mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Support Transformer LM (#750)
* support transformer LM * show number of parameters during training * update docstring * testing files for ppl calculation * add lm wrampper for rnn and transformer LM * apply lm wrapper in lm shallow fusion * small updates * update decode.py to support LM fusion and LODR * add export.py * update CI and workflow * update decoding results * fix CI * remove transformer LM from CI test
This commit is contained in:
parent
3c54333b06
commit
1f0408b103
@ -193,7 +193,7 @@ if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"shallow-fusion" ]]; then
|
||||
ls -lh data
|
||||
ls -lh lstm_transducer_stateless2/exp
|
||||
|
||||
log "Decoding test-clean and test-other"
|
||||
log "Decoding test-clean and test-other with RNN LM"
|
||||
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--use-averaged-model 0 \
|
||||
@ -201,12 +201,14 @@ if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"shallow-fusion" ]]; then
|
||||
--avg 1 \
|
||||
--exp-dir lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
|
||||
--decoding-method modified_beam_search_lm_shallow_fusion \
|
||||
--beam 4 \
|
||||
--rnn-lm-scale 0.3 \
|
||||
--rnn-lm-exp-dir $lm_repo/exp \
|
||||
--rnn-lm-epoch 88 \
|
||||
--rnn-lm-avg 1 \
|
||||
--use-shallow-fusion 1 \
|
||||
--lm-type rnn \
|
||||
--lm-exp-dir $lm_repo/exp \
|
||||
--lm-epoch 88 \
|
||||
--lm-avg 1 \
|
||||
--lm-scale 0.3 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
fi
|
||||
@ -245,11 +247,13 @@ if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"LODR" ]]; then
|
||||
--avg 1 \
|
||||
--exp-dir lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search_rnnlm_LODR \
|
||||
--decoding-method modified_beam_search_LODR \
|
||||
--beam 4 \
|
||||
--rnn-lm-scale 0.3 \
|
||||
--rnn-lm-exp-dir $lm_repo/exp \
|
||||
--rnn-lm-epoch 88 \
|
||||
--use-shallow-fusion 1 \
|
||||
--lm-type rnn \
|
||||
--lm-exp-dir $lm_repo/exp \
|
||||
--lm-scale 0.4 \
|
||||
--lm-epoch 88 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1 \
|
||||
|
@ -139,9 +139,10 @@ jobs:
|
||||
cd egs/librispeech/ASR
|
||||
tree lstm_transducer_stateless2/exp
|
||||
cd lstm_transducer_stateless2/exp
|
||||
echo "===modified_beam_search_rnnlm_shallow_fusion==="
|
||||
find modified_beam_search_rnnlm_shallow_fusion -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find modified_beam_search_rnnlm_shallow_fusion -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
echo "===modified_beam_search_lm_shallow_fusion==="
|
||||
echo "===Using RNNLM==="
|
||||
find modified_beam_search_lm_shallow_fusion -name "log-*rnn*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find modified_beam_search_lm_shallow_fusion -name "log-*rnn*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
- name: Display decoding results for lstm_transducer_stateless2
|
||||
if: github.event.label.name == 'LODR'
|
||||
@ -151,8 +152,8 @@ jobs:
|
||||
tree lstm_transducer_stateless2/exp
|
||||
cd lstm_transducer_stateless2/exp
|
||||
echo "===modified_beam_search_rnnlm_LODR==="
|
||||
find modified_beam_search_rnnlm_LODR -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find modified_beam_search_rnnlm_LODR -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
find modified_beam_search_LODR -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find modified_beam_search_LODR -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
- name: Upload decoding results for lstm_transducer_stateless2
|
||||
uses: actions/upload-artifact@v2
|
||||
|
@ -320,6 +320,10 @@ Number of model parameters: 70369391, i.e., 70.37 M
|
||||
|----------------------|------------|-------------|----------------------------------------|
|
||||
| greedy search | 2.17 | 5.23 | --epoch 39 --avg 6 --max-duration 600 |
|
||||
| modified beam search | 2.15 | 5.20 | --epoch 39 --avg 6 --max-duration 600 |
|
||||
| modified beam search + RNNLM shallow fusion | 1.99 | 4.73 | --epoch 39 --avg 6 --max-duration 600 |
|
||||
| modified beam search + TransformerLM shallow fusion | 1.94 | 4.73 | --epoch 39 --avg 6 --max-duration 600 |
|
||||
| modified beam search + RNNLM + LODR | 1.91 | 4.57 | --epoch 39 --avg 6 --max-duration 600 |
|
||||
| modified beam search + TransformerLM + LODR | 1.91 | 4.51 | --epoch 39 --avg 6 --max-duration 600 |
|
||||
| fast beam search | 2.15 | 5.22 | --epoch 39 --avg 6 --max-duration 600 |
|
||||
|
||||
The training commands are:
|
||||
@ -458,7 +462,9 @@ The WERs are:
|
||||
| greedy search (max sym per frame 1) | 2.78 | 7.36 | --iter 468000 --avg 16 |
|
||||
| modified_beam_search | 2.73 | 7.15 | --iter 468000 --avg 16 |
|
||||
| modified_beam_search + RNNLM shallow fusion | 2.42 | 6.46 | --iter 468000 --avg 16 |
|
||||
| modified_beam_search + RNNLM shallow fusion | 2.28 | 5.94 | --iter 468000 --avg 16 |
|
||||
| modified_beam_search + TransformerLM shallow fusion | 2.37 | 6.48 | --iter 468000 --avg 16 |
|
||||
| modified_beam_search + RNNLM + LODR | 2.24 | 5.89 | --iter 468000 --avg 16 |
|
||||
| modified_beam_search + TransformerLM + LODR | 2.19 | 5.90 | --iter 468000 --avg 16 |
|
||||
| fast_beam_search | 2.76 | 7.31 | --iter 468000 --avg 16 |
|
||||
| greedy search (max sym per frame 1) | 2.77 | 7.35 | --iter 472000 --avg 18 |
|
||||
| modified_beam_search | 2.75 | 7.08 | --iter 472000 --avg 18 |
|
||||
@ -513,9 +519,12 @@ for m in greedy_search fast_beam_search modified_beam_search; do
|
||||
done
|
||||
```
|
||||
|
||||
To decode with RNNLM shallow fusion, use the following decoding command. A well-trained RNNLM
|
||||
can be found here: <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>
|
||||
You may also decode using shallow fusion with external neural network LM. To do so you need to
|
||||
download a well-trained NN LM:
|
||||
RNN LM: <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>
|
||||
Transformer LM: <https://huggingface.co/marcoyang/icefall-librispeech-transformer-lm/tree/main>
|
||||
|
||||
```bash
|
||||
for iter in 472000; do
|
||||
for avg in 8 10 12 14 16 18; do
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
@ -523,23 +532,24 @@ for iter in 472000; do
|
||||
--avg $avg \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
|
||||
--beam 4 \
|
||||
--rnn-lm-scale 0.3 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
--decoding-method modified_beam_search_lm_shallow_fusion \
|
||||
--use-shallow-fusion 1 \
|
||||
--lm-type rnn \
|
||||
--lm-exp-dir /ceph-data4/yangxiaoyu/pretrained_models/LM/icefall-librispeech-rnn-lm/exp \
|
||||
--lm-epoch 99 \
|
||||
--lm-scale $lm_scale \
|
||||
--lm-avg 1 \
|
||||
done
|
||||
done
|
||||
```
|
||||
|
||||
You may also decode using LODR + RNNLM shallow fusion. This decoding method is proposed in <https://arxiv.org/pdf/2203.16776.pdf>.
|
||||
You may also decode using LODR + LM shallow fusion. This decoding method is proposed in <https://arxiv.org/pdf/2203.16776.pdf>.
|
||||
It subtracts the internal language model score during shallow fusion, which is approximated by a bi-gram model. The bi-gram can be
|
||||
generated by `generate-lm.sh`, or you may download it from <https://huggingface.co/marcoyang/librispeech_bigram>.
|
||||
|
||||
The decoding command is as follows:
|
||||
|
||||
```bash
|
||||
for iter in 472000; do
|
||||
for avg in 8 10 12 14 16 18; do
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
@ -547,18 +557,22 @@ for iter in 472000; do
|
||||
--avg $avg \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search_rnnlm_LODR \
|
||||
--decoding-method modified_beam_search_LODR \
|
||||
--beam 4 \
|
||||
--rnn-lm-scale 0.4 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1 \
|
||||
--token-ngram 2 \
|
||||
--max-contexts 4 \
|
||||
--use-shallow-fusion 1 \
|
||||
--lm-type rnn \
|
||||
--lm-exp-dir /ceph-data4/yangxiaoyu/pretrained_models/LM/icefall-librispeech-rnn-lm/exp \
|
||||
--lm-epoch 99 \
|
||||
--lm-scale 0.4 \
|
||||
--lm-avg 1 \
|
||||
--tokens-ngram 2 \
|
||||
--ngram-lm-scale -0.16
|
||||
done
|
||||
done
|
||||
```
|
||||
Note that you can also set `--lm-type transformer` to use transformer LM during LODR. But it will be slower
|
||||
because it has not been optimized. The pre-trained transformer LM is available at <https://huggingface.co/marcoyang/icefall-librispeech-transformer-lm/tree/main>
|
||||
|
||||
Pretrained models, training logs, decoding logs, and decoding results
|
||||
are available at
|
||||
@ -1717,6 +1731,9 @@ layers (24 v.s 12) but a narrower model (1536 feedforward dim and 384 encoder di
|
||||
| greedy search (max sym per frame 1) | 2.54 | 5.72 | --epoch 30 --avg 10 --max-duration 600 |
|
||||
| modified beam search | 2.47 | 5.71 | --epoch 30 --avg 10 --max-duration 600 |
|
||||
| modified beam search + RNNLM shallow fusion | 2.27 | 5.24 | --epoch 30 --avg 10 --max-duration 600 |
|
||||
| modified beam search + RNNLM + LODR | 2.23 | 5.17 | --epoch 30 --avg 10 --max-duration 600 |
|
||||
| modified beam search + TransformerLM shallow fusion | 2.27 | 5.26 | --epoch 30 --avg 10 --max-duration 600 |
|
||||
| modified beam search + TransformerLM + LODR | 2.22 | 5.11 | --epoch 30 --avg 10 --max-duration 600 |
|
||||
| fast beam search | 2.5 | 5.72 | --epoch 30 --avg 10 --max-duration 600 |
|
||||
|
||||
```bash
|
||||
@ -2080,7 +2097,8 @@ subset so that the gigaspeech dataloader never exhausts.
|
||||
| greedy search (max sym per frame 1) | 2.03 | 4.70 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| modified beam search | 2.00 | 4.63 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| modified beam search + rnnlm shallow fusion | 1.94 | 4.2 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| modified beam search + LODR | 1.83 | 4.03 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| modified beam search + rnnlm + LODR | 1.77 | 3.99 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| modified beam search + TransformerLM + LODR | 1.75 | 3.94 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| fast beam search | 2.10 | 4.68 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
|
||||
The training commands are:
|
||||
@ -2126,8 +2144,10 @@ for iter in 1224000; do
|
||||
done
|
||||
done
|
||||
```
|
||||
You may also decode using shallow fusion with external RNNLM. To do so you need to
|
||||
download a well-trained RNNLM from this link <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>
|
||||
You may also decode using shallow fusion with external neural network LM. To do so you need to
|
||||
download a well-trained NN LM:
|
||||
RNN LM: <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>
|
||||
Transformer LM: <https://huggingface.co/marcoyang/icefall-librispeech-transformer-lm/tree/main>
|
||||
|
||||
```bash
|
||||
rnn_lm_scale=0.3
|
||||
|
@ -93,36 +93,37 @@ Usage:
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(8) modified beam search (with RNNLM shallow fusion)
|
||||
(8) modified beam search (with LM shallow fusion)
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
|
||||
--decoding-method modified_beam_search_lm_shallow_fusion \
|
||||
--beam 4 \
|
||||
--rnn-lm-scale 0.3 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM \
|
||||
--lm-type rnn \
|
||||
--lm-scale 0.3 \
|
||||
--lm-exp-dir /path/to/LM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
|
||||
(9) modified beam search with RNNLM shallow fusion + LODR
|
||||
(9) modified beam search with LM shallow fusion + LODR
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--max-duration 600 \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--decoding-method modified_beam_search_rnnlm_LODR \
|
||||
--decoding-method modified_beam_search_LODR \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--rnn-lm-scale 0.4 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM/exp \
|
||||
--lm-type rnn \
|
||||
--lm-scale 0.4 \
|
||||
--lm-exp-dir /path/to/LM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1 \
|
||||
--rnn-lm-tie-weights 1
|
||||
--tokens-ngram 2 \
|
||||
--ngram-lm-scale -0.16 \
|
||||
"""
|
||||
@ -148,14 +149,14 @@ from beam_search import (
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
modified_beam_search_lm_shallow_fusion,
|
||||
modified_beam_search_LODR,
|
||||
modified_beam_search_ngram_rescoring,
|
||||
modified_beam_search_rnnlm_LODR,
|
||||
modified_beam_search_rnnlm_shallow_fusion,
|
||||
)
|
||||
from librispeech import LibriSpeech
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall import NgramLm
|
||||
from icefall import LmScorer, NgramLm
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
@ -163,7 +164,6 @@ from icefall.checkpoint import (
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
@ -253,8 +253,8 @@ def get_parser():
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
- modified_beam_search_ngram_rescoring
|
||||
- modified_beam_search_rnnlm_shallow_fusion
|
||||
- modified_beam_search_rnnlm_LODR
|
||||
- modified_beam_search_lm_shallow_fusion
|
||||
- modified_beam_search_LODR
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
@ -344,67 +344,28 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-scale",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="""Used only when --method is modified-beam-search_rnnlm_shallow_fusion.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
|
||||
It specifies the checkpoint to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-avg",
|
||||
type=int,
|
||||
default=2,
|
||||
help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
|
||||
It specifies the number of checkpoints to average.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-num-layers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rnn-lm-tie-weights",
|
||||
"--use-shallow-fusion",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
help="""Use neural network LM for shallow fusion.
