dir $repo/data/lang_char \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
|
||||||
|
cd ./lstm_transducer_stateless3/exp
|
||||||
|
pnnx encoder_jit_trace-pnnx.pt
|
||||||
|
pnnx decoder_jit_trace-pnnx.pt
|
||||||
|
pnnx joiner_jit_trace-pnnx.pt
|
||||||
|
|
||||||
|
See ./streaming-ncnn-decode.py
|
||||||
|
and
|
||||||
|
https://github.com/k2-fsa/sherpa-ncnn
|
||||||
|
for usage.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import setup_logger, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for averaging.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_char",
|
||||||
|
help="Path to the lang",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def export_encoder_model_jit_trace(
|
||||||
|
encoder_model: torch.nn.Module,
|
||||||
|
encoder_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given encoder model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The warmup argument is fixed to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_model:
|
||||||
|
The input encoder model
|
||||||
|
encoder_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
"""
|
||||||
|
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
||||||
|
x_lens = torch.tensor([100], dtype=torch.int64)
|
||||||
|
states = encoder_model.get_init_states()
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(encoder_model, (x, x_lens, states))
|
||||||
|
traced_model.save(encoder_filename)
|
||||||
|
logging.info(f"Saved to {encoder_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def export_decoder_model_jit_trace(
|
||||||
|
decoder_model: torch.nn.Module,
|
||||||
|
decoder_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given decoder model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The argument need_pad is fixed to False.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
decoder_model:
|
||||||
|
The input decoder model
|
||||||
|
decoder_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
"""
|
||||||
|
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
|
||||||
|
need_pad = torch.tensor([False])
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
|
||||||
|
traced_model.save(decoder_filename)
|
||||||
|
logging.info(f"Saved to {decoder_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def export_joiner_model_jit_trace(
|
||||||
|
joiner_model: torch.nn.Module,
|
||||||
|
joiner_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given joiner model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The argument project_input is fixed to True. A user should not
|
||||||
|
project the encoder_out/decoder_out by himself/herself. The exported joiner
|
||||||
|
will do that for the user.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
joiner_model:
|
||||||
|
The input joiner model
|
||||||
|
joiner_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
|
||||||
|
"""
|
||||||
|
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
|
||||||
|
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
|
||||||
|
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
||||||
|
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
|
||||||
|
traced_model.save(joiner_filename)
|
||||||
|
logging.info(f"Saved to {joiner_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log-export/log-export-ncnn")
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
|
||||||
|
params.blank_id = lexicon.token_table["<blk>"]
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
params.is_pnnx = True
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
|
logging.info("Using torch.jit.trace()")
|
||||||
|
|
||||||
|
logging.info("Exporting encoder")
|
||||||
|
encoder_filename = params.exp_dir / "encoder_jit_trace-pnnx.pt"
|
||||||
|
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
||||||
|
|
||||||
|
logging.info("Exporting decoder")
|
||||||
|
decoder_filename = params.exp_dir / "decoder_jit_trace-pnnx.pt"
|
||||||
|
export_decoder_model_jit_trace(model.decoder, decoder_filename)
|
||||||
|
|
||||||
|
logging.info("Exporting joiner")
|
||||||
|
joiner_filename = params.exp_dir / "joiner_jit_trace-pnnx.pt"
|
||||||
|
export_joiner_model_jit_trace(model.joiner, joiner_filename)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
main()
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/export-onnx.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/export-onnx.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/lstm_transducer_stateless3/export-onnx.py
|
382
egs/tal_csasr/ASR/lstm_transducer_stateless3/export.py
Normal file
382
egs/tal_csasr/ASR/lstm_transducer_stateless3/export.py
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
"""
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
(1) Export to torchscript model using torch.jit.trace()
|
||||||
|
|
||||||
|
./lstm_transducer_stateless3/export.py \
|
||||||
|
--exp-dir ./lstm_transducer_stateless3/exp \
|
||||||
|
--lang-dir data/lang_char \
|
||||||
|
--epoch 40 \
|
||||||
|
--avg 20 \
|
||||||
|
--jit-trace 1
|
||||||
|
|
||||||
|
It will generate 3 files: `encoder_jit_trace.pt`,
|
||||||
|
`decoder_jit_trace.pt`, and `joiner_jit_trace.pt`.
|
||||||
|
|
||||||
|
(2) Export `model.state_dict()`
|
||||||
|
|
||||||
|
./lstm_transducer_stateless3/export.py \
|
||||||
|
--exp-dir ./lstm_transducer_stateless3/exp \
|
||||||
|
--lang-dir data/lang_char \
|
||||||
|
--epoch 40 \
|
||||||
|
--avg 20
|
||||||
|
|
||||||
|
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
||||||
|
load it by `icefall.checkpoint.load_checkpoint()`.
|
||||||
|
|
||||||
|
To use the generated file with `lstm_transducer_stateless3/decode.py`,
|
||||||
|
you can do:
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/librispeech/ASR
|
||||||
|
./lstm_transducer_stateless3/decode.py \
|
||||||
|
--exp-dir ./lstm_transducer_stateless3/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model
|
||||||
|
|
||||||
|
Check ./pretrained.py for its usage.
|
||||||
|
|
||||||
|
Note: If you don't want to train a model from scratch, we have
|
||||||
|
provided one for you. You can get it at
|
||||||
|
|
||||||
|
https://huggingface.co/Zengwei/icefall-asr-librispeech-lstm-transducer-stateless-2022-08-18
|
||||||
|
|
||||||
|
with the following commands:
|
||||||
|
|
||||||
|
sudo apt-get install git-lfs
|
||||||
|
git lfs install
|
||||||
|
git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-lstm-transducer-stateless-2022-08-18
|
||||||
|
# You will find the pre-trained model in icefall-asr-librispeech-lstm-transducer-stateless-2022-08-18/exp
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for averaging.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless3/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_char",
|
||||||
|
help="Path to the dir containing tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit-trace",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to save a model after applying torch.jit.trace.
