mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
96 lines
2.9 KiB
Python
96 lines
2.9 KiB
Python
# Copyright 2023 Xiaomi Corp. (authors: Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from typing import List, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from encoder_interface import EncoderInterface
|
|
|
|
|
|
class CTCAttentionModel(nn.Module):
|
|
"""Hybrid CTC & Attention decoder model."""
|
|
|
|
def __init__(
|
|
self,
|
|
encoder: EncoderInterface,
|
|
decoder: nn.Module,
|
|
encoder_dim: int,
|
|
vocab_size: int,
|
|
):
|
|
"""
|
|
Args:
|
|
encoder:
|
|
It is the Zipformer encoder model. Its accepts
|
|
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
|
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
|
|
`logit_lens` of shape (N,).
|
|
decoder:
|
|
It is the attention decoder.
|
|
encoder_dim:
|
|
The embedding dimension of encoder.
|
|
vocab_size:
|
|
The vocabulary size.
|
|
"""
|
|
super().__init__()
|
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
|
|
|
self.encoder = encoder
|
|
self.ctc_output = nn.Sequential(
|
|
nn.Dropout(p=0.1),
|
|
nn.Linear(encoder_dim, vocab_size),
|
|
nn.LogSoftmax(dim=-1),
|
|
)
|
|
# Attention decoder
|
|
self.decoder = decoder
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_lens: torch.Tensor,
|
|
token_ids: List[List[int]],
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
A 3-D tensor of shape (N, T, C).
|
|
x_lens:
|
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
|
before padding.
|
|
token_ids:
|
|
A list of token id list.
|
|
|
|
Returns:
|
|
- ctc_output, ctc log-probs
|
|
- att_loss, attention decoder loss
|
|
"""
|
|
assert x.ndim == 3, x.shape
|
|
assert x_lens.ndim == 1, x_lens.shape
|
|
assert x.size(0) == x_lens.size(0) == len(token_ids)
|
|
|
|
# encoder forward
|
|
encoder_out, x_lens = self.encoder(x, x_lens)
|
|
assert torch.all(x_lens > 0)
|
|
|
|
# compute ctc log-probs
|
|
ctc_output = self.ctc_output(encoder_out)
|
|
|
|
# compute attention decoder loss
|
|
att_loss = self.decoder.calc_att_loss(encoder_out, x_lens, token_ids)
|
|
|
|
return ctc_output, att_loss
|