From 3ba6febe4f134085b874e41c5691731c5ce920ee Mon Sep 17 00:00:00 2001 From: yuekaiz Date: Mon, 23 Dec 2024 17:38:12 +0800 Subject: [PATCH] add dit --- .pre-commit-config.yaml | 3 +- egs/wenetspeech4tts/TTS/f5-tts/model/dit.py | 210 ++++++++++++++++++ egs/wenetspeech4tts/TTS/f5-tts/model/utils.py | 206 +++++++++++++++++ 3 files changed, 418 insertions(+), 1 deletion(-) create mode 100644 egs/wenetspeech4tts/TTS/f5-tts/model/dit.py create mode 100644 egs/wenetspeech4tts/TTS/f5-tts/model/utils.py diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 70068f9cf..07dd89cda 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -11,7 +11,8 @@ repos: rev: 5.0.4 hooks: - id: flake8 - args: ["--max-line-length=88", "--extend-ignore=E203,E266,E501,F401,E402,F403,F841,W503"] + args: ["--max-line-length=88", "--extend-ignore=E203,E266,E501,F401,E402,F403,F841,W503, F722, F821"] + #exclude: # What are we ignoring here? # E203: whitespace before ':' diff --git a/egs/wenetspeech4tts/TTS/f5-tts/model/dit.py b/egs/wenetspeech4tts/TTS/f5-tts/model/dit.py new file mode 100644 index 000000000..9059757fe --- /dev/null +++ b/egs/wenetspeech4tts/TTS/f5-tts/model/dit.py @@ -0,0 +1,210 @@ +""" +ein notation: +b - batch +n - sequence +nt - text sequence +nw - raw wave length +d - dimension +""" + +from __future__ import annotations + +import torch +import torch.nn.functional as F +from model.modules import ( + AdaLayerNormZero_Final, + ConvNeXtV2Block, + ConvPositionEmbedding, + DiTBlock, + TimestepEmbedding, + get_pos_embed_indices, + precompute_freqs_cis, +) +from torch import nn +from x_transformers.x_transformers import RotaryEmbedding + +# Text embedding + + +class TextEmbedding(nn.Module): + def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2): + super().__init__() + self.text_embed = nn.Embedding( + text_num_embeds + 1, text_dim + ) # use 0 as filler token + + if conv_layers > 0: + self.extra_modeling = True + self.precompute_max_pos = 4096 # ~44s of 24khz audio + self.register_buffer( + "freqs_cis", + precompute_freqs_cis(text_dim, self.precompute_max_pos), + persistent=False, + ) + self.text_blocks = nn.Sequential( + *[ + ConvNeXtV2Block(text_dim, text_dim * conv_mult) + for _ in range(conv_layers) + ] + ) + else: + self.extra_modeling = False + + def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722 + text = ( + text + 1 + ) # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx() + text = text[ + :, :seq_len + ] # curtail if character tokens are more than the mel spec tokens + batch, text_len = text.shape[0], text.shape[1] + text = F.pad(text, (0, seq_len - text_len), value=0) + + if drop_text: # cfg for text + text = torch.zeros_like(text) + + text = self.text_embed(text) # b n -> b n d + + # possible extra modeling + if self.extra_modeling: + # sinus pos emb + batch_start = torch.zeros((batch,), dtype=torch.long) + pos_idx = get_pos_embed_indices( + batch_start, seq_len, max_pos=self.precompute_max_pos + ) + text_pos_embed = self.freqs_cis[pos_idx] + text = text + text_pos_embed + + # convnextv2 blocks + text = self.text_blocks(text) + + return text + + +# noised input audio and context mixing embedding + + +class InputEmbedding(nn.Module): + def __init__(self, mel_dim, text_dim, out_dim): + super().__init__() + self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim) + self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim) + + def forward( + self, + x: float["b n d"], + cond: float["b n d"], + text_embed: float["b n d"], + drop_audio_cond=False, + ): # noqa: F722 + if drop_audio_cond: # cfg for cond audio + cond = torch.zeros_like(cond) + + x = self.proj(torch.cat((x, cond, text_embed), dim=-1)) + x = self.conv_pos_embed(x) + x + return x + + +# Transformer backbone using DiT blocks + + +class DiT(nn.Module): + def __init__( + self, + *, + dim, + depth=8, + heads=8, + dim_head=64, + dropout=0.1, + ff_mult=4, + mel_dim=100, + text_num_embeds=256, + text_dim=None, + conv_layers=0, + long_skip_connection=False, + checkpoint_activations=False, + ): + super().