|
||||||
|
It will generate 3 files:
|
||||||
|
- encoder_jit_trace.pt
|
||||||
|
- decoder_jit_trace.pt
|
||||||
|
- joiner_jit_trace.pt
|
||||||
|
|
||||||
|
Check ./jit_pretrained.py for how to use them.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def export_encoder_model_jit_trace(
|
||||||
|
encoder_model: nn.Module,
|
||||||
|
encoder_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given encoder model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The warmup argument is fixed to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_model:
|
||||||
|
The input encoder model
|
||||||
|
encoder_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
"""
|
||||||
|
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
||||||
|
x_lens = torch.tensor([100], dtype=torch.int64)
|
||||||
|
states = encoder_model.get_init_states()
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(encoder_model, (x, x_lens, states))
|
||||||
|
traced_model.save(encoder_filename)
|
||||||
|
logging.info(f"Saved to {encoder_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def export_decoder_model_jit_trace(
|
||||||
|
decoder_model: nn.Module,
|
||||||
|
decoder_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given decoder model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The argument need_pad is fixed to False.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
decoder_model:
|
||||||
|
The input decoder model
|
||||||
|
decoder_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
"""
|
||||||
|
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
|
||||||
|
need_pad = torch.tensor([False])
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
|
||||||
|
traced_model.save(decoder_filename)
|
||||||
|
logging.info(f"Saved to {decoder_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def export_joiner_model_jit_trace(
|
||||||
|
joiner_model: nn.Module,
|
||||||
|
joiner_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given joiner model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The argument project_input is fixed to True. A user should not
|
||||||
|
project the encoder_out/decoder_out by himself/herself. The exported joiner
|
||||||
|
will do that for the user.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
joiner_model:
|
||||||
|
The input joiner model
|
||||||
|
joiner_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
|
||||||
|
"""
|
||||||
|
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
|
||||||
|
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
|
||||||
|
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
||||||
|
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
|
||||||
|
traced_model.save(joiner_filename)
|
||||||
|
logging.info(f"Saved to {joiner_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
params.blank_id = lexicon.token_table["<blk>"]
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit_trace is True:
|
||||||
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
|
logging.info("Using torch.jit.trace()")
|
||||||
|
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
|
||||||
|
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
||||||
|
|
||||||
|
decoder_filename = params.exp_dir / "decoder_jit_trace.pt"
|
||||||
|
export_decoder_model_jit_trace(model.decoder, decoder_filename)
|
||||||
|
|
||||||
|
joiner_filename = params.exp_dir / "joiner_jit_trace.pt"
|
||||||
|
export_joiner_model_jit_trace(model.joiner, joiner_filename)
|
||||||
|
else:
|
||||||
|
logging.info("Not using torchscript")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = params.exp_dir / "pretrained.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
328
egs/tal_csasr/ASR/lstm_transducer_stateless3/jit_pretrained.py
Normal file
328
egs/tal_csasr/ASR/lstm_transducer_stateless3/jit_pretrained.py
Normal file
@ -0,0 +1,328 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This script loads torchscript models, either exported by `torch.jit.trace()`
|
||||||
|
or by `torch.jit.script()`, and uses them to decode waves.
|
||||||
|
You can use the following command to get the exported models:
|
||||||
|
|
||||||
|
./lstm_transducer_stateless3/export.py \
|
||||||
|
--exp-dir ./lstm_transducer_stateless3/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 40 \
|
||||||
|
--avg 15 \
|
||||||
|
--jit-trace 1
|
||||||
|
|
||||||
|
Usage of this script:
|
||||||
|
|
||||||
|
./lstm_transducer_stateless3/jit_pretrained.py \
|
||||||
|
--encoder-model-filename ./lstm_transducer_stateless3/exp/encoder_jit_trace.pt \
|
||||||
|
--decoder-model-filename ./lstm_transducer_stateless3/exp/decoder_jit_trace.pt \
|
||||||
|
--joiner-model-filename ./lstm_transducer_stateless3/exp/joiner_jit_trace.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import kaldifeat
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the encoder torchscript model. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoder-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the decoder torchscript model. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--joiner-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the joiner torchscript model. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to bpe.model.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_char",
|
||||||
|
help="Path to the dir containing tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="Context size of the decoder model",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert (
|
||||||
|
sample_rate == expected_sample_rate
|
||||||
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
decoder: torch.jit.ScriptModule,
|
||||||
|
joiner: torch.jit.ScriptModule,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
encoder_out_lens: torch.Tensor,
|
||||||
|
context_size: int,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||||
|
Args:
|
||||||
|
decoder:
|
||||||
|
The decoder model.
|
||||||
|
joiner:
|
||||||
|
The joiner model.
|
||||||
|
encoder_out:
|
||||||
|
A 3-D tensor of shape (N, T, C)
|
||||||
|
encoder_out_lens:
|
||||||
|
A 1-D tensor of shape (N,).
|
||||||
|
context_size:
|
||||||
|
The context size of the decoder model.