|
||||
If you want to use LODR, you will also need to set this to true
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-type",
|
||||
type=str,
|
||||
default="rnn",
|
||||
help="Type of NN lm",
|
||||
choices=["rnn", "transformer"],
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-scale",
|
||||
type=float,
|
||||
default=0.3,
|
||||
help="""The scale of the neural network LM
|
||||
Used only when `--use-shallow-fusion` is set to True.
|
||||
""",
|
||||
)
|
||||
|
||||
@ -440,8 +401,7 @@ def decode_one_batch(
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
ngram_lm: Optional[NgramLm] = None,
|
||||
ngram_lm_scale: float = 1.0,
|
||||
rnnlm: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
LM: Optional[LmScorer] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
@ -470,6 +430,9 @@ def decode_one_batch(
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
LM:
|
||||
A neural net LM for shallow fusion. Only used when `--use-shallow-fusion`
|
||||
set to true.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
@ -581,20 +544,19 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
|
||||
hyp_tokens = modified_beam_search_rnnlm_shallow_fusion(
|
||||
elif params.decoding_method == "modified_beam_search_lm_shallow_fusion":
|
||||
hyp_tokens = modified_beam_search_lm_shallow_fusion(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
sp=sp,
|
||||
rnnlm=rnnlm,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_rnnlm_LODR":
|
||||
hyp_tokens = modified_beam_search_rnnlm_LODR(
|
||||
elif params.decoding_method == "modified_beam_search_LODR":
|
||||
hyp_tokens = modified_beam_search_LODR(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
@ -602,8 +564,7 @@ def decode_one_batch(
|
||||
sp=sp,
|
||||
LODR_lm=ngram_lm,
|
||||
LODR_lm_scale=ngram_lm_scale,
|
||||
rnnlm=rnnlm,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
@ -658,8 +619,7 @@ def decode_dataset(
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
ngram_lm: Optional[NgramLm] = None,
|
||||
ngram_lm_scale: float = 1.0,
|
||||
rnnlm: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
LM: Optional[LmScorer] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
@ -678,6 +638,8 @@ def decode_dataset(
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
LM:
|
||||
A neural network LM, used during shallow fusion
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
@ -711,8 +673,7 @@ def decode_dataset(
|
||||
batch=batch,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
rnnlm=rnnlm,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
@ -730,6 +691,7 @@ def decode_dataset(
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
@ -781,6 +743,7 @@ def save_results(
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AsrDataModule.add_arguments(parser)
|
||||
LmScorer.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
@ -795,9 +758,9 @@ def main():
|
||||
"fast_beam_search_nbest_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
"modified_beam_search_rnnlm_LODR",
|
||||
"modified_beam_search_LODR",
|
||||
"modified_beam_search_lm_shallow_fusion",
|
||||
"modified_beam_search_ngram_rescoring",
|
||||
"modified_beam_search_rnnlm_shallow_fusion",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
@ -820,12 +783,18 @@ def main():
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
if "rnnlm" in params.decoding_method:
|
||||
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
|
||||
if "ngram" in params.decoding_method:
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
if params.use_shallow_fusion:
|
||||
if params.lm_type == "rnn":
|
||||
params.suffix += f"-rnnlm-lm-scale-{params.lm_scale}"
|
||||
elif params.lm_type == "transformer":
|
||||
params.suffix += f"-transformer-lm-scale-{params.lm_scale}"
|
||||
|
||||
if "LODR" in params.decoding_method:
|
||||
params.suffix += "-LODR"
|
||||
if "LODR" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
|
||||
)
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
@ -954,28 +923,19 @@ def main():
|
||||
ngram_lm = None
|
||||
ngram_lm_scale = None
|
||||
|
||||
# only load rnnlm if used
|
||||
if "rnnlm" in params.decoding_method:
|
||||
rnn_lm_scale = params.rnn_lm_scale
|
||||
|
||||
rnn_lm_model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.rnn_lm_embedding_dim,
|
||||
hidden_dim=params.rnn_lm_hidden_dim,
|
||||
num_layers=params.rnn_lm_num_layers,
|
||||
tie_weights=params.rnn_lm_tie_weights,
|
||||
# only load the neural network LM if doing shallow fusion
|
||||
if params.use_shallow_fusion:
|
||||
LM = LmScorer(
|
||||
lm_type=params.lm_type,
|
||||
params=params,
|
||||
device=device,
|
||||
lm_scale=params.lm_scale,
|
||||
)
|
||||
assert params.rnn_lm_avg == 1
|
||||
LM.to(device)
|
||||
LM.eval()
|
||||
|
||||
load_checkpoint(
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||
rnn_lm_model,
|
||||
)
|
||||
rnn_lm_model.to(device)
|
||||
rnn_lm_model.eval()
|
||||
else:
|
||||
rnn_lm_model = None
|
||||
rnn_lm_scale = 0.0
|
||||
LM = None
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
@ -1003,7 +963,9 @@ def main():
|
||||
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
# test_clean_cuts = test_clean_cuts.subset(first=500)
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
# test_other_cuts = test_other_cuts.subset(first=500)
|
||||
|
||||
test_clean_dl = asr_datamodule.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = asr_datamodule.test_dataloaders(test_other_cuts)
|
||||
@ -1021,8 +983,7 @@ def main():
|
||||
decoding_graph=decoding_graph,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
rnnlm=rnn_lm_model,
|
||||
rnnlm_scale=rnn_lm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
|
||||
save_results(
|
||||
|
@ -26,7 +26,9 @@ from model import Transducer
|
||||
|
||||
from icefall import NgramLm, NgramLmStateCost
|
||||
from icefall.decode import Nbest, one_best_decoding
|
||||
from icefall.lm_wrapper import LmScorer
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.transformer_lm.model import TransformerLM
|
||||
from icefall.utils import (
|
||||
DecodingResults,
|
||||
add_eos,
|
||||
@ -1846,254 +1848,14 @@ def modified_beam_search_ngram_rescoring(
|
||||
return ans
|
||||
|
||||
|
||||
def modified_beam_search_rnnlm_shallow_fusion(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
rnnlm: RnnLmModel,
|
||||
rnnlm_scale: float,
|
||||
beam: int = 4,
|
||||
return_timestamps: bool = False,
|
||||
) -> List[List[int]]:
|
||||
"""Modified_beam_search + RNNLM shallow fusion
|
||||
|
||||
Args:
|
||||
model (Transducer):
|
||||
The transducer model
|
||||
encoder_out (torch.Tensor):
|
||||
Encoder output in (N,T,C)
|
||||
encoder_out_lens (torch.Tensor):
|
||||
A 1-D tensor of shape (N,), containing the number of
|
||||
valid frames in encoder_out before padding.
|
||||
sp:
|
||||
Sentence piece generator.
|
||||
rnnlm (RnnLmModel):
|
||||
RNNLM
|
||||
rnnlm_scale (float):
|
||||
scale of RNNLM in shallow fusion
|
||||
beam (int, optional):
|
||||
Beam size. Defaults to 4.
|
||||
|
||||
Returns:
|
||||
Return a list-of-list of token IDs. ans[i] is the decoding results
|
||||
for the i-th utterance.
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
assert rnnlm is not None
|
||||
lm_scale = rnnlm_scale
|
||||
vocab_size = rnnlm.vocab_size
|
||||
|
||||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
||||
input=encoder_out,
|
||||
lengths=encoder_out_lens.cpu(),
|
||||
batch_first=True,
|
||||
enforce_sorted=False,
|
||||
)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
sos_id = sp.piece_to_id("<sos/eos>")
|
||||
unk_id = getattr(model, "unk_id", blank_id)
|
||||
context_size = model.decoder.context_size
|
||||
device = next(model.parameters()).device
|
||||
|
||||
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
||||
N = encoder_out.size(0)
|
||||
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
||||
assert N == batch_size_list[0], (N, batch_size_list)
|
||||
|
||||
# get initial lm score and lm state by scoring the "sos" token
|
||||
sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device)
|
||||
init_score, init_states = rnnlm.score_token(sos_token)
|
||||
|
||||
B = [HypothesisList() for _ in range(N)]
|
||||
for i in range(N):
|
||||
B[i].add(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
state=init_states,
|
||||
lm_score=init_score.reshape(-1),
|
||||
timestamp=[],
|
||||
)
|
||||
)
|
||||
|
||||
rnnlm.clean_cache()
|
||||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
||||
|
||||
offset = 0
|
||||
finalized_B = []
|
||||
for (t, batch_size) in enumerate(batch_size_list):
|
||||
start = offset
|
||||
end = offset + batch_size
|
||||
current_encoder_out = encoder_out.data[start:end] # get batch
|
||||
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
||||
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
||||
offset = end
|
||||
|
||||
finalized_B = B[batch_size:] + finalized_B
|
||||
B = B[:batch_size]
|
||||
|
||||
hyps_shape = get_hyps_shape(B).to(device)
|
||||
|
||||
A = [list(b) for b in B]
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
|
||||
ys_log_probs = torch.cat(
|
||||
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
||||
)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
|
||||
current_encoder_out = torch.index_select(
|
||||
current_encoder_out,
|
||||
dim=0,
|
||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out,
|
||||
decoder_out,
|
||||
project_input=False,
|
||||
) # (num_hyps, 1, 1, vocab_size)
|
||||
|
||||
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
vocab_size = log_probs.size(-1)
|
||||
|
||||
log_probs = log_probs.reshape(-1)
|
||||
|
||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||
)
|
||||
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
|
||||
"""
|
||||
for all hyps with a non-blank new token, score this token.
|
||||
It is a little confusing here because this for-loop
|
||||
looks very similar to the one below. Here, we go through all
|
||||
top-k tokens and only add the non-blanks ones to the token_list.
|
||||
The RNNLM will score those tokens given the LM states. Note that
|
||||
the variable `scores` is the LM score after seeing the new
|
||||
non-blank token.
