Add ctc decoding to pretrained.py on conformer_ctc (#75)

* Add ctc-decoding to pretrained.py

* update pretrained.py and conformer_ctc.rst

* update ctc-decoding for pretrained.py on conformer_ctc

* Update pretrained.py

* fix the style issue

* Update conformer_ctc.rst

* Update the running logs
This commit is contained in:
Mingshuang Luo 2021-10-13 12:20:16 +08:00 committed by GitHub
parent 391432b356
commit 39bc8cae94
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 211 additions and 110 deletions

View File

@ -429,6 +429,7 @@ After downloading, you will have the following files:
|-- README.md
|-- data
| |-- lang_bpe
| | |-- Linv.pt
| | |-- HLG.pt
| | |-- bpe.model
| | |-- tokens.txt
@ -446,6 +447,9 @@ After downloading, you will have the following files:
6 directories, 11 files
**File descriptions**:
- ``data/lang_bpe/Linv.pt``
It is the lexicon file, with word IDs as labels and token IDs as aux_labels.
- ``data/lang_bpe/HLG.pt``
@ -527,12 +531,58 @@ Usage
displays the help information.
It supports three decoding methods:
It supports 4 decoding methods:
- CTC decoding
- HLG decoding
- HLG + n-gram LM rescoring
- HLG + n-gram LM rescoring + attention decoder rescoring
CTC decoding
^^^^^^^^^^^^
CTC decoding uses the best path of the decoding lattice as the decoding result
without any LM or lexicon.
The command to run CTC decoding is:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
--lang-dir ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe \
--method ctc-decoding \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
The output is given below:
.. code-block::
2021-10-13 11:21:50,896 INFO [pretrained.py:236] device: cuda:0
2021-10-13 11:21:50,896 INFO [pretrained.py:238] Creating model
2021-10-13 11:21:56,669 INFO [pretrained.py:255] Constructing Fbank computer
2021-10-13 11:21:56,670 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
2021-10-13 11:21:56,683 INFO [pretrained.py:271] Decoding started
2021-10-13 11:21:57,341 INFO [pretrained.py:290] Building CTC topology
2021-10-13 11:21:57,625 INFO [lexicon.py:113] Loading pre-compiled tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/Linv.pt
2021-10-13 11:21:57,679 INFO [pretrained.py:299] Loading BPE model
2021-10-13 11:22:00,076 INFO [pretrained.py:314] Use CTC decoding
2021-10-13 11:22:00,087 INFO [pretrained.py:400]
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
2021-10-13 11:22:00,087 INFO [pretrained.py:402] Decoding Done
HLG decoding
^^^^^^^^^^^^
@ -545,8 +595,7 @@ The command to run HLG decoding is:
$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
--lang-dir ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
@ -555,14 +604,14 @@ The output is given below:
.. code-block::
2021-08-20 11:03:05,712 INFO [pretrained.py:217] device: cuda:0
2021-08-20 11:03:05,712 INFO [pretrained.py:219] Creating model
2021-08-20 11:03:11,345 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
2021-08-20 11:03:18,442 INFO [pretrained.py:255] Constructing Fbank computer
2021-08-20 11:03:18,444 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
2021-08-20 11:03:18,507 INFO [pretrained.py:271] Decoding started
2021-08-20 11:03:18,795 INFO [pretrained.py:300] Use HLG decoding
2021-08-20 11:03:19,149 INFO [pretrained.py:339]
2021-10-13 11:25:19,458 INFO [pretrained.py:236] device: cuda:0
2021-10-13 11:25:19,458 INFO [pretrained.py:238] Creating model
2021-10-13 11:25:25,342 INFO [pretrained.py:255] Constructing Fbank computer
2021-10-13 11:25:25,343 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
2021-10-13 11:25:25,356 INFO [pretrained.py:271] Decoding started
2021-10-13 11:25:26,026 INFO [pretrained.py:327] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
2021-10-13 11:25:33,735 INFO [pretrained.py:359] Use HLG decoding
2021-10-13 11:25:34,013 INFO [pretrained.py:400]
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
@ -573,7 +622,7 @@ The output is given below:
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
2021-08-20 11:03:19,149 INFO [pretrained.py:341] Decoding Done
2021-10-13 11:25:34,014 INFO [pretrained.py:402] Decoding Done
HLG decoding + LM rescoring
^^^^^^^^^^^^^^^^^^^^^^^^^^^