|
||||||
|
Returns:
|
||||||
|
Return the decoded results for each utterance.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||||
|
|
||||||
|
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
||||||
|
input=encoder_out,
|
||||||
|
lengths=encoder_out_lens.cpu(),
|
||||||
|
batch_first=True,
|
||||||
|
enforce_sorted=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
device = encoder_out.device
|
||||||
|
blank_id = 0 # hard-code to 0
|
||||||
|
|
||||||
|
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
||||||
|
N = encoder_out.size(0)
|
||||||
|
|
||||||
|
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
||||||
|
assert N == batch_size_list[0], (N, batch_size_list)
|
||||||
|
|
||||||
|
hyps = [[blank_id] * context_size for _ in range(N)]
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
hyps,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (N, context_size)
|
||||||
|
|
||||||
|
decoder_out = decoder(
|
||||||
|
decoder_input,
|
||||||
|
need_pad=torch.tensor([False]),
|
||||||
|
).squeeze(1)
|
||||||
|
|
||||||
|
offset = 0
|
||||||
|
for batch_size in batch_size_list:
|
||||||
|
start = offset
|
||||||
|
end = offset + batch_size
|
||||||
|
current_encoder_out = packed_encoder_out.data[start:end]
|
||||||
|
current_encoder_out = current_encoder_out
|
||||||
|
# current_encoder_out's shape: (batch_size, encoder_out_dim)
|
||||||
|
offset = end
|
||||||
|
|
||||||
|
decoder_out = decoder_out[:batch_size]
|
||||||
|
|
||||||
|
logits = joiner(
|
||||||
|
current_encoder_out,
|
||||||
|
decoder_out,
|
||||||
|
)
|
||||||
|
# logits'shape (batch_size, vocab_size)
|
||||||
|
|
||||||
|
assert logits.ndim == 2, logits.shape
|
||||||
|
y = logits.argmax(dim=1).tolist()
|
||||||
|
emitted = False
|
||||||
|
for i, v in enumerate(y):
|
||||||
|
if v != blank_id:
|
||||||
|
hyps[i].append(v)
|
||||||
|
emitted = True
|
||||||
|
if emitted:
|
||||||
|
# update decoder output
|
||||||
|
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
decoder_input,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
decoder_out = decoder(
|
||||||
|
decoder_input,
|
||||||
|
need_pad=torch.tensor([False]),
|
||||||
|
)
|
||||||
|
decoder_out = decoder_out.squeeze(1)
|
||||||
|
|
||||||
|
sorted_ans = [h[context_size:] for h in hyps]
|
||||||
|
ans = []
|
||||||
|
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
||||||
|
for i in range(N):
|
||||||
|
ans.append(sorted_ans[unsorted_indices[i]])
|
||||||
|
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
encoder = torch.jit.load(args.encoder_model_filename)
|
||||||
|
decoder = torch.jit.load(args.decoder_model_filename)
|
||||||
|
joiner = torch.jit.load(args.joiner_model_filename)
|
||||||
|
|
||||||
|
encoder.eval()
|
||||||
|
decoder.eval()
|
||||||
|
joiner.eval()
|
||||||
|
|
||||||
|
encoder.to(device)
|
||||||
|
decoder.to(device)
|
||||||
|
joiner.to(device)
|
||||||
|
|
||||||
|
lexicon = Lexicon(args.lang_dir)
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = args.sample_rate
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {args.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=args.sound_files,
|
||||||
|
expected_sample_rate=args.sample_rate,
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=math.log(1e-10),
|
||||||
|
)
|
||||||
|
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
states = encoder.get_init_states(batch_size=features.size(0), device=device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens, _ = encoder(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lengths,
|
||||||
|
states=states,
|
||||||
|
)
|
||||||
|
|
||||||
|
hyps = greedy_search(
|
||||||
|
decoder=decoder,
|
||||||
|
joiner=joiner,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
context_size=args.context_size,
|
||||||
|
)
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(args.sound_files, hyps):
|
||||||
|
words = [lexicon.token_table[idx].replace("▁", " ") for idx in hyp]
|
||||||
|
words = "".join(words)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/joiner.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/joiner.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless5/joiner.py
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/lstm.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/lstm.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/lstm_transducer_stateless3/lstm.py
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/lstmp.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/lstmp.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/lstm_transducer_stateless2/lstmp.py
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/model.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/lstm_transducer_stateless3/model.py
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/onnx_check.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/onnx_check.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/lstm_transducer_stateless3/onnx_check.py
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/onnx_pretrained.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/lstm_transducer_stateless3/onnx_pretrained.py
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/optim.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/optim.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/lstm_transducer_stateless3/optim.py
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/pretrained.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/pretrained.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/lstm_transducer_stateless3/pretrained.py
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/scaling.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/scaling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless5/scaling.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless3/scaling_converter.py
|
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/stream.py
Symbolic link
1
egs/tal_csasr/ASR/lstm_transducer_stateless3/stream.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/lstm_transducer_stateless/stream.py
|
372
egs/tal_csasr/ASR/lstm_transducer_stateless3/streaming-ncnn-decode.py