|
||||
"""
|
||||
token_list = []
|
||||
hs = []
|
||||
cs = []
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
new_token = topk_token_indexes[k]
|
||||
if new_token not in (blank_id, unk_id):
|
||||
assert new_token != 0, new_token
|
||||
token_list.append([new_token])
|
||||
# store the LSTM states
|
||||
hs.append(hyp.state[0])
|
||||
cs.append(hyp.state[1])
|
||||
|
||||
# forward RNNLM to get new states and scores
|
||||
if len(token_list) != 0:
|
||||
tokens_to_score = (
|
||||
torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1)
|
||||
)
|
||||
|
||||
hs = torch.cat(hs, dim=1).to(device)
|
||||
cs = torch.cat(cs, dim=1).to(device)
|
||||
scores, lm_states = rnnlm.score_token(tokens_to_score, (hs, cs))
|
||||
|
||||
count = 0 # index, used to locate score and lm states
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
ys = hyp.ys[:]
|
||||
|
||||
lm_score = hyp.lm_score
|
||||
state = hyp.state
|
||||
|
||||
hyp_log_prob = topk_log_probs[k] # get score of current hyp
|
||||
new_token = topk_token_indexes[k]
|
||||
new_timestamp = hyp.timestamp[:]
|
||||
if new_token not in (blank_id, unk_id):
|
||||
|
||||
ys.append(new_token)
|
||||
new_timestamp.append(t)
|
||||
hyp_log_prob += lm_score[new_token] * lm_scale # add the lm score
|
||||
|
||||
lm_score = scores[count]
|
||||
state = (
|
||||
lm_states[0][:, count, :].unsqueeze(1),
|
||||
lm_states[1][:, count, :].unsqueeze(1),
|
||||
)
|
||||
count += 1
|
||||
|
||||
new_hyp = Hypothesis(
|
||||
ys=ys,
|
||||
log_prob=hyp_log_prob,
|
||||
state=state,
|
||||
lm_score=lm_score,
|
||||
timestamp=new_timestamp,
|
||||
)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
B = B + finalized_B
|
||||
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
||||
|
||||
sorted_ans = [h.ys[context_size:] for h in best_hyps]
|
||||
sorted_timestamps = [h.timestamp for h in best_hyps]
|
||||
ans = []
|
||||
ans_timestamps = []
|
||||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
||||
for i in range(N):
|
||||
ans.append(sorted_ans[unsorted_indices[i]])
|
||||
ans_timestamps.append(sorted_timestamps[unsorted_indices[i]])
|
||||
|
||||
if not return_timestamps:
|
||||
return ans
|
||||
else:
|
||||
return DecodingResults(
|
||||
tokens=ans,
|
||||
timestamps=ans_timestamps,
|
||||
)
|
||||
|
||||
|
||||
def modified_beam_search_rnnlm_LODR(
|
||||
def modified_beam_search_LODR(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
LODR_lm: NgramLm,
|
||||
LODR_lm_scale: float,
|
||||
rnnlm: RnnLmModel,
|
||||
rnnlm_scale: float,
|
||||
LM: LmScorer,
|
||||
beam: int = 4,
|
||||
) -> List[List[int]]:
|
||||
"""This function implements LODR (https://arxiv.org/abs/2203.16776) with
|
||||
@ -2113,13 +1875,11 @@ def modified_beam_search_rnnlm_LODR(
|
||||
sp:
|
||||
Sentence piece generator.
|
||||
LODR_lm:
|
||||
A low order n-gram LM
|
||||
A low order n-gram LM, whose score will be subtracted during shallow fusion
|
||||
LODR_lm_scale:
|
||||
The scale of the LODR_lm
|
||||
rnnlm (RnnLmModel):
|
||||
RNNLM, the external language model
|
||||
rnnlm_scale (float):
|
||||
scale of RNNLM in shallow fusion
|
||||
LM:
|
||||
A neural net LM, e.g an RNNLM or transformer LM
|
||||
beam (int, optional):
|
||||
Beam size. Defaults to 4.
|
||||
|
||||
@ -2130,9 +1890,8 @@ def modified_beam_search_rnnlm_LODR(
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
assert rnnlm is not None
|
||||
lm_scale = rnnlm_scale
|
||||
vocab_size = rnnlm.vocab_size
|
||||
assert LM is not None
|
||||
lm_scale = LM.lm_scale
|
||||
|
||||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
||||
input=encoder_out,
|
||||
@ -2154,7 +1913,8 @@ def modified_beam_search_rnnlm_LODR(
|
||||
|
||||
# get initial lm score and lm state by scoring the "sos" token
|
||||
sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device)
|
||||
init_score, init_states = rnnlm.score_token(sos_token)
|
||||
lens = torch.tensor([1]).to(device)
|
||||
init_score, init_states = LM.score_token(sos_token, lens)
|
||||
|
||||
B = [HypothesisList() for _ in range(N)]
|
||||
for i in range(N):
|
||||
@ -2162,7 +1922,7 @@ def modified_beam_search_rnnlm_LODR(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
state=init_states, # state of the RNNLM
|
||||
state=init_states, # state of the NN LM
|
||||
lm_score=init_score.reshape(-1),
|
||||
state_cost=NgramLmStateCost(
|
||||
LODR_lm
|
||||
@ -2170,7 +1930,6 @@ def modified_beam_search_rnnlm_LODR(
|
||||
)
|
||||
)
|
||||
|
||||
rnnlm.clean_cache()
|
||||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
||||
|
||||
offset = 0
|
||||
@ -2236,7 +1995,7 @@ def modified_beam_search_rnnlm_LODR(
|
||||
It is a little confusing here because this for-loop
|
||||
looks very similar to the one below. Here, we go through all
|
||||
top-k tokens and only add the non-blanks ones to the token_list.
|
||||
The RNNLM will score those tokens given the LM states. Note that
|
||||
LM will score those tokens given the LM states. Note that
|
||||
the variable `scores` is the LM score after seeing the new
|
||||
non-blank token.
|
||||
"""
|
||||
@ -2256,21 +2015,41 @@ def modified_beam_search_rnnlm_LODR(
|
||||
|
||||
new_token = topk_token_indexes[k]
|
||||
if new_token not in (blank_id, unk_id):
|
||||
assert new_token != 0, new_token
|
||||
token_list.append([new_token])
|
||||
# store the LSTM states
|
||||
hs.append(hyp.state[0])
|
||||
cs.append(hyp.state[1])
|
||||
if LM.lm_type == "rnn":
|
||||
token_list.append([new_token])
|
||||
# store the LSTM states
|
||||
hs.append(hyp.state[0])
|
||||
cs.append(hyp.state[1])
|
||||
else:
|
||||
# for transformer LM
|
||||
token_list.append(
|
||||
[sos_id] + hyp.ys[context_size:] + [new_token]
|
||||
)
|
||||
|
||||
# forward RNNLM to get new states and scores
|
||||
# forward NN LM to get new states and scores
|
||||
if len(token_list) != 0:
|
||||
tokens_to_score = (
|
||||
torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1)
|
||||
)
|
||||
x_lens = torch.tensor([len(tokens) for tokens in token_list]).to(device)
|
||||
if LM.lm_type == "rnn":
|
||||
tokens_to_score = (
|
||||
torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1)
|
||||
)
|
||||
hs = torch.cat(hs, dim=1).to(device)
|
||||
cs = torch.cat(cs, dim=1).to(device)
|
||||
state = (hs, cs)
|
||||
else:
|
||||
# for transformer LM
|
||||
tokens_list = [torch.tensor(tokens) for tokens in token_list]
|
||||
tokens_to_score = (
|
||||
torch.nn.utils.rnn.pad_sequence(
|
||||
tokens_list, batch_first=True, padding_value=0.0
|
||||
)
|
||||
.to(device)
|
||||
.to(torch.int64)
|
||||
)
|
||||
|
||||
hs = torch.cat(hs, dim=1).to(device)
|
||||
cs = torch.cat(cs, dim=1).to(device)
|
||||
scores, lm_states = rnnlm.score_token(tokens_to_score, (hs, cs))
|
||||
state = None
|
||||
|
||||
scores, lm_states = LM.score_token(tokens_to_score, x_lens, state)
|
||||
|
||||
count = 0 # index, used to locate score and lm states
|
||||
for i in range(batch_size):
|
||||
@ -2305,18 +2084,19 @@ def modified_beam_search_rnnlm_LODR(
|
||||
state_cost.lm_score,
|
||||
hyp.state_cost.lm_score,
|
||||
)
|
||||
# score = score + RNNLM_score - LODR_score
|
||||
# LODR_LM_scale is a negative number here
|
||||
# score = score + TDLM_score - LODR_score
|
||||
# LODR_LM_scale should be a negative number here
|
||||
hyp_log_prob += (
|
||||
lm_score[new_token] * lm_scale
|
||||
+ LODR_lm_scale * current_ngram_score
|
||||
) # add the lm score
|
||||
|
||||
lm_score = scores[count]
|
||||
state = (
|
||||
lm_states[0][:, count, :].unsqueeze(1),
|
||||
lm_states[1][:, count, :].unsqueeze(1),
|
||||
)
|
||||
if LM.lm_type == "rnn":
|
||||
state = (
|
||||
lm_states[0][:, count, :].unsqueeze(1),
|
||||
lm_states[1][:, count, :].unsqueeze(1),
|
||||
)
|
||||
count += 1
|
||||
else:
|
||||
state_cost = hyp.state_cost
|
||||
@ -2340,3 +2120,263 @@ def modified_beam_search_rnnlm_LODR(
|
||||
ans.append(sorted_ans[unsorted_indices[i]])
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
def modified_beam_search_lm_shallow_fusion(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
LM: LmScorer,
|
||||
beam: int = 4,
|
||||
return_timestamps: bool = False,
|
||||
) -> List[List[int]]:
|
||||
"""Modified_beam_search + NN LM shallow fusion
|
||||
|
||||
Args:
|
||||
model (Transducer):
|
||||
The transducer model
|
||||
encoder_out (torch.Tensor):
|
||||
Encoder output in (N,T,C)
|
||||
encoder_out_lens (torch.Tensor):
|
||||
A 1-D tensor of shape (N,), containing the number of
|
||||
valid frames in encoder_out before padding.
|
||||
sp:
|
||||
Sentence piece generator.
|
||||
LM (LmScorer):
|
||||
A neural net LM, e.g RNN or Transformer
|
||||
beam (int, optional):
|
||||
Beam size. Defaults to 4.
|
||||
|
||||
Returns:
|
||||
Return a list-of-list of token IDs. ans[i] is the decoding results
|
||||
for the i-th utterance.
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
assert LM is not None
|
||||
lm_scale = LM.lm_scale
|
||||
|
||||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
||||
input=encoder_out,
|
||||
lengths=encoder_out_lens.cpu(),
|
||||
batch_first=True,
|
||||
enforce_sorted=False,
|
||||
)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
sos_id = sp.piece_to_id("<sos/eos>")
|
||||
unk_id = getattr(model, "unk_id", blank_id)
|
||||
context_size = model.decoder.context_size
|
||||
device = next(model.parameters()).device
|
||||
|
||||
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
||||
N = encoder_out.size(0)
|
||||
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
||||
assert N == batch_size_list[0], (N, batch_size_list)
|
||||
|
||||
# get initial lm score and lm state by scoring the "sos" token
|
||||
sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device)
|
||||
lens = torch.tensor([1]).to(device)
|
||||
init_score, init_states = LM.score_token(sos_token, lens)
|
||||
|
||||
B = [HypothesisList() for _ in range(N)]
|
||||
for i in range(N):
|
||||
B[i].add(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
state=init_states,
|
||||
lm_score=init_score.reshape(-1),
|
||||
timestamp=[],
|
||||
)
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
||||
|
||||
offset = 0
|
||||
finalized_B = []
|
||||
for (t, batch_size) in enumerate(batch_size_list):
|
||||
start = offset
|
||||
end = offset + batch_size
|
||||
current_encoder_out = encoder_out.data[start:end] # get batch
|
||||
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
||||
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
||||
offset = end
|
||||
|
||||
finalized_B = B[batch_size:] + finalized_B
|
||||
B = B[:batch_size]
|
||||
|
||||
hyps_shape = get_hyps_shape(B).to(device)
|
||||
|
||||
A = [list(b) for b in B]
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
|
||||
ys_log_probs = torch.cat(
|
||||
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
||||
)
|
||||
|
||||
lm_scores = torch.cat(
|
||||
[hyp.lm_score.reshape(1, -1) for hyps in A for hyp in hyps]
|
||||
)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
|
||||
current_encoder_out = torch.index_select(
|
||||
current_encoder_out,
|
||||
dim=0,
|
||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out,
|
||||
decoder_out,
|
||||
project_input=False,
|
||||
) # (num_hyps, 1, 1, vocab_size)
|
||||
|
||||
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
vocab_size = log_probs.size(-1)
|
||||
|
||||
log_probs = log_probs.reshape(-1)
|
||||
|
||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||
)
|
||||
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
|
||||
"""
|
||||
for all hyps with a non-blank new token, score this token.
|
||||
It is a little confusing here because this for-loop
|
||||
looks very similar to the one below. Here, we go through all
|
||||
top-k tokens and only add the non-blanks ones to the token_list.
|
||||
`LM` will score those tokens given the LM states. Note that
|
||||
the variable `scores` is the LM score after seeing the new
|
||||
non-blank token.