__init__() + + self.time_embed = TimestepEmbedding(dim) + if text_dim is None: + text_dim = mel_dim + self.text_embed = TextEmbedding( + text_num_embeds, text_dim, conv_layers=conv_layers + ) + self.input_embed = InputEmbedding(mel_dim, text_dim, dim) + + self.rotary_embed = RotaryEmbedding(dim_head) + + self.dim = dim + self.depth = depth + + self.transformer_blocks = nn.ModuleList( + [ + DiTBlock( + dim=dim, + heads=heads, + dim_head=dim_head, + ff_mult=ff_mult, + dropout=dropout, + ) + for _ in range(depth) + ] + ) + self.long_skip_connection = ( + nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None + ) + + self.norm_out = AdaLayerNormZero_Final(dim) # final modulation + self.proj_out = nn.Linear(dim, mel_dim) + + self.checkpoint_activations = checkpoint_activations + + def ckpt_wrapper(self, module): + # https://github.com/chuanyangjin/fast-DiT/blob/main/models.py + def ckpt_forward(*inputs): + outputs = module(*inputs) + return outputs + + return ckpt_forward + + def forward( + self, + x: float["b n d"], # nosied input audio # noqa: F722 + cond: float["b n d"], # masked cond audio # noqa: F722 + text: int["b nt"], # text # noqa: F722 + time: float["b"] | float[""], # time step # noqa: F821 F722 + drop_audio_cond, # cfg for cond audio + drop_text, # cfg for text + mask: bool["b n"] | None = None, # noqa: F722 + ): + batch, seq_len = x.shape[0], x.shape[1] + if time.ndim == 0: + time = time.repeat(batch) + + # t: conditioning time, c: context (text + masked cond audio), x: noised input audio + t = self.time_embed(time) + text_embed = self.text_embed(text, seq_len, drop_text=drop_text) + x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond) + + rope = self.rotary_embed.forward_from_seq_len(seq_len) + + if self.long_skip_connection is not None: + residual = x + + for block in self.transformer_blocks: + if self.checkpoint_activations: + x = torch.utils.checkpoint.checkpoint( + self.ckpt_wrapper(block), x, t, mask, rope + ) + else: + x = block(x, t, mask=mask, rope=rope) + + if self.long_skip_connection is not None: + x = self.long_skip_connection(torch.cat((x, residual), dim=-1)) + + x = self.norm_out(x, t) + output = self.proj_out(x) + + return output diff --git a/egs/wenetspeech4tts/TTS/f5-tts/model/utils.py b/egs/wenetspeech4tts/TTS/f5-tts/model/utils.py new file mode 100644 index 000000000..09a46c3e5 --- /dev/null +++ b/egs/wenetspeech4tts/TTS/f5-tts/model/utils.py @@ -0,0 +1,206 @@ +from __future__ import annotations + +import os +import random +from collections import defaultdict +from importlib.resources import files + +import jieba +import torch +from pypinyin import Style, lazy_pinyin +from torch.nn.utils.rnn import pad_sequence + +# seed everything + + +def seed_everything(seed=0): + random.seed(seed) + os.environ["PYTHONHASHSEED"] = str(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + + +# helpers + + +def exists(v): + return v is not None + + +def default(v, d): + return v if exists(v) else d + + +# tensor helpers + + +def lens_to_mask( + t: int["b"], length: int | None = None +) -> bool["b n"]: # noqa: F722 F821 + if not exists(length): + length = t.amax() + + seq = torch.arange(length, device=t.device) + return seq[None, :] < t[:, None] + + +def mask_from_start_end_indices( + seq_len: int["b"], start: int["b"], end: int["b"] +): # noqa: F722 F821 + max_seq_len = seq_len.max().item() + seq = torch.arange(max_seq_len, device=start.device).long() + start_mask = seq[None, :] >= start[:, None] + end_mask = seq[None, :] < end[:, None] + return start_mask & end_mask + + +def mask_from_frac_lengths( + seq_len: int["b"], frac_lengths: float["b"] +): # noqa: F722 F821 + lengths = (frac_lengths * seq_len).long() + max_start = seq_len - lengths + + rand = torch.rand_like(frac_lengths) + start = (max_start * rand).long().clamp(min=0) + end = start + lengths + + return mask_from_start_end_indices(seq_len, start, end) + + +def