Executable file
372
egs/tal_csasr/ASR/lstm_transducer_stateless3/streaming-ncnn-decode.py
Executable file
@ -0,0 +1,372 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# flake8: noqa
|
||||||
|
#
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Please see
|
||||||
|
https://k2-fsa.github.io/icefall/model-export/export-ncnn.html
|
||||||
|
for usage
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from typing import List, Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import ncnn
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=str,
|
||||||
|
help="Path to tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-param-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to encoder.ncnn.param",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-bin-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to encoder.ncnn.bin",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoder-param-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to decoder.ncnn.param",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoder-bin-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to decoder.ncnn.bin",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--joiner-param-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to joiner.ncnn.param",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--joiner-bin-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to joiner.ncnn.bin",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-encoder-layers",
|
||||||
|
type=int,
|
||||||
|
default=12,
|
||||||
|
help="Number of RNN encoder layers..",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-dim",
|
||||||
|
type=int,
|
||||||
|
default=512,
|
||||||
|
help="Encoder output dimesion.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-hidden-size",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
help="Dimension of feed forward.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to foo.wav",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
class Model:
|
||||||
|
def __init__(self, args):
|
||||||
|
self.init_encoder(args)
|
||||||
|
self.init_decoder(args)
|
||||||
|
self.init_joiner(args)
|
||||||
|
|
||||||
|
def init_encoder(self, args):
|
||||||
|
encoder_net = ncnn.Net()
|
||||||
|
encoder_net.opt.use_packing_layout = False
|
||||||
|
encoder_net.opt.use_fp16_storage = False
|
||||||
|
encoder_net.opt.num_threads = 4
|
||||||
|
|
||||||
|
encoder_param = args.encoder_param_filename
|
||||||
|
encoder_model = args.encoder_bin_filename
|
||||||
|
|
||||||
|
encoder_net.load_param(encoder_param)
|
||||||
|
encoder_net.load_model(encoder_model)
|
||||||
|
|
||||||
|
self.encoder_net = encoder_net
|
||||||
|
|
||||||
|
def init_decoder(self, args):
|
||||||
|
decoder_param = args.decoder_param_filename
|
||||||
|
decoder_model = args.decoder_bin_filename
|
||||||
|
|
||||||
|
decoder_net = ncnn.Net()
|
||||||
|
decoder_net.opt.use_packing_layout = False
|
||||||
|
decoder_net.opt.num_threads = 4
|
||||||
|
|
||||||
|
decoder_net.load_param(decoder_param)
|
||||||
|
decoder_net.load_model(decoder_model)
|
||||||
|
|
||||||
|
self.decoder_net = decoder_net
|
||||||
|
|
||||||
|
def init_joiner(self, args):
|
||||||
|
joiner_param = args.joiner_param_filename
|
||||||
|
joiner_model = args.joiner_bin_filename
|
||||||
|
joiner_net = ncnn.Net()
|
||||||
|
joiner_net.opt.use_packing_layout = False
|
||||||
|
joiner_net.opt.num_threads = 4
|
||||||
|
|
||||||
|
joiner_net.load_param(joiner_param)
|
||||||
|
joiner_net.load_model(joiner_model)
|
||||||
|
|
||||||
|
self.joiner_net = joiner_net
|
||||||
|
|
||||||
|
def run_encoder(self, x, states):
|
||||||
|
with self.encoder_net.create_extractor() as ex:
|
||||||
|
ex.input("in0", ncnn.Mat(x.numpy()).clone())
|
||||||
|
x_lens = torch.tensor([x.size(0)], dtype=torch.float32)
|
||||||
|
ex.input("in1", ncnn.Mat(x_lens.numpy()).clone())
|
||||||
|
ex.input("in2", ncnn.Mat(states[0].numpy()).clone())
|
||||||
|
ex.input("in3", ncnn.Mat(states[1].numpy()).clone())
|
||||||
|
|
||||||
|
ret, ncnn_out0 = ex.extract("out0")
|
||||||
|
assert ret == 0, ret
|
||||||
|
|
||||||
|
ret, ncnn_out1 = ex.extract("out1")
|
||||||
|
assert ret == 0, ret
|
||||||
|
|
||||||
|
ret, ncnn_out2 = ex.extract("out2")
|
||||||
|
assert ret == 0, ret
|
||||||
|
|
||||||
|
ret, ncnn_out3 = ex.extract("out3")
|
||||||
|
assert ret == 0, ret
|
||||||
|
|
||||||
|
encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||||
|
encoder_out_lens = torch.from_numpy(ncnn_out1.numpy()).to(torch.int32)
|
||||||
|
hx = torch.from_numpy(ncnn_out2.numpy()).clone()
|
||||||
|
cx = torch.from_numpy(ncnn_out3.numpy()).clone()
|
||||||
|
return encoder_out, encoder_out_lens, hx, cx
|
||||||
|
|
||||||
|
def run_decoder(self, decoder_input):
|
||||||
|
assert decoder_input.dtype == torch.int32
|
||||||
|
|
||||||
|
with self.decoder_net.create_extractor() as ex:
|
||||||
|
ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone())
|
||||||
|
ret, ncnn_out0 = ex.extract("out0")
|
||||||
|
assert ret == 0, ret
|
||||||
|
decoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||||
|
return decoder_out
|
||||||
|
|
||||||
|
def run_joiner(self, encoder_out, decoder_out):
|
||||||
|
with self.joiner_net.create_extractor() as ex:
|
||||||
|
ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone())
|
||||||
|
ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone())
|
||||||
|
ret, ncnn_out0 = ex.extract("out0")
|
||||||
|
assert ret == 0, ret
|
||||||
|
joiner_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||||
|
return joiner_out
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert (
|
||||||
|
sample_rate == expected_sample_rate
|
||||||
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def create_streaming_feature_extractor() -> OnlineFeature:
|
||||||
|
"""Create a CPU streaming feature extractor.
|
||||||
|
|
||||||
|
At present, we assume it returns a fbank feature extractor with
|
||||||
|
fixed options. In the future, we will support passing in the options
|
||||||
|
from outside.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a CPU streaming feature extractor.