|
||||
"""
|
||||
token_list = [] # a list of list
|
||||
hs = []
|
||||
cs = []
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
new_token = topk_token_indexes[k]
|
||||
if new_token not in (blank_id, unk_id):
|
||||
if LM.lm_type == "rnn":
|
||||
token_list.append([new_token])
|
||||
# store the LSTM states
|
||||
hs.append(hyp.state[0])
|
||||
cs.append(hyp.state[1])
|
||||
else:
|
||||
# for transformer LM
|
||||
token_list.append(
|
||||
[sos_id] + hyp.ys[context_size:] + [new_token]
|
||||
)
|
||||
|
||||
if len(token_list) != 0:
|
||||
x_lens = torch.tensor([len(tokens) for tokens in token_list]).to(device)
|
||||
if LM.lm_type == "rnn":
|
||||
tokens_to_score = (
|
||||
torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1)
|
||||
)
|
||||
hs = torch.cat(hs, dim=1).to(device)
|
||||
cs = torch.cat(cs, dim=1).to(device)
|
||||
state = (hs, cs)
|
||||
else:
|
||||
# for transformer LM
|
||||
tokens_list = [torch.tensor(tokens) for tokens in token_list]
|
||||
tokens_to_score = (
|
||||
torch.nn.utils.rnn.pad_sequence(
|
||||
tokens_list, batch_first=True, padding_value=0.0
|
||||
)
|
||||
.to(device)
|
||||
.to(torch.int64)
|
||||
)
|
||||
|
||||
state = None
|
||||
|
||||
scores, lm_states = LM.score_token(tokens_to_score, x_lens, state)
|
||||
|
||||
count = 0 # index, used to locate score and lm states
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
ys = hyp.ys[:]
|
||||
|
||||
lm_score = hyp.lm_score
|
||||
state = hyp.state
|
||||
|
||||
hyp_log_prob = topk_log_probs[k] # get score of current hyp
|
||||
new_token = topk_token_indexes[k]
|
||||
new_timestamp = hyp.timestamp[:]
|
||||
if new_token not in (blank_id, unk_id):
|
||||
|
||||
ys.append(new_token)
|
||||
new_timestamp.append(t)
|
||||
|
||||
hyp_log_prob += lm_score[new_token] * lm_scale # add the lm score
|
||||
|
||||
lm_score = scores[count]
|
||||
if LM.lm_type == "rnn":
|
||||
state = (
|
||||
lm_states[0][:, count, :].unsqueeze(1),
|
||||
lm_states[1][:, count, :].unsqueeze(1),
|
||||
)
|
||||
count += 1
|
||||
|
||||
new_hyp = Hypothesis(
|
||||
ys=ys,
|
||||
log_prob=hyp_log_prob,
|
||||
state=state,
|
||||
lm_score=lm_score,
|
||||
timestamp=new_timestamp,
|
||||
)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
B = B + finalized_B
|
||||
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
||||
|
||||
sorted_ans = [h.ys[context_size:] for h in best_hyps]
|
||||
sorted_timestamps = [h.timestamp for h in best_hyps]
|
||||
ans = []
|
||||
ans_timestamps = []
|
||||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
||||
for i in range(N):
|
||||
ans.append(sorted_ans[unsorted_indices[i]])
|
||||
ans_timestamps.append(sorted_timestamps[unsorted_indices[i]])
|
||||
|
||||
if not return_timestamps:
|
||||
return ans
|
||||
else:
|
||||
return DecodingResults(
|
||||
tokens=ans,
|
||||
timestamps=ans_timestamps,
|
||||
)
|
||||
|
@ -92,36 +92,37 @@ Usage:
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(8) modified beam search (with RNNLM shallow fusion)
|
||||
(8) modified beam search (with LM shallow fusion)
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
|
||||
--beam 4 \
|
||||
--rnn-lm-scale 0.3 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM \
|
||||
--decoding-method modified_beam_search_lm_shallow_fusion \
|
||||
--beam-size 4 \
|
||||
--lm-type rnn \
|
||||
--lm-scale 0.3 \
|
||||
--lm-exp-dir /path/to/LM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
|
||||
(9) modified beam search with RNNLM shallow fusion + LODR
|
||||
(9) modified beam search with LM shallow fusion + LODR
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--max-duration 600 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--decoding-method modified_beam_search_rnnlm_LODR \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--rnn-lm-scale 0.4 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM/exp \
|
||||
--decoding-method modified_beam_search_LODR \
|
||||
--beam-size 4 \
|
||||
--lm-type rnn \
|
||||
--lm-scale 0.4 \
|
||||
--lm-exp-dir /path/to/LM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1 \
|
||||
--rnn-lm-tie-weights 1
|
||||
--tokens-ngram 2 \
|
||||
--ngram-lm-scale -0.16 \
|
||||
"""
|
||||
@ -149,14 +150,14 @@ from beam_search import (
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
modified_beam_search_lm_shallow_fusion,
|
||||
modified_beam_search_LODR,
|
||||
modified_beam_search_ngram_rescoring,
|
||||
modified_beam_search_rnnlm_LODR,
|
||||
modified_beam_search_rnnlm_shallow_fusion,
|
||||
)
|
||||
from librispeech import LibriSpeech
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall import NgramLm
|
||||
from icefall import LmScorer, NgramLm
|
||||
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
@ -240,8 +241,8 @@ def get_parser():
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
- modified_beam_search_ngram_rescoring
|
||||
- modified_beam_search_rnnlm_shallow_fusion
|
||||
- modified_beam_search_rnnlm_LODR
|
||||
- modified_beam_search_lm_shallow_fusion
|
||||
- modified_beam_search_LODR
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
@ -392,58 +393,28 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the checkpoint to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-avg",
|
||||
type=int,
|
||||
default=2,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the number of checkpoints to average.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-num-layers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rnn-lm-tie-weights",
|
||||
"--use-shallow-fusion",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
default=False,
|
||||
help="""Use neural network LM for shallow fusion.
|
||||
If you want to use LODR, you will also need to set this to true
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-type",
|
||||
type=str,
|
||||
default="rnn",
|
||||
help="Type of NN lm",
|
||||
choices=["rnn", "transformer"],
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-scale",
|
||||
type=float,
|
||||
default=0.3,
|
||||
help="""The scale of the neural network LM
|
||||
Used only when `--use-shallow-fusion` is set to True.
|
||||
""",
|
||||
)
|
||||
|
||||
@ -481,7 +452,7 @@ def decode_one_batch(
|
||||
ngram_lm: Optional[NgramLm] = None,
|
||||
ngram_lm_scale: float = 1.0,
|
||||
rnn_lm_model: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
LM: Optional[LmScorer] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
@ -515,10 +486,9 @@ def decode_one_batch(
|
||||
fast_beam_search_nbest, fast_beam_search_nbest_oracle,
|
||||
or fast_beam_search_with_nbest_rescoring.
|
||||
It an FsaVec containing an acceptor.
|
||||
rnn_lm_model:
|
||||
A rnnlm which can be used for rescoring or shallow fusion
|
||||
rnnlm_scale:
|
||||
The scale of the rnnlm.
|
||||
LM:
|
||||
A neural net LM for shallow fusion. Only used when `--use-shallow-fusion`
|
||||
set to true.
|
||||
ngram_lm:
|
||||
A ngram lm. Used in LODR decoding.
|
||||
ngram_lm_scale:
|
||||
@ -697,20 +667,19 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
|
||||
hyp_tokens = modified_beam_search_rnnlm_shallow_fusion(
|
||||
elif params.decoding_method == "modified_beam_search_lm_shallow_fusion":
|
||||
hyp_tokens = modified_beam_search_lm_shallow_fusion(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
sp=sp,
|
||||
rnnlm=rnn_lm_model,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_rnnlm_LODR":
|
||||
hyp_tokens = modified_beam_search_rnnlm_LODR(
|
||||
elif params.decoding_method == "modified_beam_search_LODR":
|
||||
hyp_tokens = modified_beam_search_LODR(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
@ -718,8 +687,7 @@ def decode_one_batch(
|
||||
sp=sp,
|
||||
LODR_lm=ngram_lm,
|
||||
LODR_lm_scale=ngram_lm_scale,
|
||||
rnnlm=rnn_lm_model,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
@ -812,7 +780,7 @@ def decode_dataset(
|
||||
ngram_lm: Optional[NgramLm] = None,
|
||||
ngram_lm_scale: float = 1.0,
|
||||
rnn_lm_model: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
LM: Optional[LmScorer] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
@ -836,6 +804,8 @@ def decode_dataset(
|
||||
fast_beam_search_nbest, fast_beam_search_nbest_oracle,
|
||||
or fast_beam_search_with_nbest_rescoring.
|
||||
It's an FsaVec containing an acceptor.
|
||||
LM:
|
||||
A neural network LM, used during shallow fusion
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
@ -871,7 +841,7 @@ def decode_dataset(
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
@ -1005,6 +975,7 @@ def load_ngram_LM(
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AsrDataModule.add_arguments(parser)
|
||||
LmScorer.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
@ -1022,9 +993,9 @@ def main():
|
||||
"modified_beam_search",
|
||||
"fast_beam_search_with_nbest_rescoring",
|
||||
"fast_beam_search_with_nbest_rnn_rescoring",
|
||||
"modified_beam_search_rnnlm_LODR",
|
||||
"modified_beam_search_LODR",
|
||||
"modified_beam_search_lm_shallow_fusion",
|
||||
"modified_beam_search_ngram_rescoring",
|
||||
"modified_beam_search_rnnlm_shallow_fusion",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
@ -1055,12 +1026,18 @@ def main():
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
params.suffix += f"-temperature-{params.temperature}"
|
||||
|
||||
if "rnnlm" in params.decoding_method:
|
||||
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
|
||||
if "LODR" in params.decoding_method:
|
||||
params.suffix += "-LODR"
|
||||
if "ngram" in params.decoding_method:
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
if params.use_shallow_fusion:
|
||||
if params.lm_type == "rnn":
|
||||
params.suffix += f"-rnnlm-lm-scale-{params.lm_scale}"
|
||||
elif params.lm_type == "transformer":
|
||||
params.suffix += f"-transformer-lm-scale-{params.lm_scale}"
|
||||
|
||||
if "LODR" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
|
||||
)
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
@ -1195,28 +1172,19 @@ def main():
|
||||
ngram_lm = None
|
||||
ngram_lm_scale = None
|
||||
|
||||
# only load rnnlm if used
|
||||
if "rnnlm" in params.decoding_method:
|
||||
rnn_lm_scale = params.rnn_lm_scale
|
||||
|
||||
rnn_lm_model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.rnn_lm_embedding_dim,
|
||||
hidden_dim=params.rnn_lm_hidden_dim,
|
||||
num_layers=params.rnn_lm_num_layers,
|
||||
tie_weights=params.rnn_lm_tie_weights,
|
||||
# only load the neural network LM if doing shallow fusion
|
||||
if params.use_shallow_fusion:
|
||||
LM = LmScorer(
|
||||
lm_type=params.lm_type,
|
||||
params=params,
|
||||
device=device,
|
||||
lm_scale=params.lm_scale,
|
||||
)
|
||||
assert params.rnn_lm_avg == 1
|
||||
LM.to(device)
|
||||
LM.eval()
|
||||
|
||||
load_checkpoint(
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||
rnn_lm_model,
|
||||
)
|
||||
rnn_lm_model.to(device)
|
||||
rnn_lm_model.eval()
|
||||
else:
|
||||
rnn_lm_model = None
|
||||
rnn_lm_scale = 0.0
|
||||
LM = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
@ -1247,7 +1215,7 @@ def main():
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
rnnlm_scale=rnn_lm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
|
||||
save_results(
|
||||
|
@ -87,22 +87,39 @@ Usage:
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(8) modified beam search with RNNLM shallow fusion (with LG)
|
||||
(8) modified beam search with RNNLM shallow fusion
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_LG \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--rnn-lm-scale 0.4 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM/exp \
|
||||
--decoding-method modified_beam_search_lm_shallow_fusion \
|
||||
--beam-size 4 \
|
||||
--lm-type rnn \
|
||||
--lm-scale 0.3 \
|
||||
--lm-exp-dir /path/to/LM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
|
||||
(9) modified beam search with LM shallow fusion + LODR
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--max-duration 600 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--decoding-method modified_beam_search_LODR \
|
||||
--beam-size 4 \
|
||||
--lm-type rnn \
|
||||
--lm-scale 0.4 \
|
||||
--lm-exp-dir /path/to/LM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
--tokens-ngram 2 \
|
||||
--ngram-lm-scale -0.16 \
|
||||
|
||||
"""
|
||||
|
||||
@ -128,10 +145,13 @@ from beam_search import (
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
modified_beam_search_rnnlm_shallow_fusion,
|
||||
modified_beam_search_lm_shallow_fusion,
|
||||
modified_beam_search_LODR,
|
||||
modified_beam_search_ngram_rescoring,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall import LmScorer, NgramLm
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
@ -139,7 +159,6 @@ from icefall.checkpoint import (
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
@ -229,7 +248,8 @@ def get_parser():
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
- modified_beam_search_rnnlm_shallow_fusion # for rnn lm shallow fusion
|
||||
- modified_beam_search_lm_shallow_fusion # for rnn lm shallow fusion
|
||||
- modified_beam_search_LODR
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
@ -342,69 +362,49 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-scale",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
|
||||
It specifies the checkpoint to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-avg",
|
||||
type=int,
|
||||
default=2,
|
||||
help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
|
||||
It specifies the number of checkpoints to average.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-num-layers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rnn-lm-tie-weights",
|
||||
"--use-shallow-fusion",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
help="""Use neural network LM for shallow fusion.
