mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 10:32:17 +00:00
add dit
This commit is contained in:
parent
ec5cc5526e
commit
3ba6febe4f
@ -11,7 +11,8 @@ repos:
|
|||||||
rev: 5.0.4
|
rev: 5.0.4
|
||||||
hooks:
|
hooks:
|
||||||
- id: flake8
|
- id: flake8
|
||||||
args: ["--max-line-length=88", "--extend-ignore=E203,E266,E501,F401,E402,F403,F841,W503"]
|
args: ["--max-line-length=88", "--extend-ignore=E203,E266,E501,F401,E402,F403,F841,W503, F722, F821"]
|
||||||
|
#exclude:
|
||||||
|
|
||||||
# What are we ignoring here?
|
# What are we ignoring here?
|
||||||
# E203: whitespace before ':'
|
# E203: whitespace before ':'
|
||||||
|
210
egs/wenetspeech4tts/TTS/f5-tts/model/dit.py
Normal file
210
egs/wenetspeech4tts/TTS/f5-tts/model/dit.py
Normal file
@ -0,0 +1,210 @@
|
|||||||
|
"""
|
||||||
|
ein notation:
|
||||||
|
b - batch
|
||||||
|
n - sequence
|
||||||
|
nt - text sequence
|
||||||
|
nw - raw wave length
|
||||||
|
d - dimension
|
||||||
|
"""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from model.modules import (
|
||||||
|
AdaLayerNormZero_Final,
|
||||||
|
ConvNeXtV2Block,
|
||||||
|
ConvPositionEmbedding,
|
||||||
|
DiTBlock,
|
||||||
|
TimestepEmbedding,
|
||||||
|
get_pos_embed_indices,
|
||||||
|
precompute_freqs_cis,
|
||||||
|
)
|
||||||
|
from torch import nn
|
||||||
|
from x_transformers.x_transformers import RotaryEmbedding
|
||||||
|
|
||||||
|
# Text embedding
|
||||||
|
|
||||||
|
|
||||||
|
class TextEmbedding(nn.Module):
|
||||||
|
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
||||||
|
super().__init__()
|
||||||
|
self.text_embed = nn.Embedding(
|
||||||
|
text_num_embeds + 1, text_dim
|
||||||
|
) # use 0 as filler token
|
||||||
|
|
||||||
|
if conv_layers > 0:
|
||||||
|
self.extra_modeling = True
|
||||||
|
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
||||||
|
self.register_buffer(
|
||||||
|
"freqs_cis",
|
||||||
|
precompute_freqs_cis(text_dim, self.precompute_max_pos),
|
||||||
|
persistent=False,
|
||||||
|
)
|
||||||
|
self.text_blocks = nn.Sequential(
|
||||||
|
*[
|
||||||
|
ConvNeXtV2Block(text_dim, text_dim * conv_mult)
|
||||||
|
for _ in range(conv_layers)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.extra_modeling = False
|
||||||
|
|
||||||
|
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
|
||||||
|
text = (
|
||||||
|
text + 1
|
||||||
|
) # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
||||||
|
text = text[
|
||||||
|
:, :seq_len
|
||||||
|
] # curtail if character tokens are more than the mel spec tokens
|
||||||
|
batch, text_len = text.shape[0], text.shape[1]
|
||||||
|
text = F.pad(text, (0, seq_len - text_len), value=0)
|
||||||
|
|
||||||
|
if drop_text: # cfg for text
|
||||||
|
text = torch.zeros_like(text)
|
||||||
|
|
||||||
|
text = self.text_embed(text) # b n -> b n d
|
||||||
|
|
||||||
|
# possible extra modeling
|
||||||
|
if self.extra_modeling:
|
||||||
|
# sinus pos emb
|
||||||
|
batch_start = torch.zeros((batch,), dtype=torch.long)
|
||||||
|
pos_idx = get_pos_embed_indices(
|
||||||
|
batch_start, seq_len, max_pos=self.precompute_max_pos
|
||||||
|
)
|
||||||
|
text_pos_embed = self.freqs_cis[pos_idx]
|
||||||
|
text = text + text_pos_embed
|
||||||
|
|
||||||
|
# convnextv2 blocks
|
||||||
|
text = self.text_blocks(text)
|
||||||
|
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
# noised input audio and context mixing embedding
|
||||||
|
|
||||||
|
|
||||||
|
class InputEmbedding(nn.Module):
|
||||||
|
def __init__(self, mel_dim, text_dim, out_dim):
|
||||||
|
super().__init__()
|
||||||
|
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
|
||||||
|