|
||||||
|
"""
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = "cpu"
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
return OnlineFbank(opts)
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
model: Model,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
decoder_out: Optional[torch.Tensor] = None,
|
||||||
|
hyp: Optional[List[int]] = None,
|
||||||
|
):
|
||||||
|
assert encoder_out.ndim == 1
|
||||||
|
context_size = 2
|
||||||
|
blank_id = 0
|
||||||
|
|
||||||
|
if decoder_out is None:
|
||||||
|
assert hyp is None, hyp
|
||||||
|
hyp = [blank_id] * context_size
|
||||||
|
decoder_input = torch.tensor(hyp, dtype=torch.int32) # (1, context_size)
|
||||||
|
decoder_out = model.run_decoder(decoder_input).squeeze(0)
|
||||||
|
else:
|
||||||
|
assert decoder_out.ndim == 1
|
||||||
|
assert hyp is not None, hyp
|
||||||
|
|
||||||
|
joiner_out = model.run_joiner(encoder_out, decoder_out)
|
||||||
|
y = joiner_out.argmax(dim=0).item()
|
||||||
|
if y != blank_id:
|
||||||
|
hyp.append(y)
|
||||||
|
decoder_input = hyp[-context_size:]
|
||||||
|
decoder_input = torch.tensor(decoder_input, dtype=torch.int32)
|
||||||
|
decoder_out = model.run_decoder(decoder_input).squeeze(0)
|
||||||
|
|
||||||
|
return hyp, decoder_out
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
model = Model(args)
|
||||||
|
|
||||||
|
sound_file = args.sound_filename
|
||||||
|
|
||||||
|
sample_rate = 16000
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
online_fbank = create_streaming_feature_extractor()
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {sound_file}")
|
||||||
|
wave_samples = read_sound_files(
|
||||||
|
filenames=[sound_file],
|
||||||
|
expected_sample_rate=sample_rate,
|
||||||
|
)[0]
|
||||||
|
logging.info(wave_samples.shape)
|
||||||
|
|
||||||
|
num_encoder_layers = args.num_encoder_layers
|
||||||
|
batch_size = 1
|
||||||
|
d_model = args.encoder_dim
|
||||||
|
rnn_hidden_size = args.rnn_hidden_size
|
||||||
|
|
||||||
|
states = (
|
||||||
|
torch.zeros(num_encoder_layers, batch_size, d_model),
|
||||||
|
torch.zeros(
|
||||||
|
num_encoder_layers,
|
||||||
|
batch_size,
|
||||||
|
rnn_hidden_size,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
hyp = None
|
||||||
|
decoder_out = None
|
||||||
|
|
||||||
|
num_processed_frames = 0
|
||||||
|
segment = 9
|
||||||
|
offset = 4
|
||||||
|
|
||||||
|
chunk = 3200 # 0.2 second
|
||||||
|
|
||||||
|
start = 0
|
||||||
|
while start < wave_samples.numel():
|
||||||
|
end = min(start + chunk, wave_samples.numel())
|
||||||
|
samples = wave_samples[start:end]
|
||||||
|
start += chunk
|
||||||
|
|
||||||
|
online_fbank.accept_waveform(
|
||||||
|
sampling_rate=sample_rate,
|
||||||
|
waveform=samples,
|
||||||
|
)
|
||||||
|
while online_fbank.num_frames_ready - num_processed_frames >= segment:
|
||||||
|
frames = []
|
||||||
|
for i in range(segment):
|
||||||
|
frames.append(online_fbank.get_frame(num_processed_frames + i))
|
||||||
|
num_processed_frames += offset
|
||||||
|
frames = torch.cat(frames, dim=0)
|
||||||
|
encoder_out, encoder_out_lens, hx, cx = model.run_encoder(frames, states)
|
||||||
|
states = (hx, cx)
|
||||||
|
hyp, decoder_out = greedy_search(
|
||||||
|
model, encoder_out.squeeze(0), decoder_out, hyp
|
||||||
|
)
|
||||||
|
online_fbank.accept_waveform(
|
||||||
|
sampling_rate=sample_rate, waveform=torch.zeros(8000, dtype=torch.int32)
|
||||||
|
)
|
||||||
|
|
||||||
|
online_fbank.input_finished()
|
||||||
|
while online_fbank.num_frames_ready - num_processed_frames >= segment:
|
||||||
|
frames = []
|
||||||
|
for i in range(segment):
|
||||||
|
frames.append(online_fbank.get_frame(num_processed_frames + i))
|
||||||
|
num_processed_frames += offset
|
||||||
|
frames = torch.cat(frames, dim=0)
|
||||||
|
encoder_out, encoder_out_lens, hx, cx = model.run_encoder(frames, states)
|
||||||
|
states = (hx, cx)
|
||||||
|
hyp, decoder_out = greedy_search(
|
||||||
|
model, encoder_out.squeeze(0), decoder_out, hyp
|
||||||
|
)
|
||||||
|
|
||||||
|
symbol_table = k2.SymbolTable.from_file(args.tokens)
|
||||||
|
|
||||||
|
context_size = 2
|
||||||
|
text = ""
|
||||||
|
for i in hyp[context_size:]:
|
||||||
|
text += symbol_table[i]
|
||||||
|
text = text.replace("▁", " ").strip()
|
||||||
|
|
||||||
|
logging.info(sound_file)
|
||||||
|
logging.info(text)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
main()
|
992
egs/tal_csasr/ASR/lstm_transducer_stateless3/streaming_decode.py
Normal file
992
egs/tal_csasr/ASR/lstm_transducer_stateless3/streaming_decode.py
Normal file
@ -0,0 +1,992 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./lstm_transducer_stateless3/streaming_decode.py \
|
||||||
|
--epoch 40 \
|
||||||
|
--avg 20 \
|
||||||
|
--exp-dir lstm_transducer_stateless3/exp \
|
||||||
|
--num-decode-streams 2000 \
|
||||||
|
--num-encoder-layers 12 \
|
||||||
|
--rnn-hidden-size 1024 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--use-averaged-model True
|
||||||
|
|
||||||
|
(2) modified beam search
|
||||||
|
./lstm_transducer_stateless3/streaming_decode.py \
|
||||||
|
--epoch 40 \
|
||||||
|
--avg 20 \
|
||||||
|