|
||||
If you want to use LODR, you will also need to set this to true
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-type",
|
||||
type=str,
|
||||
default="rnn",
|
||||
help="Type of NN lm",
|
||||
choices=["rnn", "transformer"],
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-scale",
|
||||
type=float,
|
||||
default=0.3,
|
||||
help="""The scale of the neural network LM
|
||||
Used only when `--use-shallow-fusion` is set to True.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens-ngram",
|
||||
type=int,
|
||||
default=3,
|
||||
help="""Token Ngram used for rescoring.
|
||||
Used only when the decoding method is
|
||||
modified_beam_search_ngram_rescoring, or LODR
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--backoff-id",
|
||||
type=int,
|
||||
default=500,
|
||||
help="""ID of the backoff symbol.
|
||||
Used only when the decoding method is
|
||||
modified_beam_search_ngram_rescoring""",
|
||||
)
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
@ -417,8 +417,9 @@ def decode_one_batch(
|
||||
batch: dict,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
rnnlm: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
ngram_lm: Optional[NgramLm] = None,
|
||||
ngram_lm_scale: float = 1.0,
|
||||
LM: Optional[LmScorer] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
@ -447,6 +448,13 @@ def decode_one_batch(
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
LM:
|
||||
A neural net LM for shallow fusion. Only used when `--use-shallow-fusion`
|
||||
set to true.
|
||||
ngram_lm:
|
||||
A ngram lm. Used in LODR decoding.
|
||||
ngram_lm_scale:
|
||||
The scale of the ngram language model.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
@ -559,15 +567,38 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
|
||||
hyp_tokens = modified_beam_search_rnnlm_shallow_fusion(
|
||||
elif params.decoding_method == "modified_beam_search_ngram_rescoring":
|
||||
hyp_tokens = modified_beam_search_ngram_rescoring(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_lm_shallow_fusion":
|
||||
hyp_tokens = modified_beam_search_lm_shallow_fusion(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
sp=sp,
|
||||
rnnlm=rnnlm,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_LODR":
|
||||
hyp_tokens = modified_beam_search_LODR(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
sp=sp,
|
||||
LODR_lm=ngram_lm,
|
||||
LODR_lm_scale=ngram_lm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
@ -620,8 +651,9 @@ def decode_dataset(
|
||||
sp: spm.SentencePieceProcessor,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
rnnlm: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
ngram_lm: Optional[NgramLm] = None,
|
||||
ngram_lm_scale: float = 1.0,
|
||||
LM: Optional[LmScorer] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
@ -640,6 +672,8 @@ def decode_dataset(
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
LM:
|
||||
A neural network LM, used during shallow fusion
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
@ -663,7 +697,6 @@ def decode_dataset(
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
logging.info(f"Decoding {batch_idx}-th batch")
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
@ -672,8 +705,9 @@ def decode_dataset(
|
||||
decoding_graph=decoding_graph,
|
||||
word_table=word_table,
|
||||
batch=batch,
|
||||
rnnlm=rnnlm,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
@ -742,6 +776,7 @@ def save_results(
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
LmScorer.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
@ -757,7 +792,8 @@ def main():
|
||||
"fast_beam_search_nbest_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
"modified_beam_search_rnnlm_shallow_fusion",
|
||||
"modified_beam_search_lm_shallow_fusion",
|
||||
"modified_beam_search_LODR",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
@ -783,7 +819,18 @@ def main():
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
|
||||
if "ngram" in params.decoding_method:
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
if params.use_shallow_fusion:
|
||||
if params.lm_type == "rnn":
|
||||
params.suffix += f"-rnnlm-lm-scale-{params.lm_scale}"
|
||||
elif params.lm_type == "transformer":
|
||||
params.suffix += f"-transformer-lm-scale-{params.lm_scale}"
|
||||
|
||||
if "LODR" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
|
||||
)
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
@ -895,24 +942,34 @@ def main():
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
rnn_lm_model = None
|
||||
rnn_lm_scale = params.rnn_lm_scale
|
||||
if params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
|
||||
rnn_lm_model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.rnn_lm_embedding_dim,
|
||||
hidden_dim=params.rnn_lm_hidden_dim,
|
||||
num_layers=params.rnn_lm_num_layers,
|
||||
tie_weights=params.rnn_lm_tie_weights,
|
||||
# only load N-gram LM when needed
|
||||
if "ngram" in params.decoding_method or "LODR" in params.decoding_method:
|
||||
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
|
||||
logging.info(f"lm filename: {lm_filename}")
|
||||
ngram_lm = NgramLm(
|
||||
str(params.lang_dir / lm_filename),
|
||||
backoff_id=params.backoff_id,
|
||||
is_binary=False,
|
||||
)
|
||||
assert params.rnn_lm_avg == 1
|
||||
logging.info(f"num states: {ngram_lm.lm.num_states}")
|
||||
ngram_lm_scale = params.ngram_lm_scale
|
||||
else:
|
||||
ngram_lm = None
|
||||
ngram_lm_scale = None
|
||||
|
||||
load_checkpoint(
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||
rnn_lm_model,
|
||||
# only load the neural network LM if doing shallow fusion
|
||||
if params.use_shallow_fusion:
|
||||
LM = LmScorer(
|
||||
lm_type=params.lm_type,
|
||||
params=params,
|
||||
device=device,
|
||||
lm_scale=params.lm_scale,
|
||||
)
|
||||
rnn_lm_model.to(device)
|
||||
rnn_lm_model.eval()
|
||||
LM.to(device)
|
||||
LM.eval()
|
||||
|
||||
else:
|
||||
LM = None
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if "LG" in params.decoding_method:
|
||||
@ -955,8 +1012,9 @@ def main():
|
||||
sp=sp,
|
||||
word_table=word_table,
|
||||
decoding_graph=decoding_graph,
|
||||
rnnlm=rnn_lm_model,
|
||||
rnnlm_scale=rnn_lm_scale,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
|
||||
save_results(
|
||||
|
@ -1,7 +1,8 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
# Zengwei Yao,
|
||||
# Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -91,6 +92,41 @@ Usage:
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(8) modified beam search with RNNLM shallow fusion
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search_lm_shallow_fusion \
|
||||
--beam-size 4 \
|
||||
--lm-type rnn \
|
||||
--lm-scale 0.3 \
|
||||
--lm-exp-dir /path/to/LM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
|
||||
(9) modified beam search with LM shallow fusion + LODR
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--max-duration 600 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--decoding-method modified_beam_search_LODR \
|
||||
--beam-size 4 \
|
||||
--lm-type rnn \
|
||||
--lm-scale 0.4 \
|
||||
--lm-exp-dir /path/to/LM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
--tokens-ngram 2 \
|
||||
--ngram-lm-scale -0.16 \
|
||||
|
||||
"""
|
||||
|
||||
|
||||
@ -115,9 +151,13 @@ from beam_search import (
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
modified_beam_search_lm_shallow_fusion,
|
||||
modified_beam_search_LODR,
|
||||
modified_beam_search_ngram_rescoring,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall import LmScorer, NgramLm
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
@ -213,6 +253,8 @@ def get_parser():
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
- modified_beam_search_lm_shallow_fusion # for rnn lm shallow fusion
|
||||
- modified_beam_search_LODR
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
@ -274,6 +316,7 @@ def get_parser():
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
@ -323,6 +366,50 @@ def get_parser():
|
||||
help="left context can be seen during decoding (in frames after subsampling)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-shallow-fusion",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Use neural network LM for shallow fusion.
|
||||
If you want to use LODR, you will also need to set this to true
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-type",
|
||||
type=str,
|
||||
default="rnn",
|
||||
help="Type of NN lm",
|
||||
choices=["rnn", "transformer"],
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-scale",
|
||||
type=float,
|
||||
default=0.3,
|
||||
help="""The scale of the neural network LM
|
||||
Used only when `--use-shallow-fusion` is set to True.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens-ngram",
|
||||
type=int,
|
||||
default=3,
|
||||
help="""Token Ngram used for rescoring.
|
||||
Used only when the decoding method is
|
||||
modified_beam_search_ngram_rescoring, or LODR
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--backoff-id",
|
||||
type=int,
|
||||
default=500,
|
||||
help="""ID of the backoff symbol.
|
||||
Used only when the decoding method is
|
||||
modified_beam_search_ngram_rescoring""",
|
||||
)
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
@ -335,6 +422,9 @@ def decode_one_batch(
|
||||
batch: dict,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
ngram_lm: Optional[NgramLm] = None,
|
||||
ngram_lm_scale: float = 1.0,
|
||||
LM: Optional[LmScorer] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
@ -363,6 +453,13 @@ def decode_one_batch(
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
LM:
|
||||
A neural net LM for shallow fusion. Only used when `--use-shallow-fusion`
|
||||
set to true.
|
||||
ngram_lm:
|
||||
A ngram lm. Used in LODR decoding.
