icefall/icefall/lm_wrapper.py
marcoyang1998 1f0408b103
Support Transformer LM (#750)
* support transformer LM

* show number of parameters during training

* update docstring

* testing files for ppl calculation

* add lm wrampper for rnn and transformer LM

* apply lm wrapper in lm shallow fusion

* small updates

* update decode.py to support LM fusion and LODR

* add export.py

* update CI and workflow

* update decoding results

* fix CI

* remove transformer LM from CI test
2022-12-29 10:53:36 +08:00

255 lines
7.6 KiB
Python

# Copyright (c) 2022 Xiaomi Corporation (authors: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import torch
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.rnn_lm.model import RnnLmModel
from icefall.transformer_lm.model import TransformerLM
from icefall.utils import AttributeDict, str2bool
class LmScorer(torch.nn.Module):
"""This is a wrapper for NN LMs
The language models supported include:
RNN,
Transformer
"""
def __init__(
self,
lm_type: str,
params: AttributeDict,
device,
lm_scale: float = 0.3,
):
super(LmScorer, self).__init__()
assert lm_type in ["rnn", "transformer"], f"{lm_type} is not supported"
self.lm_type = lm_type
self.lm = self.get_lm(lm_type, device, params)
self.lm_scale = lm_scale
self.params = params
@classmethod
def add_arguments(cls, parser):
# LM general arguments
parser.add_argument(
"--vocab-size",
type=int,
default=500,
)
parser.add_argument(
"--lm-epoch",
type=int,
default=7,
help="""Which epoch to be used
""",
)
parser.add_argument(
"--lm-avg",
type=int,
default=1,
help="""Number of checkpoints to be averaged
""",
)
parser.add_argument("--lm-exp-dir", type=str, help="Path to LM experiments")
# Now RNNLM related arguments
parser.add_argument(
"--rnn-lm-embedding-dim",
type=int,
default=2048,
help="Embedding dim of the model",
)
parser.add_argument(
"--rnn-lm-hidden-dim",
type=int,
default=2048,
help="Hidden dim of the model",
)
parser.add_argument(
"--rnn-lm-num-layers",
type=int,
default=3,
help="Number of RNN layers the model",
)
parser.add_argument(
"--rnn-lm-tie-weights",
type=str2bool,
default=True,
help="""True to share the weights between the input embedding layer and the
last output linear layer
""",
)
# Now transformers
parser.add_argument(
"--transformer-lm-exp-dir", type=str, help="Directory of transformer LM exp"
)
parser.add_argument(
"--transformer-lm-dim-feedforward",
type=int,
default=2048,
help="Dimension of FFW module in transformer",
)
parser.add_argument(
"--transformer-lm-encoder-dim",
type=int,
default=768,
help="Encoder dimension of transformer",
)
parser.add_argument(
"--transformer-lm-embedding-dim",
type=int,
default=768,
help="Input embedding dimension of transformer",
)
parser.add_argument(
"--transformer-lm-nhead",
type=int,
default=8,
help="Number of attention heads in transformer",
)
parser.add_argument(
"--transformer-lm-num-layers",
type=int,
default=16,
help="Number of encoder layers in transformer",
)
parser.add_argument(
"--transformer-lm-tie-weights",
type=str2bool,
default=True,
help="If tie weights in transformer LM",
)
def get_lm(self, lm_type: str, device, params: AttributeDict) -> torch.nn.Module:
"""Return the neural network LM
Args:
lm_type (str): Type name of NN LM
"""
if lm_type == "rnn":
model = RnnLmModel(
vocab_size=params.vocab_size,
embedding_dim=params.rnn_lm_embedding_dim,
hidden_dim=params.rnn_lm_hidden_dim,
num_layers=params.rnn_lm_num_layers,
tie_weights=params.rnn_lm_tie_weights,
)
if params.lm_avg == 1:
load_checkpoint(
f"{params.lm_exp_dir}/epoch-{params.lm_epoch}.pt", model
)
model.to(device)
else:
start = params.lm_epoch - params.lm_avg + 1
filenames = []
for i in range(start, params.lm_epoch + 1):
if start >= 0:
filenames.append(f"{params.lm_exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif lm_type == "transformer":
model = TransformerLM(
vocab_size=params.vocab_size,
d_model=params.transformer_lm_encoder_dim,
embedding_dim=params.transformer_lm_embedding_dim,
dim_feedforward=params.transformer_lm_dim_feedforward,
nhead=params.transformer_lm_nhead,
num_layers=params.transformer_lm_num_layers,
tie_weights=params.transformer_lm_tie_weights,
params=params,
)
if params.lm_avg == 1:
load_checkpoint(
f"{params.lm_exp_dir}/epoch-{params.lm_epoch}.pt", model
)
model.to(device)
else:
start = params.lm_epoch - params.lm_avg + 1
filenames = []
for i in range(start, params.lm_epoch + 1):
if start >= 0:
filenames.append(f"{params.lm_exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
raise NotImplementedError()
return model
def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
"""Score the input and return the prediction
This requires the lm to have the method `score_token`
Args:
x (torch.Tensor): Input tokens
x_lens (torch.Tensor): Length of the input tokens
state (optional): LM states
"""
return self.lm.score_token(x, x_lens, state)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
LmScorer.add_arguments(parser)
args = parser.parse_args()
params = AttributeDict()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
Scorer = LmScorer(params=params, device=device)
Scorer.eval()
x = (
torch.tensor([[1, 4, 19, 256, 77], [1, 4, 19, 256, 77]])
.to(device)
.to(torch.int64)
)
x_lens = torch.tensor([5, 5]).to(device)
state = None
score, state = Scorer.score(x, x_lens)
print(score.shape)
print(score[0])
print(score[1])