--exp-dir lstm_transducer_stateless3/exp \
|
||||||
|
--num-decode-streams 2000 \
|
||||||
|
--num-encoder-layers 12 \
|
||||||
|
--rnn-hidden-size 1024 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--use-averaged-model True \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) fast beam search
|
||||||
|
./lstm_transducer_stateless3/streaming_decode.py \
|
||||||
|
--epoch 40 \
|
||||||
|
--avg 20 \
|
||||||
|
--exp-dir lstm_transducer_stateless3/exp \
|
||||||
|
--num-decode-streams 2000 \
|
||||||
|
--num-encoder-layers 12 \
|
||||||
|
--rnn-hidden-size 1024 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--use-averaged-model True \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 4 \
|
||||||
|
--max-states 8
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
import warnings
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import numpy as np
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import TAL_CSASRAsrDataModule
|
||||||
|
from beam_search import Hypothesis, HypothesisList, get_hyps_shape
|
||||||
|
from kaldifeat import Fbank, FbankOptions
|
||||||
|
from lhotse import CutSet
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from local.text_normalize import text_normalize
|
||||||
|
from lstm import LOG_EPSILON, stack_states, unstack_states
|
||||||
|
from stream import Stream
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.decode import one_best_decoding
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=40,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="lstm_transducer_stateless3/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_char",
|
||||||
|
help="Path to the dir containing bpe.model and tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An interger indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=20.0,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sampling-rate",
|
||||||
|
type=float,
|
||||||
|
default=16000,
|
||||||
|
help="Sample rate of the audio",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-decode-streams",
|
||||||
|
type=int,
|
||||||
|
default=2000,
|
||||||
|
help="The number of streams that can be decoded in parallel",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
model: nn.Module,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
streams: List[Stream],
|
||||||
|
) -> None:
|
||||||
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The transducer model.
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
||||||
|
streams:
|
||||||
|
A list of Stream objects.
|
||||||
|
"""
|
||||||
|
assert len(streams) == encoder_out.size(0)
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp[-context_size:] for stream in streams],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
# decoder_out is of shape (batch_size, 1, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
||||||
|
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2),
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
# logits'shape (batch_size, vocab_size)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
|
||||||
|
assert logits.ndim == 2, logits.shape
|
||||||
|
y = logits.argmax(dim=1).tolist()
|
||||||
|
emitted = False
|
||||||
|
for i, v in enumerate(y):
|
||||||
|
if v != blank_id:
|
||||||
|
streams[i].hyp.append(v)
|
||||||
|
emitted = True
|
||||||
|
if emitted:
|
||||||
|
# update decoder output
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp[-context_size:] for stream in streams],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
decoder_out = model.decoder(
|
||||||
|
decoder_input,
|
||||||
|
need_pad=False,
|
||||||
|
)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
|
||||||
|
|
||||||
|
def modified_beam_search(
|
||||||
|
model: nn.Module,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
streams: List[Stream],
|
||||||
|
beam: int = 4,
|
||||||
|
):
|
||||||
|
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The RNN-T model.
|
||||||
|
encoder_out:
|
||||||
|
A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of
|
||||||
|
the encoder model.
|
||||||
|
streams:
|
||||||
|
A list of stream objects.
|
||||||
|
beam:
|
||||||
|
Number of active paths during the beam search.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3, encoder_out.shape
|
||||||
|
assert len(streams) == encoder_out.size(0)
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
batch_size = len(streams)
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
B = [stream.hyps for stream in streams]
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
current_encoder_out = encoder_out[:, t].unsqueeze(1).unsqueeze(1)
|
||||||
|
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
||||||
|
|
||||||
|
hyps_shape = get_hyps_shape(B).to(device)
|
||||||
|
|
||||||
|
A = [list(b) for b in B]
|
||||||
|
B = [HypothesisList() for _ in range(batch_size)]
|
||||||
|
|
||||||
|
ys_log_probs = torch.stack(
|
||||||
|
[hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0
|
||||||
|
) # (num_hyps, 1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (num_hyps, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# decoder_out is of shape (num_hyps, 1, 1, decoder_output_dim)