|
||||
ngram_lm_scale:
|
||||
The scale of the ngram language model.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
@ -468,6 +565,30 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_lm_shallow_fusion":
|
||||
hyp_tokens = modified_beam_search_lm_shallow_fusion(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
sp=sp,
|
||||
LM=LM,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_LODR":
|
||||
hyp_tokens = modified_beam_search_LODR(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
sp=sp,
|
||||
LODR_lm=ngram_lm,
|
||||
LODR_lm_scale=ngram_lm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
@ -517,6 +638,9 @@ def decode_dataset(
|
||||
sp: spm.SentencePieceProcessor,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
ngram_lm: Optional[NgramLm] = None,
|
||||
ngram_lm_scale: float = 1.0,
|
||||
LM: Optional[LmScorer] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
@ -535,6 +659,8 @@ def decode_dataset(
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
LM:
|
||||
A neural network LM, used during shallow fusion
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
@ -566,6 +692,9 @@ def decode_dataset(
|
||||
decoding_graph=decoding_graph,
|
||||
word_table=word_table,
|
||||
batch=batch,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
@ -634,6 +763,7 @@ def save_results(
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
LmScorer.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
@ -648,6 +778,8 @@ def main():
|
||||
"fast_beam_search_nbest_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
"modified_beam_search_lm_shallow_fusion",
|
||||
"modified_beam_search_LODR",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
@ -675,6 +807,19 @@ def main():
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
if "ngram" in params.decoding_method:
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
if params.use_shallow_fusion:
|
||||
if params.lm_type == "rnn":
|
||||
params.suffix += f"-rnnlm-lm-scale-{params.lm_scale}"
|
||||
elif params.lm_type == "transformer":
|
||||
params.suffix += f"-transformer-lm-scale-{params.lm_scale}"
|
||||
|
||||
if "LODR" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
|
||||
)
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
@ -785,6 +930,34 @@ def main():
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
# only load N-gram LM when needed
|
||||
if "ngram" in params.decoding_method or "LODR" in params.decoding_method:
|
||||
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
|
||||
logging.info(f"lm filename: {lm_filename}")
|
||||
ngram_lm = NgramLm(
|
||||
str(params.lang_dir / lm_filename),
|
||||
backoff_id=params.backoff_id,
|
||||
is_binary=False,
|
||||
)
|
||||
logging.info(f"num states: {ngram_lm.lm.num_states}")
|
||||
ngram_lm_scale = params.ngram_lm_scale
|
||||
else:
|
||||
ngram_lm = None
|
||||
ngram_lm_scale = None
|
||||
|
||||
# only load the neural network LM if doing shallow fusion
|
||||
if params.use_shallow_fusion:
|
||||
LM = LmScorer(
|
||||
lm_type=params.lm_type,
|
||||
params=params,
|
||||
device=device,
|
||||
lm_scale=params.lm_scale,
|
||||
)
|
||||
LM.to(device)
|
||||
LM.eval()
|
||||
|
||||
else:
|
||||
LM = None
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
@ -826,6 +999,9 @@ def main():
|
||||
sp=sp,
|
||||
word_table=word_table,
|
||||
decoding_graph=decoding_graph,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
|
||||
save_results(
|
||||
|
@ -68,3 +68,5 @@ from .utils import (
|
||||
)
|
||||
|
||||
from .ngram_lm import NgramLm, NgramLmStateCost
|
||||
|
||||
from .lm_wrapper import LmScorer
|
||||
|
254
icefall/lm_wrapper.py
Normal file
254
icefall/lm_wrapper.py
Normal file
@ -0,0 +1,254 @@
|
||||
# Copyright (c) 2022 Xiaomi Corporation (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
import torch
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.transformer_lm.model import TransformerLM
|
||||
from icefall.utils import AttributeDict, str2bool
|
||||
|
||||
|
||||
class LmScorer(torch.nn.Module):
|
||||
"""This is a wrapper for NN LMs
|
||||
The language models supported include:
|
||||
RNN,
|
||||
Transformer
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lm_type: str,
|
||||
params: AttributeDict,
|
||||
device,
|
||||
lm_scale: float = 0.3,
|
||||
):
|
||||
super(LmScorer, self).__init__()
|
||||
assert lm_type in ["rnn", "transformer"], f"{lm_type} is not supported"
|
||||
self.lm_type = lm_type
|
||||
self.lm = self.get_lm(lm_type, device, params)
|
||||
self.lm_scale = lm_scale
|
||||
self.params = params
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser):
|
||||
# LM general arguments
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="""Which epoch to be used
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Number of checkpoints to be averaged
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument("--lm-exp-dir", type=str, help="Path to LM experiments")
|
||||
|
||||
# Now RNNLM related arguments
|
||||
parser.add_argument(
|
||||
"--rnn-lm-embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-num-layers",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
# Now transformers
|
||||
parser.add_argument(
|
||||
"--transformer-lm-exp-dir", type=str, help="Directory of transformer LM exp"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-dim-feedforward",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Dimension of FFW module in transformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-encoder-dim",
|
||||
type=int,
|
||||
default=768,
|
||||
help="Encoder dimension of transformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-embedding-dim",
|
||||
type=int,
|
||||
default=768,
|
||||
help="Input embedding dimension of transformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-nhead",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of attention heads in transformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-num-layers",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of encoder layers in transformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="If tie weights in transformer LM",
|
||||
)
|
||||
|
||||
def get_lm(self, lm_type: str, device, params: AttributeDict) -> torch.nn.Module:
|
||||
"""Return the neural network LM
|
||||
|
||||
Args:
|
||||
lm_type (str): Type name of NN LM
|
||||
"""
|
||||
if lm_type == "rnn":
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.rnn_lm_embedding_dim,
|
||||
hidden_dim=params.rnn_lm_hidden_dim,
|
||||
num_layers=params.rnn_lm_num_layers,
|
||||
tie_weights=params.rnn_lm_tie_weights,
|
||||
)
|
||||
|
||||
if params.lm_avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.lm_exp_dir}/epoch-{params.lm_epoch}.pt", model
|
||||
)
|
||||
model.to(device)
|
||||
else:
|
||||
start = params.lm_epoch - params.lm_avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.lm_epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.lm_exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
elif lm_type == "transformer":
|
||||
model = TransformerLM(
|
||||
vocab_size=params.vocab_size,
|
||||
d_model=params.transformer_lm_encoder_dim,
|
||||
embedding_dim=params.transformer_lm_embedding_dim,
|
||||
dim_feedforward=params.transformer_lm_dim_feedforward,
|
||||
nhead=params.transformer_lm_nhead,
|
||||
num_layers=params.transformer_lm_num_layers,
|
||||
tie_weights=params.transformer_lm_tie_weights,
|
||||
params=params,
|
||||
)
|
||||
|
||||
if params.lm_avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.lm_exp_dir}/epoch-{params.lm_epoch}.pt", model
|
||||
)
|
||||
model.to(device)
|
||||
else:
|
||||
start = params.lm_epoch - params.lm_avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.lm_epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.lm_exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
return model
|
||||
|
||||
def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
|
||||
"""Score the input and return the prediction
|
||||
This requires the lm to have the method `score_token`
|
||||
Args:
|
||||
x (torch.Tensor): Input tokens
|
||||
x_lens (torch.Tensor): Length of the input tokens
|
||||
state (optional): LM states
|
||||
|
||||
"""
|
||||
return self.lm.score_token(x, x_lens, state)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
LmScorer.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
params = AttributeDict()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
Scorer = LmScorer(params=params, device=device)
|
||||
Scorer.eval()
|
||||
|
||||
x = (
|
||||
torch.tensor([[1, 4, 19, 256, 77], [1, 4, 19, 256, 77]])
|
||||
.to(device)
|
||||
.to(torch.int64)
|
||||
)
|
||||
x_lens = torch.tensor([5, 5]).to(device)
|
||||
|
||||
state = None
|
||||
|
||||
score, state = Scorer.score(x, x_lens)
|
||||
print(score.shape)
|
||||
print(score[0])
|
||||
print(score[1])
|
@ -153,9 +153,24 @@ class RnnLmModel(torch.nn.Module):
|
||||
def clean_cache(self):
|
||||
self.cache = {}
|
||||
|
||||
def score_token(self, tokens: torch.Tensor, state=None):
|
||||
def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
|
||||
"""Score a batch of tokens
|
||||
|
||||
Args:
|
||||
x (torch.Tensor):
|
||||
A batch of tokens
|
||||
x_lens (torch.Tensor):
|
||||
The length of tokens in the batch before padding
|
||||
state (_type_, optional):
|
||||
Either None or a tuple of two torch.Tensor. Each tensor has
|
||||
the shape of (hidden_dim)
|
||||
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
device = next(self.parameters()).device
|
||||
batch_size = tokens.size(0)
|
||||
batch_size = x.size(0)
|
||||
if state:
|
||||
h, c = state
|
||||
else:
|
||||
@ -166,7 +181,7 @@ class RnnLmModel(torch.nn.Module):
|
||||
device
|
||||
)
|
||||
|
||||
embedding = self.input_embedding(tokens)
|
||||
embedding = self.input_embedding(x)
|
||||
rnn_out, states = self.rnn(embedding, (h, c))
|
||||
logits = self.output_linear(rnn_out)
|
||||
|
||||
|
@ -531,6 +531,9 @@ def run(rank, world_size, args):
|
||||
tie_weights=params.tie_weights,
|
||||
)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
|
510
icefall/transformer_lm/attention.py
Normal file
510
icefall/transformer_lm/attention.py
Normal file
@ -0,0 +1,510 @@
|
||||
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from icefall.transformer_lm.scaling import (
|
||||
ActivationBalancer,
|
||||
BasicNorm,
|
||||
DoubleSwish,
|
||||
ScaledConv1d,
|
||||
ScaledConv2d,
|
||||
ScaledLinear,
|
||||
)
|
||||
from icefall.utils import is_jit_tracing
|
||||
|
||||
|
||||
class RelPositionMultiheadAttention(nn.Module):
|
||||
r"""Multi-Head Attention layer with relative position encoding
|
||||
|
||||
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
|
||||
Args:
|
||||
embed_dim: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
num_heads: int,
|
||||
dropout: float = 0.0,
|
||||
) -> None:
|
||||
super(RelPositionMultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
self.in_proj = ScaledLinear(embed_dim, 3 * embed_dim, bias=True)
|
||||
self.out_proj = ScaledLinear(
|
||||
embed_dim, embed_dim, bias=True, initial_scale=0.25
|
||||
)
|
||||
|
||||
# linear transformation for positional encoding.
|
||||
self.linear_pos = ScaledLinear(embed_dim, embed_dim, bias=False)
|
||||
# these two learnable bias are used in matrix c and matrix d
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
self.pos_bias_u_scale = nn.Parameter(torch.zeros(()).detach())
|
||||
self.pos_bias_v_scale = nn.Parameter(torch.zeros(()).detach())
|
||||
self._reset_parameters()
|
||||
|
||||
def _pos_bias_u(self):
|
||||
return self.pos_bias_u * self.pos_bias_u_scale.exp()
|
||||
|
||||
def _pos_bias_v(self):
|
||||
return self.pos_bias_v * self.pos_bias_v_scale.exp()
|
||||
|
||||
def _reset_parameters(self) -> None:
|
||||
nn.init.normal_(self.pos_bias_u, std=0.01)
|
||||
nn.init.normal_(self.pos_bias_v, std=0.01)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = False,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
left_context: int = 0,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. When given a binary mask and a value is True,
|
||||
the corresponding value on the attention layer will be ignored. When given
|
||||
a byte mask and a value is non-zero, the corresponding value on the attention
|
||||
layer will be ignored
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
left_context (int): left context (in frames) used during streaming decoding.
|
||||
this is used only in real streaming decoding, in other circumstances,
|
||||
it MUST be 0.
|
||||
|
||||
Shape:
|
||||
- Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
||||
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
- Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
return self.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
pos_emb,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj.get_weight(),
|
||||
self.in_proj.get_bias(),
|
||||
self.dropout,
|
||||
self.out_proj.get_weight(),
|
||||
self.out_proj.get_bias(),
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
left_context=left_context,
|
||||
)
|
||||
|
||||
def rel_shift(self, x: Tensor, left_context: int = 0) -> Tensor:
|
||||
"""Compute relative positional encoding.
|
||||
|
||||
Args:
|
||||
x: Input tensor (batch, head, time1, 2*time1-1+left_context).
|
||||
time1 means the length of query vector.
|
||||
left_context (int): left context (in frames) used during streaming decoding.
|
||||
this is used only in real streaming decoding, in other circumstances,
|
||||
it MUST be 0.
|
||||
|
||||
Returns:
|
||||
Tensor: tensor of shape (batch, head, time1, time2)
|
||||
(note: time2 has the same value as time1, but it is for
|
||||
the key, while time1 is for the query).
|
||||
"""
|
||||
(batch_size, num_heads, time1, n) = x.shape
|
||||
|
||||
time2 = time1 + left_context
|
||||
if not is_jit_tracing():
|
||||
assert (
|
||||
n == left_context + 2 * time1 - 1
|
||||
), f"{n} == {left_context} + 2 * {time1} - 1"
|
||||
|
||||
if is_jit_tracing():
|
||||
rows = torch.arange(start=time1 - 1, end=-1, step=-1)
|
||||
cols = torch.arange(time2)
|
||||
rows = rows.repeat(batch_size * num_heads).unsqueeze(-1)
|
||||
indexes = rows + cols
|
||||
|
||||
x = x.reshape(-1, n)
|
||||
x = torch.gather(x, dim=1, index=indexes)
|
||||
x = x.reshape(batch_size, num_heads, time1, time2)
|
||||
return x
|
||||
else:
|
||||
# Note: TorchScript requires explicit arg for stride()
|
||||
batch_stride = x.stride(0)
|
||||
head_stride = x.stride(1)
|
||||
time1_stride = x.stride(2)
|
||||
n_stride = x.stride(3)
|
||||
return x.as_strided(
|
||||
(batch_size, num_heads, time1, time2),
|
||||
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
||||
storage_offset=n_stride * (time1 - 1),
|
||||
)
|
||||
|
||||
def multi_head_attention_forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight: Tensor,
|
||||
in_proj_bias: Tensor,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Tensor,
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = False,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
left_context: int = 0,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
embed_dim_to_check: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||
dropout_p: probability of an element to be zeroed.
|
||||
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||
training: apply dropout if is ``True``.
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. This is an binary mask. When the value is True,
|
||||
the corresponding value on the attention layer will be filled with -inf.