@ -588,8 +637,7 @@ The command to run HLG decoding + LM rescoring is:
$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
--lang-dir ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe \
--method whole-lattice-rescoring \
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
--ngram-lm-scale 0.8 \
@ -601,15 +649,15 @@ Its output is:
.. code-block::
2021-08-20 11:12:17,565 INFO [pretrained.py:217] device: cuda:0
2021-08-20 11:12:17,565 INFO [pretrained.py:219] Creating model
2021-08-20 11:12:23,728 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
2021-08-20 11:12:30,035 INFO [pretrained.py:246] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
2021-08-20 11:13:10,779 INFO [pretrained.py:255] Constructing Fbank computer
2021-08-20 11:13:10,787 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
2021-08-20 11:13:10,798 INFO [pretrained.py:271] Decoding started
2021-08-20 11:13:11,085 INFO [pretrained.py:305] Use HLG decoding + LM rescoring
2021-08-20 11:13:11,736 INFO [pretrained.py:339]
2021-10-13 11:28:19,129 INFO [pretrained.py:236] device: cuda:0
2021-10-13 11:28:19,129 INFO [pretrained.py:238] Creating model
2021-10-13 11:28:23,531 INFO [pretrained.py:255] Constructing Fbank computer
2021-10-13 11:28:23,532 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
2021-10-13 11:28:23,544 INFO [pretrained.py:271] Decoding started
2021-10-13 11:28:24,141 INFO [pretrained.py:327] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
2021-10-13 11:28:30,752 INFO [pretrained.py:338] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
2021-10-13 11:28:48,308 INFO [pretrained.py:364] Use HLG decoding + LM rescoring
2021-10-13 11:28:48,815 INFO [pretrained.py:400]
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
@ -620,7 +668,7 @@ Its output is:
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
2021-08-20 11:13:11,737 INFO [pretrained.py:341] Decoding Done
2021-10-13 11:28:48,815 INFO [pretrained.py:402] Decoding Done
HLG decoding + LM rescoring + attention decoder rescoring
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@ -636,8 +684,7 @@ The command to run HLG decoding + LM rescoring + attention decoder rescoring is:
$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
--lang-dir ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe \
--method attention-decoder \
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
--ngram-lm-scale 1.3 \
@ -654,15 +701,15 @@ The output is below:
.. code-block::
2021-08-20 11:19:11,397 INFO [pretrained.py:217] device: cuda:0
2021-08-20 11:19:11,397 INFO [pretrained.py:219] Creating model
2021-08-20 11:19:17,354 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
2021-08-20 11:19:24,615 INFO [pretrained.py:246] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
2021-08-20 11:20:04,576 INFO [pretrained.py:255] Constructing Fbank computer
2021-08-20 11:20:04,584 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
2021-08-20 11:20:04,595 INFO [pretrained.py:271] Decoding started
2021-08-20 11:20:04,854 INFO [pretrained.py:313] Use HLG + LM rescoring + attention decoder rescoring
2021-08-20 11:20:05,805 INFO [pretrained.py:339]
2021-10-13 11:29:50,106 INFO [pretrained.py:236] device: cuda:0
2021-10-13 11:29:50,106 INFO [pretrained.py:238] Creating model
2021-10-13 11:29:56,063 INFO [pretrained.py:255] Constructing Fbank computer
2021-10-13 11:29:56,063 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
2021-10-13 11:29:56,077 INFO [pretrained.py:271] Decoding started
2021-10-13 11:29:56,770 INFO [pretrained.py:327] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
2021-10-13 11:30:04,023 INFO [pretrained.py:338] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
2021-10-13 11:30:18,163 INFO [pretrained.py:372] Use HLG + LM rescoring + attention decoder rescoring
2021-10-13 11:30:19,367 INFO [pretrained.py:400]
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
@ -673,7 +720,7 @@ The output is below:
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
2021-08-20 11:20:05,805 INFO [pretrained.py:341] Decoding Done
2021-10-13 11:30:19,367 INFO [pretrained.py:402] Decoding Done
Colab notebook
--------------