|
||||||
|
|
||||||
|
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||||
|
# as index, so we use `to(torch.int64)` below.
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
current_encoder_out,
|
||||||
|
dim=0,
|
||||||
|
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||||
|
) # (num_hyps, encoder_out_dim)
|
||||||
|
|
||||||
|
logits = model.joiner(current_encoder_out, decoder_out, project_input=False)
|
||||||
|
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
||||||
|
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
|
||||||
|
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||||
|
|
||||||
|
log_probs.add_(ys_log_probs)
|
||||||
|
|
||||||
|
vocab_size = log_probs.size(-1)
|
||||||
|
|
||||||
|
log_probs = log_probs.reshape(-1)
|
||||||
|
|
||||||
|
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||||
|
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||||
|
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||||
|
)
|
||||||
|
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||||
|
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||||
|
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||||
|
|
||||||
|
for k in range(len(topk_hyp_indexes)):
|
||||||
|
hyp_idx = topk_hyp_indexes[k]
|
||||||
|
hyp = A[i][hyp_idx]
|
||||||
|
|
||||||
|
new_ys = hyp.ys[:]
|
||||||
|
new_token = topk_token_indexes[k]
|
||||||
|
if new_token != blank_id:
|
||||||
|
new_ys.append(new_token)
|
||||||
|
|
||||||
|
new_log_prob = topk_log_probs[k]
|
||||||
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||||
|
B[i].add(new_hyp)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
streams[i].hyps = B[i]
|
||||||
|
|
||||||
|
|
||||||
|
def fast_beam_search_one_best(
|
||||||
|
model: nn.Module,
|
||||||
|
streams: List[Stream],
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
processed_lens: torch.Tensor,
|
||||||
|
beam: float,
|
||||||
|
max_states: int,
|
||||||
|
max_contexts: int,
|
||||||
|
) -> None:
|
||||||
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
A lattice is first obtained using modified beam search, and then
|
||||||
|
the shortest path within the lattice is used as the final output.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
streams:
|
||||||
|
A list of stream objects.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder.
|
||||||
|
processed_lens:
|
||||||
|
A tensor of shape (N,) containing the number of processed frames
|
||||||
|
in `encoder_out` before padding.
|
||||||
|
beam:
|
||||||
|
Beam value, similar to the beam used in Kaldi..
|
||||||
|
max_states:
|
||||||
|
Max states per stream per frame.
|
||||||
|
max_contexts:
|
||||||
|
Max contexts pre stream per frame.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
vocab_size = model.decoder.vocab_size
|
||||||
|
|
||||||
|
B, T, C = encoder_out.shape
|
||||||
|
assert B == len(streams)
|
||||||
|
|
||||||
|
config = k2.RnntDecodingConfig(
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
decoder_history_len=context_size,
|
||||||
|
beam=beam,
|
||||||
|
max_contexts=max_contexts,
|
||||||
|
max_states=max_states,
|
||||||
|
)
|
||||||
|
individual_streams = []
|
||||||
|
for i in range(B):
|
||||||
|
individual_streams.append(streams[i].rnnt_decoding_stream)
|
||||||
|
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# shape is a RaggedShape of shape (B, context)
|
||||||
|
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
||||||
|
shape, contexts = decoding_streams.get_contexts()
|
||||||
|
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
||||||
|
contexts = contexts.to(torch.int64)
|
||||||
|
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(contexts, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# current_encoder_out is of shape
|
||||||
|
# (shape.NumElements(), 1, joiner_dim)
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
||||||
|
)
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2),
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
decoding_streams.advance(log_probs)
|
||||||
|
|
||||||
|
decoding_streams.terminate_and_flush_to_streams()
|
||||||
|
|
||||||
|
lattice = decoding_streams.format_output(processed_lens.tolist())
|
||||||
|
|
||||||
|
best_path = one_best_decoding(lattice)
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
|
||||||
|
for i in range(B):
|
||||||
|
streams[i].hyp = hyps[i]
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_chunk(
|
||||||
|
model: nn.Module,
|
||||||
|
streams: List[Stream],
|
||||||
|
params: AttributeDict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> List[int]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The Transducer model.
|
||||||
|
streams:
|
||||||
|
A list of Stream objects.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A list of indexes indicating the finished streams.
|
||||||
|
"""
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
|
||||||
|
feature_list = []
|
||||||
|
feature_len_list = []
|
||||||
|
state_list = []
|
||||||
|
num_processed_frames_list = []
|
||||||
|
|
||||||
|
for stream in streams:
|
||||||
|
# We should first get `stream.num_processed_frames`
|
||||||
|
# before calling `stream.get_feature_chunk()`
|
||||||
|
# since `stream.num_processed_frames` would be updated
|
||||||
|
num_processed_frames_list.append(stream.num_processed_frames)
|
||||||
|
feature = stream.get_feature_chunk()
|
||||||
|
feature_len = feature.size(0)
|
||||||
|
feature_list.append(feature)
|
||||||
|
feature_len_list.append(feature_len)
|
||||||
|
state_list.append(stream.states)
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
feature_list, batch_first=True, padding_value=LOG_EPSILON
|
||||||
|
).to(device)
|
||||||
|
feature_lens = torch.tensor(feature_len_list, device=device)
|
||||||
|
num_processed_frames = torch.tensor(num_processed_frames_list, device=device)
|
||||||
|
|
||||||
|
# Make sure it has at least 1 frame after subsampling
|
||||||
|
tail_length = params.subsampling_factor + 5
|
||||||
|
if features.size(1) < tail_length:
|
||||||
|
pad_length = tail_length - features.size(1)
|
||||||
|
feature_lens += pad_length
|
||||||
|
features = torch.nn.functional.pad(
|
||||||
|
features,
|
||||||
|
(0, 0, 0, pad_length),
|
||||||
|
mode="constant",
|
||||||
|
value=LOG_EPSILON,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Stack states of all streams
|
||||||
|
states = stack_states(state_list)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens, states = model.encoder(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
states=states,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
greedy_search(
|
||||||
|
model=model,
|
||||||
|
streams=streams,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
streams=streams,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
# feature_len is needed to get partial results.
|
||||||
|
# The rnnt_decoding_stream for fast_beam_search.
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
processed_lens = (
|
||||||
|
num_processed_frames // params.subsampling_factor + encoder_out_lens
|
||||||
|
)
|
||||||
|
fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
streams=streams,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
processed_lens=processed_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||||
|
|
||||||
|
# Update cached states of each stream
|
||||||
|
state_list = unstack_states(states)
|
||||||
|
for i, s in enumerate(state_list):
|
||||||
|
streams[i].states = s
|
||||||
|
|
||||||
|
finished_streams = [i for i, stream in enumerate(streams) if stream.done]
|
||||||
|
return finished_streams
|
||||||
|
|
||||||
|
|
||||||
|
def create_streaming_feature_extractor() -> Fbank:
|
||||||
|
"""Create a CPU streaming feature extractor.