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
left_context (int): left context (in frames) used during streaming decoding.
|
||||
this is used only in real streaming decoding, in other circumstances,
|
||||
it MUST be 0.
|
||||
|
||||
Shape:
|
||||
Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
||||
length, N is the batch size, E is the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
||||
will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
|
||||
tgt_len, bsz, embed_dim = query.size()
|
||||
if not is_jit_tracing():
|
||||
assert embed_dim == embed_dim_to_check
|
||||
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
||||
|
||||
head_dim = embed_dim // num_heads
|
||||
if not is_jit_tracing():
|
||||
assert (
|
||||
head_dim * num_heads == embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
scaling = float(head_dim) ** -0.5
|
||||
|
||||
if torch.equal(query, key) and torch.equal(key, value):
|
||||
# self-attention
|
||||
q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
|
||||
3, dim=-1
|
||||
)
|
||||
|
||||
elif torch.equal(key, value):
|
||||
# encoder-decoder attention
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
||||
|
||||
else:
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = embed_dim * 2
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
k = nn.functional.linear(key, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim * 2
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
v = nn.functional.linear(value, _w, _b)
|
||||
|
||||
if attn_mask is not None:
|
||||
assert (
|
||||
attn_mask.dtype == torch.float32
|
||||
or attn_mask.dtype == torch.float64
|
||||
or attn_mask.dtype == torch.float16
|
||||
or attn_mask.dtype == torch.uint8
|
||||
or attn_mask.dtype == torch.bool
|
||||
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
||||
attn_mask.dtype
|
||||
)
|
||||
if attn_mask.dtype == torch.uint8:
|
||||
warnings.warn(
|
||||
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
attn_mask = attn_mask.to(torch.bool)
|
||||
|
||||
if attn_mask.dim() == 2:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||
raise RuntimeError("The size of the 2D attn_mask is not correct.")
|
||||
elif attn_mask.dim() == 3:
|
||||
if list(attn_mask.size()) != [
|
||||
bsz * num_heads,
|
||||
query.size(0),
|
||||
key.size(0),
|
||||
]:
|
||||
raise RuntimeError("The size of the 3D attn_mask is not correct.")
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"attn_mask's dimension {} is not supported".format(attn_mask.dim())
|
||||
)
|
||||
# attn_mask's dim is 3 now.
|
||||
|
||||
# convert ByteTensor key_padding_mask to bool
|
||||
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
||||
warnings.warn(
|
||||
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||
|
||||
q = (q * scaling).contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
||||
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
||||
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
||||
|
||||
src_len = k.size(0)
|
||||
|
||||
if key_padding_mask is not None and not is_jit_tracing():
|
||||
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
||||
key_padding_mask.size(0), bsz
|
||||
)
|
||||
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
||||
key_padding_mask.size(1), src_len
|
||||
)
|
||||
|
||||
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
||||
|
||||
pos_emb_bsz = pos_emb.size(0)
|
||||
if not is_jit_tracing():
|
||||
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
||||
|
||||
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
||||
# (batch, 2*time1, head, d_k) --> (batch, head, d_k, 2*time -1)
|
||||
p = p.permute(0, 2, 3, 1)
|
||||
|
||||
q_with_bias_u = (q + self._pos_bias_u()).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
q_with_bias_v = (q + self._pos_bias_v()).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
# compute attention score
|
||||
# first compute matrix a and matrix c
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||
matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2)
|
||||
|
||||
# compute matrix b and matrix d
|
||||
matrix_bd = torch.matmul(q_with_bias_v, p) # (batch, head, time1, 2*time1-1)
|
||||
matrix_bd = self.rel_shift(matrix_bd, left_context)
|
||||
|
||||
attn_output_weights = matrix_ac + matrix_bd # (batch, head, time1, time2)
|
||||
|
||||
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
|
||||
|
||||
if not is_jit_tracing():
|
||||
assert list(attn_output_weights.size()) == [
|
||||
bsz * num_heads,
|
||||
tgt_len,
|
||||
src_len,
|
||||
]
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
||||
else:
|
||||
attn_output_weights += attn_mask
|
||||
|
||||
if key_padding_mask is not None:
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
attn_output_weights = attn_output_weights.masked_fill(
|
||||
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||
float("-inf"),
|
||||
)
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz * num_heads, tgt_len, src_len
|
||||
)
|
||||
|
||||
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
||||
|
||||
# If we are using dynamic_chunk_training and setting a limited
|
||||
# num_left_chunks, the attention may only see the padding values which
|
||||
# will also be masked out by `key_padding_mask`, at this circumstances,
|
||||
# the whole column of `attn_output_weights` will be `-inf`
|
||||
# (i.e. be `nan` after softmax), so, we fill `0.0` at the masking
|
||||
# positions to avoid invalid loss value below.
|
||||
if (
|
||||
attn_mask is not None
|
||||
and attn_mask.dtype == torch.bool
|
||||
and key_padding_mask is not None
|
||||
):
|
||||
if attn_mask.size(0) != 1:
|
||||
attn_mask = attn_mask.view(bsz, num_heads, tgt_len, src_len)
|
||||
combined_mask = attn_mask | key_padding_mask.unsqueeze(1).unsqueeze(2)
|
||||
else:
|
||||
# attn_mask.shape == (1, tgt_len, src_len)
|
||||
combined_mask = attn_mask.unsqueeze(0) | key_padding_mask.unsqueeze(
|
||||
1
|
||||
).unsqueeze(2)
|
||||
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0)
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz * num_heads, tgt_len, src_len
|
||||
)
|
||||
|
||||
attn_output_weights = nn.functional.dropout(
|
||||
attn_output_weights, p=dropout_p, training=training
|
||||
)
|
||||
|
||||
attn_output = torch.bmm(attn_output_weights, v)
|
||||
|
||||
if not is_jit_tracing():
|
||||
assert list(attn_output.size()) == [
|
||||
bsz * num_heads,
|
||||
tgt_len,
|
||||
head_dim,
|
||||
]
|
||||
|
||||
attn_output = (
|
||||
attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
||||
)
|
||||
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
|
||||
if need_weights:
|
||||
# average attention weights over heads
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
||||
else:
|
||||
return attn_output, None
|
195
icefall/transformer_lm/compute_perplexity.py
Normal file
195
icefall/transformer_lm/compute_perplexity.py
Normal file
@ -0,0 +1,195 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||
# Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from dataset import get_dataloader
|
||||
from train import get_params
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.transformer_lm.model import TransformerLM
|
||||
from icefall.utils import AttributeDict, setup_logger, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transformer_lm/exp_full_libri_16layer_maxlen200_8gpu",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data",
|
||||
type=str,
|
||||
help="Path to the LM test data for computing perplexity",
|
||||
default="transformer_lm/libri_lm_training_bpe500/sorted_lm_data-test.pt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sent-len",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lm_data = Path(args.lm_data)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log-ppl/")
|
||||
logging.info("Computing perplexity started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = TransformerLM(
|
||||
vocab_size=params.vocab_size,
|
||||
d_model=params.encoder_dim,
|
||||
embedding_dim=params.embedding_dim,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
nhead=params.nhead,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
params=params,
|
||||
)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
model.to(device)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
num_param_requires_grad = sum(
|
||||
[p.numel() for p in model.parameters() if p.requires_grad]
|
||||
)
|
||||
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
logging.info(
|
||||
f"Number of model parameters (requires_grad): "
|
||||
f"{num_param_requires_grad} "
|
||||
f"({num_param_requires_grad/num_param_requires_grad*100}%)"
|
||||
)
|
||||
|
||||
logging.info(f"Loading LM test data from {params.lm_data}")
|
||||
test_dl = get_dataloader(
|
||||
filename=params.lm_data,
|
||||
is_distributed=False,
|
||||
params=params,
|
||||
)
|
||||
|
||||
tot_loss = 0.0
|
||||
num_tokens = 0
|
||||
num_sentences = 0
|
||||
for batch_idx, batch in enumerate(test_dl):
|
||||
x, y, sentence_lengths = batch
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
sentence_lengths = sentence_lengths.to(device)
|
||||
|
||||
nll = model(x, y, sentence_lengths)
|
||||
loss = nll.sum().cpu().item()
|
||||
|
||||
tot_loss += loss
|
||||
num_tokens += sentence_lengths.sum().cpu().item()
|
||||
num_sentences += x.size(0)
|
||||
|
||||
ppl = math.exp(tot_loss / num_tokens)
|
||||
logging.info(
|
||||
f"total nll: {tot_loss}, num tokens: {num_tokens}, "
|
||||
f"num sentences: {num_sentences}, ppl: {ppl:.3f}"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
icefall/transformer_lm/dataset.py
Symbolic link
1
icefall/transformer_lm/dataset.py
Symbolic link
@ -0,0 +1 @@
|
||||
../rnn_lm/dataset.py
|
329
icefall/transformer_lm/encoder.py
Normal file
329
icefall/transformer_lm/encoder.py
Normal file
@ -0,0 +1,329 @@
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import copy
|
||||
import math
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor, nn
|
||||
|
||||
from icefall.transformer_lm.attention import RelPositionMultiheadAttention
|
||||
from icefall.transformer_lm.scaling import (
|
||||
ActivationBalancer,
|
||||
BasicNorm,
|
||||
DoubleSwish,
|
||||
ScaledConv1d,
|
||||
ScaledConv2d,
|
||||
ScaledLinear,
|
||||
)
|
||||
from icefall.utils import is_jit_tracing, make_pad_mask
|
||||
|
||||
|
||||
class Transformer(torch.nn.Module):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
input_dim (int): Input feature dimension
|
||||
d_mode (int): The dimension of the transformer
|
||||
dim_feedforward (int ): The dimension of the ffw module
|
||||
nhead (int): The number of attention heads
|
||||
dropout_rate (float): dropout rate
|
||||
att_dropout (float): dropout rate in attention module
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
d_model: int,
|
||||
dim_feedforward: int,
|
||||
nhead: int = 4,
|
||||
num_layers: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
att_dropout: float = 0.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.encoder_layers = num_layers
|
||||
self.d_model = d_model
|
||||
|
||||
self.embed = ScaledLinear(input_dim, d_model)
|
||||
self.norm_before = BasicNorm(d_model, learn_eps=False)
|
||||
|
||||
self.encoder_pos = RelPositionalEncoding(d_model, dropout_rate)
|
||||
|
||||
encoder_layer = TransformerEncoderLayer(
|
||||
d_model=d_model,
|
||||
dim_feedforward=dim_feedforward,
|
||||
nhead=nhead,
|
||||
dropout_rate=dropout_rate,
|
||||
)
|
||||
|
||||
self.encoder = TransformerEncoder(encoder_layer, num_layers)
|
||||
|
||||
def _create_attention_mask(self, x_lens: torch.Tensor):
|
||||
# create a 2D attention mask to mask out
|
||||
# the upper right half of the attention matrix
|
||||
max_len = max(x_lens)
|
||||
ones = torch.ones(max_len, max_len, device=x_lens.device, dtype=torch.bool)
|
||||
return torch.triu(ones, diagonal=1)
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Transformer forward
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (B,T,input_dim)
|
||||
x_lens (torch.Tensor): The length of input tensors before padding (B,)
|
||||
|
||||
Returns:
|
||||
Return a tuple of 2 tensors:
|
||||
- x: output feature of the transformer (B,T,d_model)
|
||||
- x_lens: output feature lens of the transformer
|
||||
"""
|
||||
|
||||
attention_mask = self._create_attention_mask(x_lens)
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
x = self.norm_before(self.embed(x))
|
||||
|
||||
x, pos_emb = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2)
|
||||
|
||||
x = self.encoder(
|
||||
x,
|
||||
pos_emb,
|
||||
mask=attention_mask, # pass the attention mast
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
) # (T, N, C)
|
||||
|
||||
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
return x, x_lens
|
||||
|
||||
|
||||
class TransformerEncoder(torch.nn.Module):
|
||||
def __init__(self, encoder_layer: torch.nn.Module, num_layers: int) -> None:
|
||||
"""TransformerEncoder is a stack of N encoder layers
|
||||
|
||||
Args:
|
||||
encoder_layer (torch.nn.Module): an instance of the TransformerEncoderLayer()
|
||||
num_layers (int): Number of layers to be stacked
|
||||
"""
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList(
|
||||
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
|
||||
)
|
||||
self.num_layers = num_layers
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||
mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Returns:
|
||||
output: transformer encoded features
|
||||
"""
|
||||
output = src
|
||||
|
||||
for layer_index, mod in enumerate(self.layers):
|
||||
output = mod(
|
||||
output,
|
||||
pos_emb,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
src_mask=mask,
|
||||
)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class TransformerEncoderLayer(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
dim_feedforward: int,
|
||||
nhead: int,
|
||||
dropout_rate: float,
|
||||
):
|
||||
"""TransformerEncoderLayer is made up of self-attn and feedforward module
|
||||
|
||||
Args:
|
||||
d_model (int): The model size
|
||||
dim_feedforward (int): Dimension of ffw module
|
||||
nhead (int): Number of heads
|
||||
dropout_rate (float): Dropout rate
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.d_model = d_model
|
||||
|
||||
self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
|
||||
self.feed_forward = nn.Sequential(
|
||||
ScaledLinear(d_model, dim_feedforward),
|
||||
ActivationBalancer(channel_dim=-1),
|
||||
DoubleSwish(),
|
||||
nn.Dropout(dropout_rate),
|
||||
ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
|
||||
)
|
||||
|
||||
self.norm_final = BasicNorm(d_model)
|
||||
|
||||
self.balancer = ActivationBalancer(
|
||||
channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0
|
||||
)
|
||||
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||
src_mask: Optional[torch.Tensor] = None,
|
||||
cache=None,
|
||||
):
|
||||
"""
|
||||
Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
"""
|
||||
src_orig = src
|
||||
|
||||
src_att = self.self_attn(
|
||||
src,
|
||||
src,
|
||||
src,
|
||||
pos_emb=pos_emb,
|
||||
attn_mask=src_mask,
|
||||
key_padding_mask=src_key_padding_mask,
|
||||
)[0]
|
||||
|
||||
src = src + self.dropout(src_att)
|
||||
|
||||
# feed forward module
|
||||
src = src + self.dropout(self.feed_forward(src))
|
||||
|
||||
src = self.norm_final(self.balancer(src))
|
||||
|
||||
return src
|
||||
|
||||
|
||||
class RelPositionalEncoding(torch.nn.Module):
|
||||
"""Relative positional encoding module.