View File

@ -1,5 +1,6 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@ -19,6 +20,7 @@
import argparse
import logging
import math
import sentencepiece as spm
from typing import List
import k2
@ -28,6 +30,7 @@ import torchaudio
from conformer import Conformer
from torch.nn.utils.rnn import pad_sequence
from icefall.lexicon import Lexicon
from icefall.decode import (
get_lattice,
one_best_decoding,
@ -52,14 +55,10 @@ def get_parser():
)
parser.add_argument(
"--words-file",
"--lang-dir",
type=str,
required=True,
help="Path to words.txt",
)
parser.add_argument(
"--HLG", type=str, required=True, help="Path to HLG.pt."
help="Path to lang bpe dir.",
)
parser.add_argument(
@ -68,6 +67,10 @@ def get_parser():
default="1best",
help="""Decoding method.
Possible values are:
(0) ctc-decoding - Use CTC decoding. It uses a sentence
piece model, i.e., lang_dir/bpe.model, to convert
word pieces to words. It needs neither a lexicon
nor an n-gram LM.
(1) 1best - Use the best path as decoding output. Only
the transformer encoder output is used for decoding.
We call it HLG decoding.
@ -249,23 +252,6 @@ def main():
model.to(device)
model.eval()
logging.info(f"Loading HLG from {params.HLG}")
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
HLG = HLG.to(device)
if not hasattr(HLG, "lm_scores"):
# For whole-lattice-rescoring and attention-decoder
HLG.lm_scores = HLG.scores.clone()
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
logging.info(f"Loading G from {params.G}")
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
# Add epsilon self-loops to G as we will compose
# it with the whole lattice later
G = G.to(device)
G = k2.add_epsilon_self_loops(G)
G = k2.arc_sort(G)
G.lm_scores = G.scores.clone()
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
@ -299,60 +285,128 @@ def main():
dtype=torch.int32,
)
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
subsampling_factor=params.subsampling_factor,
)
try:
if params.method == "ctc-decoding":
logging.info("Building CTC topology")
lexicon = Lexicon(params.lang_dir)
max_token_id = max(lexicon.tokens)
H = k2.ctc_topo(
max_token=max_token_id,
modified=False,
device=device,
)
if params.method == "1best":
logging.info("Use HLG decoding")
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
elif params.method == "whole-lattice-rescoring":
logging.info("Use HLG decoding + LM rescoring")
best_path_dict = rescore_with_whole_lattice(
lattice=lattice,
G_with_epsilon_loops=G,
lm_scale_list=[params.ngram_lm_scale],
)
best_path = next(iter(best_path_dict.values()))
elif params.method == "attention-decoder":
logging.info("Use HLG + LM rescoring + attention decoder rescoring")
rescored_lattice = rescore_with_whole_lattice(
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
)
best_path_dict = rescore_with_attention_decoder(
lattice=rescored_lattice,
num_paths=params.num_paths,
model=model,
memory=memory,
memory_key_padding_mask=memory_key_padding_mask,
sos_id=params.sos_id,
eos_id=params.eos_id,
nbest_scale=params.nbest_scale,
ngram_lm_scale=params.ngram_lm_scale,
attention_scale=params.attention_decoder_scale,
)
best_path = next(iter(best_path_dict.values()))
logging.info("Loading BPE model")
bpe_model = spm.SentencePieceProcessor()
bpe_model.load(params.lang_dir + "/bpe.model")
hyps = get_texts(best_path)
word_sym_table = k2.SymbolTable.from_file(params.words_file)
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=H,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
subsampling_factor=params.subsampling_factor,
)
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Use CTC decoding")
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
token_ids = get_texts(best_path)
hyps = bpe_model.decode(token_ids)
hyps = [s.split() for s in hyps]
logging.info("Decoding Done")
if params.method in [
"1best",
"whole-lattice-rescoring",
"attention-decoder",
]:
logging.info(f"Loading HLG from {params.lang_dir}/HLG.pt")
HLG = k2.Fsa.from_dict(
torch.load(params.lang_dir + "/HLG.pt", map_location="cpu")
)
HLG = HLG.to(device)
if not hasattr(HLG, "lm_scores"):
# For whole-lattice-rescoring and attention-decoder
HLG.lm_scores = HLG.scores.clone()
if params.method in [
"whole-lattice-rescoring",
"attention-decoder",
]:
logging.info(f"Loading G from {params.G}")
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
# Add epsilon self-loops to G as we will compose
# it with the whole lattice later
G = G.to(device)
G = k2.add_epsilon_self_loops(G)
G = k2.arc_sort(G)
G.lm_scores = G.scores.clone()
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
subsampling_factor=params.subsampling_factor,
)
if params.method == "1best":
logging.info("Use HLG decoding")
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
elif params.method == "whole-lattice-rescoring":
logging.info("Use HLG decoding + LM rescoring")
best_path_dict = rescore_with_whole_lattice(
lattice=lattice,
G_with_epsilon_loops=G,
lm_scale_list=[params.ngram_lm_scale],
)
best_path = next(iter(best_path_dict.values()))
elif params.method == "attention-decoder":
logging.info(
"Use HLG + LM rescoring + attention decoder rescoring"
)
rescored_lattice = rescore_with_whole_lattice(
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
)
best_path_dict = rescore_with_attention_decoder(
lattice=rescored_lattice,
num_paths=params.num_paths,
model=model,
memory=memory,
memory_key_padding_mask=memory_key_padding_mask,
sos_id=params.sos_id,
eos_id=params.eos_id,
nbest_scale=params.nbest_scale,
ngram_lm_scale=params.ngram_lm_scale,
attention_scale=params.attention_decoder_scale,
)
best_path = next(iter(best_path_dict.values()))
hyps = get_texts(best_path)
word_sym_table = k2.SymbolTable.from_file(
params.lang_dir + "/words.txt"
)
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
except Exception:
raise ValueError("Please use a supported decoding method.")
if __name__ == "__main__":