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: float["b n d"],
|
||||||
|
cond: float["b n d"],
|
||||||
|
text_embed: float["b n d"],
|
||||||
|
drop_audio_cond=False,
|
||||||
|
): # noqa: F722
|
||||||
|
if drop_audio_cond: # cfg for cond audio
|
||||||
|
cond = torch.zeros_like(cond)
|
||||||
|
|
||||||
|
x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
|
||||||
|
x = self.conv_pos_embed(x) + x
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
# Transformer backbone using DiT blocks
|
||||||
|
|
||||||
|
|
||||||
|
class DiT(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
dim,
|
||||||
|
depth=8,
|
||||||
|
heads=8,
|
||||||
|
dim_head=64,
|
||||||
|
dropout=0.1,
|
||||||
|
ff_mult=4,
|
||||||
|
mel_dim=100,
|
||||||
|
text_num_embeds=256,
|
||||||
|
text_dim=None,
|
||||||
|
conv_layers=0,
|
||||||
|
long_skip_connection=False,
|
||||||
|
checkpoint_activations=False,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.time_embed = TimestepEmbedding(dim)
|
||||||
|
if text_dim is None:
|
||||||
|
text_dim = mel_dim
|
||||||
|
self.text_embed = TextEmbedding(
|
||||||
|
text_num_embeds, text_dim, conv_layers=conv_layers
|
||||||
|
)
|
||||||
|
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
||||||
|
|
||||||
|
self.rotary_embed = RotaryEmbedding(dim_head)
|
||||||
|
|
||||||
|
self.dim = dim
|
||||||
|
self.depth = depth
|
||||||
|
|
||||||
|
self.transformer_blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
DiTBlock(
|
||||||
|
dim=dim,
|
||||||
|
heads=heads,
|
||||||
|
dim_head=dim_head,
|
||||||
|
ff_mult=ff_mult,
|
||||||
|
dropout=dropout,
|
||||||
|
)
|
||||||
|
for _ in range(depth)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.long_skip_connection = (
|
||||||
|
nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
|
||||||
|
)
|
||||||
|
|
||||||
|
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
||||||
|
self.proj_out = nn.Linear(dim, mel_dim)
|
||||||
|
|
||||||
|
self.checkpoint_activations = checkpoint_activations
|
||||||
|
|
||||||
|
def ckpt_wrapper(self, module):
|
||||||
|
# https://github.com/chuanyangjin/fast-DiT/blob/main/models.py
|
||||||
|
def ckpt_forward(*inputs):
|
||||||
|
outputs = module(*inputs)
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
return ckpt_forward
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: float["b n d"], # nosied input audio # noqa: F722
|
||||||
|
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||||
|
text: int["b nt"], # text # noqa: F722
|
||||||
|
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||||
|
drop_audio_cond, # cfg for cond audio
|
||||||
|
drop_text, # cfg for text
|
||||||
|
mask: bool["b n"] | None = None, # noqa: F722
|
||||||
|
):
|
||||||
|
batch, seq_len = x.shape[0], x.shape[1]
|
||||||
|
if time.ndim == 0:
|
||||||
|
time = time.repeat(batch)
|
||||||
|
|
||||||
|
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
||||||
|
t = self.time_embed(time)
|
||||||
|
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
||||||
|
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
||||||
|
|
||||||
|
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
||||||
|
|
||||||
|
if self.long_skip_connection is not None:
|
||||||
|
residual = x
|
||||||
|
|
||||||
|
for block in self.transformer_blocks:
|
||||||
|
if self.checkpoint_activations:
|
||||||
|
x = torch.utils.checkpoint.checkpoint(
|
||||||
|
self.ckpt_wrapper(block), x, t, mask, rope
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
x = block(x, t, mask=mask, rope=rope)
|
||||||
|
|
||||||
|
if self.long_skip_connection is not None:
|
||||||
|
x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
|
||||||
|
|
||||||
|
