fix codestyle

This commit is contained in:
marcoyang 2023-02-14 16:23:42 +08:00
parent 7d217e15ab
commit 1aa2a930b4
6 changed files with 153 additions and 47 deletions

View File

@ -302,7 +302,9 @@ def decode_one_batch(
en_hyps.append(en_text)
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens,
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for i in range(encoder_out.size(0)):
hyp = sp.decode([lexicon.token_table[idx] for idx in hyp_tokens[i]])
@ -358,7 +360,9 @@ def decode_one_batch(
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model, encoder_out=encoder_out_i, beam=params.beam_size,
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
@ -722,13 +726,19 @@ def main():
sp=sp,
)
save_results(
params=params, test_set_name=test_set, results_dict=results_dict,
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
save_results(
params=params, test_set_name=test_set, results_dict=zh_results_dict,
params=params,
test_set_name=test_set,
results_dict=zh_results_dict,
)
save_results(
params=params, test_set_name=test_set, results_dict=en_results_dict,
params=params,
test_set_name=test_set,
results_dict=en_results_dict,
)
logging.info("Done!")

View File

@ -107,7 +107,10 @@ def get_parser():
)
parser.add_argument(
"--lang-dir", type=str, default="data/lang_char", help="Path to the lang",
"--lang-dir",
type=str,
default="data/lang_char",
help="Path to the lang",
)
parser.add_argument(
@ -134,7 +137,8 @@ def get_parser():
def export_encoder_model_jit_trace(
encoder_model: torch.nn.Module, encoder_filename: str,
encoder_model: torch.nn.Module,
encoder_filename: str,
) -> None:
"""Export the given encoder model with torch.jit.trace()
@ -156,7 +160,8 @@ def export_encoder_model_jit_trace(
def export_decoder_model_jit_trace(
decoder_model: torch.nn.Module, decoder_filename: str,
decoder_model: torch.nn.Module,
decoder_filename: str,
) -> None:
"""Export the given decoder model with torch.jit.trace()
@ -177,7 +182,8 @@ def export_decoder_model_jit_trace(
def export_joiner_model_jit_trace(
joiner_model: torch.nn.Module, joiner_filename: str,
joiner_model: torch.nn.Module,
joiner_filename: str,
) -> None:
"""Export the given joiner model with torch.jit.trace()

View File

@ -37,31 +37,45 @@ def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--tokens", type=str, help="Path to tokens.txt",
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder-param-filename", type=str, help="Path to encoder.ncnn.param",
"--encoder-param-filename",
type=str,
help="Path to encoder.ncnn.param",
)
parser.add_argument(
"--encoder-bin-filename", type=str, help="Path to encoder.ncnn.bin",
"--encoder-bin-filename",
type=str,
help="Path to encoder.ncnn.bin",
)
parser.add_argument(
"--decoder-param-filename", type=str, help="Path to decoder.ncnn.param",
"--decoder-param-filename",
type=str,
help="Path to decoder.ncnn.param",
)
parser.add_argument(
"--decoder-bin-filename", type=str, help="Path to decoder.ncnn.bin",
"--decoder-bin-filename",
type=str,
help="Path to decoder.ncnn.bin",
)
parser.add_argument(
"--joiner-param-filename", type=str, help="Path to joiner.ncnn.param",
"--joiner-param-filename",
type=str,
help="Path to joiner.ncnn.param",
)
parser.add_argument(
"--joiner-bin-filename", type=str, help="Path to joiner.ncnn.bin",
"--joiner-bin-filename",
type=str,
help="Path to joiner.ncnn.bin",
)
parser.add_argument(
@ -72,15 +86,23 @@ def get_args():
)
parser.add_argument(
"--encoder-dim", type=int, default=512, help="Encoder output dimesion.",
"--encoder-dim",
type=int,
default=512,
help="Encoder output dimesion.",
)
parser.add_argument(
"--rnn-hidden-size", type=int, default=2048, help="Dimension of feed forward.",
"--rnn-hidden-size",
type=int,
default=2048,
help="Dimension of feed forward.",
)
parser.add_argument(
"sound_filename", type=str, help="Path to foo.wav",
"sound_filename",
type=str,
help="Path to foo.wav",
)
return parser.parse_args()
@ -264,7 +286,8 @@ def main():
logging.info(f"Reading sound files: {sound_file}")
wave_samples = read_sound_files(
filenames=[sound_file], expected_sample_rate=sample_rate,
filenames=[sound_file],
expected_sample_rate=sample_rate,
)[0]
logging.info(wave_samples.shape)
@ -275,7 +298,11 @@ def main():
states = (
torch.zeros(num_encoder_layers, batch_size, d_model),
torch.zeros(num_encoder_layers, batch_size, rnn_hidden_size,),
torch.zeros(
num_encoder_layers,
batch_size,
rnn_hidden_size,
),
)
hyp = None
@ -294,7 +321,8 @@ def main():
start += chunk
online_fbank.accept_waveform(
sampling_rate=sample_rate, waveform=samples,
sampling_rate=sample_rate,
waveform=samples,
)
while online_fbank.num_frames_ready - num_processed_frames >= segment:
frames = []