maybe_masked_mean( + t: float["b n d"], mask: bool["b n"] = None +) -> float["b d"]: # noqa: F722 + if not exists(mask): + return t.mean(dim=1) + + t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device)) + num = t.sum(dim=1) + den = mask.float().sum(dim=1) + + return num / den.clamp(min=1.0) + + +# simple utf-8 tokenizer, since paper went character based +def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722 + list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style + text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True) + return text + + +# char tokenizer, based on custom dataset's extracted .txt file +def list_str_to_idx( + text: list[str] | list[list[str]], + vocab_char_map: dict[str, int], # {char: idx} + padding_value=-1, +) -> int["b nt"]: # noqa: F722 + list_idx_tensors = [ + torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text + ] # pinyin or char style + text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True) + return text + + +# Get tokenizer + + +def get_tokenizer(dataset_name, tokenizer: str = "pinyin"): + """ + tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file + - "char" for char-wise tokenizer, need .txt vocab_file + - "byte" for utf-8 tokenizer + - "custom" if you're directly passing in a path to the vocab.txt you want to use + vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols + - if use "char", derived from unfiltered character & symbol counts of custom dataset + - if use "byte", set to 256 (unicode byte range) + """ + if tokenizer in ["pinyin", "char"]: + tokenizer_path = os.path.join( + files("f5_tts").joinpath("../../data"), + f"{dataset_name}_{tokenizer}/vocab.txt", + ) + with open(tokenizer_path, "r", encoding="utf-8") as f: + vocab_char_map = {} + for i, char in enumerate(f): + vocab_char_map[char[:-1]] = i + vocab_size = len(vocab_char_map) + assert ( + vocab_char_map[" "] == 0 + ), "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char" + + elif tokenizer == "byte": + vocab_char_map = None + vocab_size = 256 + + elif tokenizer == "custom": + with open(dataset_name, "r", encoding="utf-8") as f: + vocab_char_map = {} + for i, char in enumerate(f): + vocab_char_map[char[:-1]] = i + vocab_size = len(vocab_char_map) + + return vocab_char_map, vocab_size + + +# convert char to pinyin + +jieba.initialize() +print("Word segmentation module jieba initialized.\n") + + +def convert_char_to_pinyin(text_list, polyphone=True): + final_text_list = [] + custom_trans = str.maketrans( + {";": ",", "“": '"', "”": '"', "‘": "'", "’": "'"} + ) # add custom trans here, to address oov + + def is_chinese(c): + return "\u3100" <= c <= "\u9fff" # common chinese characters + + for text in text_list: + char_list = [] + text = text.translate(custom_trans) + for seg in jieba.cut(text): + seg_byte_len = len(bytes(seg, "UTF-8")) + if seg_byte_len == len(seg): # if pure alphabets and symbols + if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"": + char_list.append(" ") + char_list.extend(seg) + elif polyphone and seg_byte_len == 3 * len( + seg + ): # if pure east asian characters + seg_ = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True) + for i, c in enumerate(seg): + if is_chinese(c): + char_list.append(" ") + char_list.append(seg_[i]) + else: # if mixed characters, alphabets and symbols + for c in seg: + if ord(c) < 256: + char_list.extend(c) + elif is_chinese(c): + char_list.append(" ") + char_list.extend( + lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True) + ) + else: + char_list.append(c) + final_text_list.append(char_list) + + return final_text_list + + +# filter func for dirty data with many repetitions + + +def repetition_found(text, length=2, tolerance=10): + pattern_count = defaultdict(int) + for i in range(len(text) - length + 1): + pattern = text[i : i + length] + pattern_count[pattern] += 1 + for pattern, count in pattern_count.items(): + if count > tolerance: + return True + return False