|
||||||
|
|
||||||
|
At present, we assume it returns a fbank feature extractor with
|
||||||
|
fixed options. In the future, we will support passing in the options
|
||||||
|
from outside.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a CPU streaming feature extractor.
|
||||||
|
"""
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = "cpu"
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
return Fbank(opts)
|
||||||
|
|
||||||
|
|
||||||
|
def filter_zh_en(text: str):
|
||||||
|
pattern = re.compile(r"([\u4e00-\u9fff])")
|
||||||
|
|
||||||
|
chars = pattern.split(text.upper())
|
||||||
|
chars_new = []
|
||||||
|
for char in chars:
|
||||||
|
if char != "":
|
||||||
|
tokens = char.strip().split(" ")
|
||||||
|
chars_new.extend(tokens)
|
||||||
|
return chars_new
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
cuts: CutSet,
|
||||||
|
model: nn.Module,
|
||||||
|
params: AttributeDict,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
):
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cuts:
|
||||||
|
Lhotse Cutset containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The Transducer model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
|
||||||
|
log_interval = 300
|
||||||
|
|
||||||
|
fbank = create_streaming_feature_extractor()
|
||||||
|
|
||||||
|
decode_results = []
|
||||||
|
streams = []
|
||||||
|
for num, cut in enumerate(cuts):
|
||||||
|
# Each utterance has a Stream.
|
||||||
|
stream = Stream(
|
||||||
|
params=params,
|
||||||
|
cut_id=cut.id,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
device=device,
|
||||||
|
LOG_EPS=LOG_EPSILON,
|
||||||
|
)
|
||||||
|
|
||||||
|
stream.states = model.encoder.get_init_states(device=device)
|
||||||
|
|
||||||
|
audio: np.ndarray = cut.load_audio()
|
||||||
|
# audio.shape: (1, num_samples)
|
||||||
|
assert len(audio.shape) == 2
|
||||||
|
assert audio.shape[0] == 1, "Should be single channel"
|
||||||
|
assert audio.dtype == np.float32, audio.dtype
|
||||||
|
# The trained model is using normalized samples
|
||||||
|
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||||
|
|
||||||
|
samples = torch.from_numpy(audio).squeeze(0)
|
||||||
|
feature = fbank(samples)
|
||||||
|
stream.set_feature(feature)
|
||||||
|
stream.ground_truth = cut.supervisions[0].text
|
||||||
|
|
||||||
|
streams.append(stream)
|
||||||
|
|
||||||
|
while len(streams) >= params.num_decode_streams:
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
model=model,
|
||||||
|
streams=streams,
|
||||||
|
params=params,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
hyp = streams[i].decoding_result()
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
streams[i].id,
|
||||||
|
filter_zh_en(streams[i].ground_truth),
|
||||||
|
sp.decode([lexicon.token_table[idx] for idx in hyp]),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del streams[i]
|
||||||
|
|
||||||
|
if num % log_interval == 0:
|
||||||
|
logging.info(f"Cuts processed until now is {num}.")
|
||||||
|
|
||||||
|
while len(streams) > 0:
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
model=model,
|
||||||
|
streams=streams,
|
||||||
|
params=params,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
hyp = streams[i].decoding_result()
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
streams[i].id,
|
||||||
|
filter_zh_en(streams[i].ground_truth),
|
||||||
|
[sp.decode(lexicon.token_table[idx]) for idx in hyp],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del streams[i]
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
key = "greedy_search"
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
key = (
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
key = f"beam_size_{params.beam_size}"
|
||||||
|
|
||||||
|
return {key: decode_results}
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
store_transcripts(filename=recog_path, texts=sorted(results))
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
TAL_CSASRAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-streaming-decode")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
bpe_model = params.lang_dir + "/bpe.model"
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(bpe_model)
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||||
|
lexicon=lexicon,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
params.blank_id = lexicon.token_table["<blk>"]
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
params.device = device
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
def text_normalize_for_cut(c: Cut):
|
||||||
|
# Text normalize for each sample
|
||||||
|
text = c.supervisions[0].text
|
||||||
|
text = text.strip("\n").strip("\t")
|
||||||
|
c.supervisions[0].text = text_normalize(text)
|
||||||
|
return c
|
||||||
|
|
||||||
|
tal_csasr = TAL_CSASRAsrDataModule(args)
|
||||||
|
|
||||||
|
dev_cuts = tal_csasr.valid_cuts()
|
||||||
|
dev_cuts = dev_cuts.map(text_normalize_for_cut)
|
||||||
|
|
||||||
|
test_cuts = tal_csasr.test_cuts()
|
||||||
|
test_cuts = test_cuts.map(text_normalize_for_cut)
|
||||||
|
|
||||||
|
test_sets = ["dev", "test"]
|
||||||
|
test_cuts = [dev_cuts, test_cuts]
|
||||||
|
|
||||||
|
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
cuts=test_cut,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
sp=sp,
|
||||||
|
lexicon=lexicon,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
torch.manual_seed(20220810)
|
||||||
|
main()
|
1183
egs/tal_csasr/ASR/lstm_transducer_stateless3/train.py
Executable file
1183
egs/tal_csasr/ASR/lstm_transducer_stateless3/train.py
Executable file
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user