View File

@ -215,7 +215,10 @@ def get_parser():
)
parser.add_argument(
"--sampling-rate", type=float, default=16000, help="Sample rate of the audio",
"--sampling-rate",
type=float,
default=16000,
help="Sample rate of the audio",
)
parser.add_argument(
@ -231,7 +234,9 @@ def get_parser():
def greedy_search(
model: nn.Module, encoder_out: torch.Tensor, streams: List[Stream],
model: nn.Module,
encoder_out: torch.Tensor,
streams: List[Stream],
) -> None:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
@ -288,12 +293,18 @@ def greedy_search(
device=device,
dtype=torch.int64,
)
decoder_out = model.decoder(decoder_input, need_pad=False,)
decoder_out = model.decoder(
decoder_input,
need_pad=False,
)
decoder_out = model.joiner.decoder_proj(decoder_out)
def modified_beam_search(
model: nn.Module, encoder_out: torch.Tensor, streams: List[Stream], beam: int = 4,
model: nn.Module,
encoder_out: torch.Tensor,
streams: List[Stream],
beam: int = 4,
):
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
@ -347,7 +358,9 @@ def modified_beam_search(
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
# as index, so we use `to(torch.int64)` below.
current_encoder_out = torch.index_select(
current_encoder_out, dim=0, index=hyps_shape.row_ids(1).to(torch.int64),
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, encoder_out_dim)
logits = model.joiner(current_encoder_out, decoder_out, project_input=False)
@ -534,19 +547,26 @@ def decode_one_chunk(
pad_length = tail_length - features.size(1)
feature_lens += pad_length
features = torch.nn.functional.pad(
features, (0, 0, 0, pad_length), mode="constant", value=LOG_EPSILON,
features,
(0, 0, 0, pad_length),
mode="constant",
value=LOG_EPSILON,
)
# Stack states of all streams
states = stack_states(state_list)
encoder_out, encoder_out_lens, states = model.encoder(
x=features, x_lens=feature_lens, states=states,
x=features,
x_lens=feature_lens,
states=states,
)
if params.decoding_method == "greedy_search":
greedy_search(
model=model, streams=streams, encoder_out=encoder_out,
model=model,
streams=streams,
encoder_out=encoder_out,
)
elif params.decoding_method == "modified_beam_search":
modified_beam_search(
@ -705,7 +725,10 @@ def decode_dataset(
while len(streams) > 0:
finished_streams = decode_one_chunk(
model=model, streams=streams, params=params, decoding_graph=decoding_graph,
model=model,
streams=streams,
params=params,
decoding_graph=decoding_graph,
)
for i in sorted(finished_streams, reverse=True):
@ -825,7 +848,10 @@ def main():
sp.load(bpe_model)
lexicon = Lexicon(params.lang_dir)
graph_compiler = CharCtcTrainingGraphCompiler(lexicon=lexicon, device=device,)
graph_compiler = CharCtcTrainingGraphCompiler(
lexicon=lexicon,
device=device,
)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
@ -953,7 +979,9 @@ def main():
)
save_results(
params=params, test_set_name=test_set, results_dict=results_dict,
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")

