add train.py, model.py

This commit is contained in:
yaozengwei 2023-01-15 17:22:28 +08:00
parent c87f55671a
commit 2fc7535de9
3 changed files with 1375 additions and 12 deletions

View File

@ -1,5 +1,5 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Zengwei Yao)
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@ -47,8 +47,7 @@ class AttentionDecoderModel(nn.Module):
"""
Args:
vocab_size (int): Number of classes.
encoder_dim (int):
d_model: (int,int): embedding dimension of 2 encoder stacks
decoder_dim: (int,int): embedding dimension of 2 encoder stacks
attention_dim: (int,int): attention dimension of 2 encoder stacks
nhead (int, int): number of heads
dim_feedforward (int, int): feedforward dimension in 2 encoder stacks
@ -62,15 +61,15 @@ class AttentionDecoderModel(nn.Module):
def __init__(
self,
vocab_size: int,
d_model: int,
decoder_dim: int,
unmasked_dim: int,
num_decoder_layers: int,
attention_dim: int,
nhead: int,
feedforward_dim: int,
dropout: float,
sos_id: int,
eos_id: int,
dropout: float = 0.1,
ignore_id: int = -1,
warmup_batches: float = 4000.0,
label_smoothing: float = 0.1,
@ -84,7 +83,7 @@ class AttentionDecoderModel(nn.Module):
# layer learn something. Then we start to warm up the other encoders.
self.decoder = TransformerDecoder(
vocab_size,
d_model,
decoder_dim,
unmasked_dim,
num_decoder_layers,
attention_dim,
@ -103,7 +102,6 @@ class AttentionDecoderModel(nn.Module):
def _pre_ys_in_out(self, token_ids: List[List[int]], device: torch.device):
"""Prepare ys_in_pad and ys_out_pad."""
ys = k2.RaggedTensor(token_ids).to(device=device)
row_splits = ys.shape.row_splits(1)
ys_lens = row_splits[1:] - row_splits[:-1]
@ -168,10 +166,9 @@ class AttentionDecoderModel(nn.Module):
decoder_out.view(-1, num_classes),
ys_out_pad.view(-1),
ignore_index=self.ignore_id,
reduction="None",
reduction="none",
)
nll = nll.view(batch_size, -1)
nll = nll.sum(1)
nll = nll.view(batch_size, -1).sum(1)
return nll
@ -181,7 +178,7 @@ class TransformerDecoder(nn.Module):
Args:
vocab_size: output dim
d_model: equal to encoder_dim
d_model: decoder dimension
num_decoder_layers: number of decoder layers
attention_dim: total dimension of multi head attention
n_head: number of attention heads
@ -715,7 +712,7 @@ def subsequent_mask(size, device="cpu", dtype=torch.bool):
def _test_attention_decoder_model():
m = AttentionDecoderModel(
vocab_size=500,
d_model=384,
decoder_dim=384,
unmasked_dim=256,
num_decoder_layers=6,
attention_dim=192,
@ -733,6 +730,9 @@ def _test_attention_decoder_model():
loss = m.calc_att_loss(encoder_out, encoder_out_lens, token_ids)
print(loss)
nll = m.nll(encoder_out, encoder_out_lens, token_ids)
print(nll)
if __name__ == "__main__":
_test_attention_decoder_model()

View File

@ -0,0 +1,95 @@
# Copyright 2023 Xiaomi Corp. (authors: Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Tuple
import torch
import torch.nn as nn
from encoder_interface import EncoderInterface
class CTCAttentionModel(nn.Module):
"""Hybrid CTC & Attention decoder model."""
def __init__(
self,
encoder: EncoderInterface,
decoder: nn.Module,
encoder_dim: int,
vocab_size: int,
):
"""
Args:
encoder:
It is the Zipformer encoder model. Its accepts
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
`logit_lens` of shape (N,).
decoder:
It is the attention decoder.
encoder_dim:
The embedding dimension of encoder.
vocab_size:
The vocabulary size.
"""
super().__init__()
assert isinstance(encoder, EncoderInterface), type(encoder)
self.encoder = encoder
self.ctc_output = nn.Sequential(
nn.Dropout(p=0.1),
nn.Linear(encoder_dim, vocab_size),
nn.LogSoftmax(dim=-1),
)
# Attention decoder
self.decoder = decoder
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
token_ids: List[List[int]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
token_ids:
A list of token id list.
Returns:
- ctc_output, ctc log-probs
- att_loss, attention decoder loss
"""
assert x.ndim == 3, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert x.size(0) == x_lens.size(0) == len(token_ids)
# encoder forward
encoder_out, x_lens = self.encoder(x, x_lens)
assert torch.all(x_lens > 0)
# compute ctc log-probs
ctc_output = self.ctc_output(encoder_out)
# compute attention decoder loss
att_loss = self.decoder.calc_att_loss(encoder_out, x_lens, token_ids)
return ctc_output, att_loss

File diff suppressed because it is too large Load Diff