|
||||
|
||||
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
||||
|
||||
Args:
|
||||
d_model: Embedding dimension.
|
||||
dropout_rate: Dropout rate.
|
||||
max_len: Maximum input length.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
|
||||
"""Construct an PositionalEncoding object."""
|
||||
super(RelPositionalEncoding, self).__init__()
|
||||
if is_jit_tracing():
|
||||
# 10k frames correspond to ~100k ms, e.g., 100 seconds, i.e.,
|
||||
# It assumes that the maximum input won't have more than
|
||||
# 10k frames.
|
||||
#
|
||||
# TODO(fangjun): Use torch.jit.script() for this module
|
||||
max_len = 10000
|
||||
|
||||
self.d_model = d_model
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||
|
||||
def extend_pe(self, x: torch.Tensor, left_context: int = 0) -> None:
|
||||
"""Reset the positional encodings."""
|
||||
x_size_1 = x.size(1) + left_context
|
||||
if self.pe is not None:
|
||||
# self.pe contains both positive and negative parts
|
||||
# the length of self.pe is 2 * input_len - 1
|
||||
if self.pe.size(1) >= x_size_1 * 2 - 1:
|
||||
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||
if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
# Suppose `i` means to the position of query vector and `j` means the
|
||||
# position of key vector. We use position relative positions when keys
|
||||
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||
pe_positive = torch.zeros(x_size_1, self.d_model)
|
||||
pe_negative = torch.zeros(x_size_1, self.d_model)
|
||||
position = torch.arange(0, x_size_1, dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||
|
||||
# Reserve the order of positive indices and concat both positive and
|
||||
# negative indices. This is used to support the shifting trick
|
||||
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
left_context: int = 0,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Add positional encoding.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||
left_context (int): left context (in frames) used during streaming decoding.
|
||||
this is used only in real streaming decoding, in other circumstances,
|
||||
it MUST be 0.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
||||
|
||||
"""
|
||||
self.extend_pe(x, left_context)
|
||||
x_size_1 = x.size(1) + left_context
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2
|
||||
- x_size_1
|
||||
+ 1 : self.pe.size(1) // 2 # noqa E203
|
||||
+ x.size(1),
|
||||
]
|
||||
return self.dropout(x), self.dropout(pos_emb)
|
186
icefall/transformer_lm/export.py
Normal file
186
icefall/transformer_lm/export.py
Normal file
@ -0,0 +1,186 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2022 Xiaomi Corporation (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from model import TransformerLM
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.utils import AttributeDict, load_averaged_model, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=11,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--embedding-dim",
|
||||
type=int,
|
||||
default=768,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder-dim",
|
||||
type=int,
|
||||
default=768,
|
||||
help="Encoder dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--dim_feedforward",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nhead",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of attention heads",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of Transformer layers",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = AttributeDict({})
|
||||
params.update(vars(args))
|
||||
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = TransformerLM(
|
||||
vocab_size=params.vocab_size,
|
||||
d_model=params.encoder_dim,
|
||||
embedding_dim=params.embedding_dim,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
nhead=params.nhead,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
params=params,
|
||||
)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
model = load_averaged_model(
|
||||
params.exp_dir, model, params.epoch, params.avg, device
|
||||
)
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
115
icefall/transformer_lm/model.py
Normal file
115
icefall/transformer_lm/model.py
Normal file
@ -0,0 +1,115 @@
|
||||
# Copyright (c) 2022 Xiaomi Corporation (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from icefall.transformer_lm.encoder import Transformer
|
||||
from icefall.utils import AttributeDict, add_eos, add_sos, make_pad_mask
|
||||
|
||||
|
||||
class TransformerLM(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
embedding_dim: int,
|
||||
d_model: int,
|
||||
dim_feedforward: int,
|
||||
nhead: int = 8,
|
||||
num_layers: int = 16,
|
||||
tie_weights: bool = True,
|
||||
dropout: float = 0.1,
|
||||
emb_dropout_rate: float = 0.0,
|
||||
params: AttributeDict = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.params = params
|
||||
|
||||
self.input_embedding = torch.nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
)
|
||||
|
||||
self.encoder = Transformer(
|
||||
input_dim=embedding_dim,
|
||||
d_model=d_model,
|
||||
dim_feedforward=dim_feedforward,
|
||||
nhead=nhead,
|
||||
num_layers=num_layers,
|
||||
dropout_rate=dropout,
|
||||
)
|
||||
|
||||
self.output_linear = torch.nn.Linear(
|
||||
in_features=d_model, out_features=vocab_size
|
||||
)
|
||||
if tie_weights:
|
||||
logging.info("Tying weights")
|
||||
assert d_model == embedding_dim, (d_model, embedding_dim)
|
||||
self.output_linear.weight = self.input_embedding.weight
|
||||
else:
|
||||
logging.info("Not tying weights")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
return_logits: bool = False,
|
||||
):
|
||||
"""Forward transformer language model
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tokens (B,L)
|
||||
y (torch.Tensor): Output tokens (with EOS appended) (B,L)
|
||||
x_lens (torch.Tensor): Length of input tokens before padding (B,)
|
||||
return_logits (bool, optional): Return logits instead of NLL
|
||||
|
||||
"""
|
||||
|
||||
x = self.input_embedding(x)
|
||||
|
||||
x, x_lens = self.encoder(x, x_lens)
|
||||
|
||||
logits = self.output_linear(x)
|
||||
|
||||
if return_logits:
|
||||
return logits
|
||||
|
||||
nll_loss = F.cross_entropy(
|
||||
logits.reshape(-1, self.vocab_size), y.reshape(-1), reduction="none"
|
||||
)
|
||||
|
||||
mask = make_pad_mask(x_lens).reshape(-1)
|
||||
nll_loss.masked_fill_(mask, 0)
|
||||
|
||||
return nll_loss
|
||||
|
||||
def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
|
||||
|
||||
bs = x.size(0)
|
||||
|
||||
state = None
|
||||
logits = self.forward(x, x, x_lens, return_logits=True)
|
||||
index = torch.arange(bs)
|
||||
|
||||
last_logits = logits[index, x_lens - 1, :]
|
||||
|
||||
return last_logits.log_softmax(-1), state
|
1
icefall/transformer_lm/scaling.py
Symbolic link
1
icefall/transformer_lm/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../egs/librispeech/ASR/pruned_transducer_stateless2/scaling.py
|
609
icefall/transformer_lm/train.py
Normal file
609
icefall/transformer_lm/train.py
Normal file
@ -0,0 +1,609 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./transformer_lm/train.py \
|
||||
--start-epoch 0 \
|
||||
--world-size 2 \
|
||||
--num-epochs 1 \
|
||||
--use-fp16 0 \
|
||||
--num-layers 12 \
|
||||
--batch-size 400
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from dataset import get_dataloader
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import TransformerLM
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
exp_dir/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transformer_lm/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, logs, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-fp16",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=400,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data",
|
||||
type=str,
|
||||
default="data/lm_training_bpe_500/sorted_lm_data.pt",
|
||||
help="LM training data",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data-valid",
|
||||
type=str,
|
||||
default="data/lm_training_bpe_500/sorted_lm_data-valid.pt",
|
||||
help="LM validation data",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=12,
|
||||
help="Number of Transformer layers in the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters."""
|
||||
|
||||
params = AttributeDict(
|
||||
{
|
||||
"max_sent_len": 200,
|
||||
"sos_id": 1,
|
||||
"eos_id": 1,
|
||||
"blank_id": 0,
|
||||
"lr": 1e-3,
|
||||
"weight_decay": 1e-6,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 200,
|
||||
"reset_interval": 2000,
|
||||
"valid_interval": 1000,
|
||||
"nhead": 8,
|
||||
"embedding_dim": 768,
|
||||
"encoder_dim": 768,
|
||||
"dim_feedforward": 2048,
|
||||
"dropout": 0.1,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
logging.info(f"Loading checkpoint: {filename}")
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
model: nn.Module,
|
||||
x: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
sentence_lengths: torch.Tensor,
|
||||
is_training: bool,
|
||||
) -> Tuple[torch.Tensor, MetricsTracker]:
|
||||
"""Compute the negative log-likelihood loss given a model and its input.
|
||||
Args:
|
||||
model:
|
||||
The NN model,
|
||||
x:
|
||||
A 2-D tensor. Each row contains BPE token IDs for a sentence. Also,
|
||||
each row starts with SOS ID.
|
||||
y:
|
||||
A 2-D tensor. Each row is a shifted version of the corresponding row
|
||||
in `x` but ends with an EOS ID (before padding).
|
||||
sentence_lengths:
|
||||
A 1-D tensor containing number of tokens of each sentence
|
||||
before padding.
|
||||
is_training:
|
||||
True for training. False for validation.
|
||||
"""
|
||||
with torch.set_grad_enabled(is_training):
|
||||
device = model.device
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
sentence_lengths = sentence_lengths.to(device)
|
||||
|
||||
nll = model(x, y, sentence_lengths)
|
||||
loss = nll.sum()
|
||||
|
||||
num_tokens = sentence_lengths.sum().item()
|
||||
|
||||
loss_info = MetricsTracker()
|
||||
# Note: Due to how MetricsTracker() is designed,
|
||||
# we use "frames" instead of "num_tokens" as a key here
|
||||
loss_info["frames"] = num_tokens
|
||||
loss_info["loss"] = loss.detach().item()
|
||||
return loss, loss_info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
x, y, sentence_lengths = batch
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=False,
|
||||
)
|
||||
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all sentences is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
x, y, sentence_lengths = batch
|
||||
batch_size = x.size(0)
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=True,
|
||||
)
|
||||
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
# Note: "frames" here means "num_tokens"
|
||||
this_batch_ppl = math.exp(loss_info["loss"] / loss_info["frames"])
|
||||
tot_ppl = math.exp(tot_loss["loss"] / tot_loss["frames"])
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}, ppl: {this_batch_ppl}] "
|
||||
f"tot_loss[{tot_loss}, ppl: {tot_ppl}], "
|
||||
f"batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/current_ppl", this_batch_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar("train/tot_ppl", tot_ppl, params.batch_idx_train)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
|
||||
valid_ppl = math.exp(valid_info["loss"] / valid_info["frames"])
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, validation: {valid_info}, "
|
||||
f"ppl: {valid_ppl}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_ppl", valid_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
is_distributed = world_size > 1
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
if is_distributed:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = TransformerLM(
|
||||
vocab_size=params.vocab_size,
|
||||
d_model=params.encoder_dim,
|
||||
embedding_dim=params.embedding_dim,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
nhead=params.nhead,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
params=params,
|
||||
)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if is_distributed:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
model.device = device
|
||||
|
||||
optimizer = optim.Adam(
|
||||
model.parameters(),
|
||||
lr=params.lr,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
if checkpoints:
|
||||
logging.info("Load optimizer state_dict from checkpoint")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
logging.info(f"Loading LM training data from {params.lm_data}")
|
||||
train_dl = get_dataloader(
|
||||
filename=params.lm_data,
|
||||
is_distributed=is_distributed,
|
||||
params=params,
|
||||
)
|
||||
|
||||
logging.info(f"Loading LM validation data from {params.lm_data_valid}")
|
||||
valid_dl = get_dataloader(
|
||||
filename=params.lm_data_valid,
|
||||
is_distributed=is_distributed,
|
||||
params=params,
|
||||
)
|
||||
|
||||
# Note: No learning rate scheduler is used here
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
if is_distributed:
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if is_distributed:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user