View File

@ -103,23 +103,38 @@ def add_model_arguments(parser: argparse.ArgumentParser):
)
parser.add_argument(
"--encoder-dim", type=int, default=512, help="Encoder output dimesion.",
"--encoder-dim",
type=int,
default=512,
help="Encoder output dimesion.",
)
parser.add_argument(
"--decoder-dim", type=int, default=512, help="Decoder output dimension.",
"--decoder-dim",
type=int,
default=512,
help="Decoder output dimension.",
)
parser.add_argument(
"--joiner-dim", type=int, default=512, help="Joiner output dimension.",
"--joiner-dim",
type=int,
default=512,
help="Joiner output dimension.",
)
parser.add_argument(
"--dim-feedforward", type=int, default=2048, help="Dimension of feed forward.",
"--dim-feedforward",
type=int,
default=2048,
help="Dimension of feed forward.",
)
parser.add_argument(
"--rnn-hidden-size", type=int, default=1024, help="Hidden dim for LSTM layers.",
"--rnn-hidden-size",
type=int,
default=1024,
help="Hidden dim for LSTM layers.",
)
parser.add_argument(
@ -156,7 +171,10 @@ def get_parser():
)
parser.add_argument(
"--world-size", type=int, default=1, help="Number of GPUs for DDP training.",
"--world-size",
type=int,
default=1,
help="Number of GPUs for DDP training.",
)
parser.add_argument(
@ -174,7 +192,10 @@ def get_parser():
)
parser.add_argument(
"--num-epochs", type=int, default=40, help="Number of epochs to train.",
"--num-epochs",
type=int,
default=40,
help="Number of epochs to train.",
)
parser.add_argument(
@ -825,7 +846,9 @@ def train_one_epoch(
and params.batch_idx_train % params.average_period == 0
):
update_averaged_model(
params=params, model_cur=model, model_avg=model_avg,
params=params,
model_cur=model,
model_avg=model_avg,
)
if (
@ -847,7 +870,9 @@ def train_one_epoch(
)
del params.cur_batch_idx
remove_checkpoints(
out_dir=params.exp_dir, topk=params.keep_last_k, rank=rank,
out_dir=params.exp_dir,
topk=params.keep_last_k,
rank=rank,
)
if batch_idx % params.log_interval == 0 and not params.print_diagnostics:
@ -935,7 +960,10 @@ def run(rank, world_size, args):
sp.load(bpe_model)
lexicon = Lexicon(params.lang_dir)
graph_compiler = CharCtcTrainingGraphCompiler(lexicon=lexicon, device=device,)
graph_compiler = CharCtcTrainingGraphCompiler(
lexicon=lexicon,
device=device,
)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
@ -986,7 +1014,7 @@ def run(rank, world_size, args):
if params.print_diagnostics:
opts = diagnostics.TensorDiagnosticOptions(
2 ** 22
2**22
) # allow 4 megabytes per sub-module
diagnostic = diagnostics.attach_diagnostics(model, opts)

View File

@ -210,7 +210,9 @@ class TAL_CSASRAsrDataModule:
)
def train_dataloaders(
self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None,
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
) -> DataLoader:
"""
Args:
@ -355,7 +357,8 @@ class TAL_CSASRAsrDataModule:
)
else:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms, return_cuts=self.args.return_cuts,
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
@ -392,7 +395,10 @@ class TAL_CSASRAsrDataModule:
)
logging.info("About to create test dataloader")
test_dl = DataLoader(
test, batch_size=None, sampler=sampler, num_workers=self.args.num_workers,
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
return test_dl