x = self.norm_out(x, t)
|
||||||
|
output = self.proj_out(x)
|
||||||
|
|
||||||
|
return output
|
206
egs/wenetspeech4tts/TTS/f5-tts/model/utils.py
Normal file
206
egs/wenetspeech4tts/TTS/f5-tts/model/utils.py
Normal file
@ -0,0 +1,206 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
from collections import defaultdict
|
||||||
|
from importlib.resources import files
|
||||||
|
|
||||||
|
import jieba
|
||||||
|
import torch
|
||||||
|
from pypinyin import Style, lazy_pinyin
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
# seed everything
|
||||||
|
|
||||||
|
|
||||||
|
def seed_everything(seed=0):
|
||||||
|
random.seed(seed)
|
||||||
|
os.environ["PYTHONHASHSEED"] = str(seed)
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
torch.cuda.manual_seed(seed)
|
||||||
|
torch.cuda.manual_seed_all(seed)
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
|
||||||
|
|
||||||
|
# helpers
|
||||||
|
|
||||||
|
|
||||||
|
def exists(v):
|
||||||
|
return v is not None
|
||||||
|
|
||||||
|
|
||||||
|
def default(v, d):
|
||||||
|
return v if exists(v) else d
|
||||||
|
|
||||||
|
|
||||||
|
# tensor helpers
|
||||||
|
|
||||||
|
|
||||||
|
def lens_to_mask(
|
||||||
|
t: int["b"], length: int | None = None
|
||||||
|
) -> bool["b n"]: # noqa: F722 F821
|
||||||
|
if not exists(length):
|
||||||
|
length = t.amax()
|
||||||
|
|
||||||
|
seq = torch.arange(length, device=t.device)
|
||||||
|
return seq[None, :] < t[:, None]
|
||||||
|
|
||||||
|
|
||||||
|
def mask_from_start_end_indices(
|
||||||
|
seq_len: int["b"], start: int["b"], end: int["b"]
|
||||||
|
): # noqa: F722 F821
|
||||||
|
max_seq_len = seq_len.max().item()
|
||||||
|
seq = torch.arange(max_seq_len, device=start.device).long()
|
||||||
|
start_mask = seq[None, :] >= start[:, None]
|
||||||
|
end_mask = seq[None, :] < end[:, None]
|
||||||
|
return start_mask & end_mask
|
||||||
|
|
||||||
|
|
||||||
|
def mask_from_frac_lengths(
|
||||||
|
seq_len: int["b"], frac_lengths: float["b"]
|
||||||
|
): # noqa: F722 F821
|
||||||
|
lengths = (frac_lengths * seq_len).long()
|
||||||
|
max_start = seq_len - lengths
|
||||||
|
|
||||||
|
rand = torch.rand_like(frac_lengths)
|
||||||
|
start = (max_start * rand).long().clamp(min=0)
|
||||||
|
end = start + lengths
|
||||||
|
|
||||||
|
return mask_from_start_end_indices(seq_len, start, end)
|
||||||
|
|
||||||
|
|
||||||
|
def maybe_masked_mean(
|
||||||
|
t: float["b n d"], mask: bool["b n"] = None
|
||||||
|
) -> float["b d"]: # noqa: F722
|
||||||
|
if not exists(mask):
|
||||||
|
return t.mean(dim=1)
|
||||||
|
|
||||||
|
t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device))
|
||||||
|
num = t.sum(dim=1)
|
||||||
|
den = mask.float().sum(dim=1)
|
||||||
|
|
||||||
|
return num / den.clamp(min=1.0)
|
||||||
|
|
||||||
|
|
||||||
|
# simple utf-8 tokenizer, since paper went character based
|
||||||
|
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
|
||||||
|
list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style
|
||||||
|
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
# char tokenizer, based on custom dataset's extracted .txt file
|
||||||
|
def list_str_to_idx(
|
||||||
|
text: list[str] | list[list[str]],
|
||||||
|
vocab_char_map: dict[str, int], # {char: idx}
|
||||||
|
padding_value=-1,
|
||||||
|
) -> int["b nt"]: # noqa: F722
|
||||||
|
list_idx_tensors = [
|
||||||
|
torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text
|
||||||
|
] # pinyin or char style
|
||||||
|
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
# Get tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
||||||
|
"""
|
||||||
|
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
|
||||||
|
- "char" for char-wise tokenizer, need .txt vocab_file
|
||||||
|
- "byte" for utf-8 tokenizer
|
||||||
|
- "custom" if you're directly passing in a path to the vocab.txt you want to use
|
||||||
|
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
|
||||||
|
- if use "char", derived from unfiltered character & symbol counts of custom dataset
|
||||||
|
- if use "byte", set to 256 (unicode byte range)
|
||||||
|
"""
|
||||||
|
if tokenizer in ["pinyin", "char"]:
|
||||||
|
tokenizer_path = os.path.join(
|
||||||
|
files("f5_tts").joinpath("../../data"),
|
||||||
|
f"{dataset_name}_{tokenizer}/vocab.txt",
|
||||||
|
)
|
||||||
|
with open(tokenizer_path, "r", encoding="utf-8") as f:
|
||||||
|
vocab_char_map = {}
|
||||||
|
for i, char in enumerate(f):
|
||||||
|
vocab_char_map[char[:-1]] = i
|
||||||
|
vocab_size = len(vocab_char_map)
|
||||||
|
assert (
|
||||||
|
vocab_char_map[" "] == 0
|
||||||
|
), "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"
|
||||||
|
|
||||||
|
elif tokenizer == "byte":
|
||||||
|
vocab_char_map = None
|
||||||
|
vocab_size = 256
|
||||||
|
|
||||||
|
elif tokenizer == "custom":
|
||||||
|
with open(dataset_name, "r", encoding="utf-8") as f:
|
||||||
|
vocab_char_map = {}
|
||||||
|
for i, char in enumerate(f):
|
||||||
|
vocab_char_map[char[:-1]] = i
|
||||||
|
vocab_size = len(vocab_char_map)
|
||||||
|
|
||||||
|
return vocab_char_map, vocab_size
|
||||||
|
|
||||||
|
|
||||||
|
# convert char to pinyin
|
||||||
|
|
||||||
|
jieba.initialize()
|
||||||
|
print("Word segmentation module jieba initialized.\n")
|
||||||
|
|
||||||
|
|
||||||
|
def convert_char_to_pinyin(text_list, polyphone=True):
|
||||||
|
final_text_list = []
|
||||||
|
custom_trans = str.maketrans(
|
||||||
|
{";": ",", "“": '"', "”": '"', "‘": "'", "’": "'"}
|
||||||
|
) # add custom trans here, to address oov
|
||||||
|
|
||||||
|
def is_chinese(c):
|
||||||
|
return "\u3100" <= c <= "\u9fff" # common chinese characters
|
||||||
|
|
||||||
|
for text in text_list:
|
||||||
|
char_list = []
|
||||||
|
text = text.translate(custom_trans)
|
||||||
|
for seg in jieba.cut(text):
|
||||||
|
seg_byte_len = len(bytes(seg, "UTF-8"))
|
||||||
|
if seg_byte_len == len(seg): # if pure alphabets and symbols
|
||||||
|
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
|
||||||
|
char_list.append(" ")
|
||||||
|
char_list.extend(seg)
|
||||||
|
elif polyphone and seg_byte_len == 3 * len(
|
||||||
|
seg
|
||||||
|
): # if pure east asian characters
|
||||||
|
seg_ = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
|
||||||
|
for i, c in enumerate(seg):
|
||||||
|
if is_chinese(c):
|
||||||
|
char_list.append(" ")
|
||||||
|
char_list.append(seg_[i])
|
||||||
|
else: # if mixed characters, alphabets and symbols
|
||||||
|
for c in seg:
|
||||||
|
if ord(c) < 256:
|
||||||
|
char_list.extend(c)
|
||||||
|
elif is_chinese(c):
|
||||||
|
char_list.append(" ")
|
||||||
|
char_list.extend(
|
||||||
|
lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
char_list.append(c)
|
||||||
|
final_text_list.append(char_list)
|
||||||
|
|
||||||
|
return final_text_list
|
||||||
|
|
||||||
|
|
||||||
|
# filter func for dirty data with many repetitions
|
||||||
|
|
||||||
|
|
||||||
|
def repetition_found(text, length=2, tolerance=10):
|
||||||
|
pattern_count = defaultdict(int)
|
||||||
|
for i in range(len(text) - length + 1):
|
||||||
|
pattern = text[i : i + length]
|
||||||
|
pattern_count[pattern] += 1
|
||||||
|
for pattern, count in pattern_count.items():
|
||||||
|
if count > tolerance:
|
||||||
|
return True
|
||||||
|
return False
|
Loading…
x
Reference in New Issue
Block a user