mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Performed end to end testing on the matcha recipe (#1797)
* minor fixes to the `ljspeech/matcha` recipe
This commit is contained in:
parent
6e6b022e41
commit
1c4dd464a0
2
.github/scripts/ljspeech/TTS/run-matcha.sh
vendored
2
.github/scripts/ljspeech/TTS/run-matcha.sh
vendored
@ -56,7 +56,7 @@ function infer() {
|
|||||||
|
|
||||||
curl -SL -O https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v1
|
curl -SL -O https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v1
|
||||||
|
|
||||||
./matcha/inference.py \
|
./matcha/infer.py \
|
||||||
--epoch 1 \
|
--epoch 1 \
|
||||||
--exp-dir ./matcha/exp \
|
--exp-dir ./matcha/exp \
|
||||||
--tokens data/tokens.txt \
|
--tokens data/tokens.txt \
|
||||||
|
@ -131,12 +131,12 @@ To inference, use:
|
|||||||
|
|
||||||
wget https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v1
|
wget https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v1
|
||||||
|
|
||||||
./matcha/inference \
|
./matcha/synth.py \
|
||||||
--exp-dir ./matcha/exp-new-3 \
|
--exp-dir ./matcha/exp-new-3 \
|
||||||
--epoch 4000 \
|
--epoch 4000 \
|
||||||
--tokens ./data/tokens.txt \
|
--tokens ./data/tokens.txt \
|
||||||
--vocoder ./generator_v1 \
|
--vocoder ./generator_v1 \
|
||||||
--input-text "how are you doing?"
|
--input-text "how are you doing?" \
|
||||||
--output-wav ./generated.wav
|
--output-wav ./generated.wav
|
||||||
```
|
```
|
||||||
|
|
||||||
|
1
egs/ljspeech/TTS/local/audio.py
Symbolic link
1
egs/ljspeech/TTS/local/audio.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../matcha/audio.py
|
@ -27,102 +27,17 @@ The generated fbank features are saved in data/fbank.
|
|||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
from dataclasses import dataclass
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Union
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
import torch
|
||||||
|
from fbank import MatchaFbank, MatchaFbankConfig
|
||||||
from lhotse import CutSet, LilcomChunkyWriter, load_manifest
|
from lhotse import CutSet, LilcomChunkyWriter, load_manifest
|
||||||
from lhotse.audio import RecordingSet
|
from lhotse.audio import RecordingSet
|
||||||
from lhotse.features.base import FeatureExtractor, register_extractor
|
|
||||||
from lhotse.supervision import SupervisionSet
|
from lhotse.supervision import SupervisionSet
|
||||||
from lhotse.utils import Seconds, compute_num_frames
|
|
||||||
from matcha.audio import mel_spectrogram
|
|
||||||
|
|
||||||
from icefall.utils import get_executor
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class MyFbankConfig:
|
|
||||||
n_fft: int
|
|
||||||
n_mels: int
|
|
||||||
sampling_rate: int
|
|
||||||
hop_length: int
|
|
||||||
win_length: int
|
|
||||||
f_min: float
|
|
||||||
f_max: float
|
|
||||||
|
|
||||||
|
|
||||||
@register_extractor
|
|
||||||
class MyFbank(FeatureExtractor):
|
|
||||||
|
|
||||||
name = "MyFbank"
|
|
||||||
config_type = MyFbankConfig
|
|
||||||
|
|
||||||
def __init__(self, config):
|
|
||||||
super().__init__(config=config)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def device(self) -> Union[str, torch.device]:
|
|
||||||
return self.config.device
|
|
||||||
|
|
||||||
def feature_dim(self, sampling_rate: int) -> int:
|
|
||||||
return self.config.n_mels
|
|
||||||
|
|
||||||
def extract(
|
|
||||||
self,
|
|
||||||
samples: np.ndarray,
|
|
||||||
sampling_rate: int,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
# Check for sampling rate compatibility.
|
|
||||||
expected_sr = self.config.sampling_rate
|
|
||||||
assert sampling_rate == expected_sr, (
|
|
||||||
f"Mismatched sampling rate: extractor expects {expected_sr}, "
|
|
||||||
f"got {sampling_rate}"
|
|
||||||
)
|
|
||||||
samples = torch.from_numpy(samples)
|
|
||||||
assert samples.ndim == 2, samples.shape
|
|
||||||
assert samples.shape[0] == 1, samples.shape
|
|
||||||
|
|
||||||
mel = (
|
|
||||||
mel_spectrogram(
|
|
||||||
samples,
|
|
||||||
self.config.n_fft,
|
|
||||||
self.config.n_mels,
|
|
||||||
self.config.sampling_rate,
|
|
||||||
self.config.hop_length,
|
|
||||||
self.config.win_length,
|
|
||||||
self.config.f_min,
|
|
||||||
self.config.f_max,
|
|
||||||
center=False,
|
|
||||||
)
|
|
||||||
.squeeze()
|
|
||||||
.t()
|
|
||||||
)
|
|
||||||
|
|
||||||
assert mel.ndim == 2, mel.shape
|
|
||||||
assert mel.shape[1] == self.config.n_mels, mel.shape
|
|
||||||
|
|
||||||
num_frames = compute_num_frames(
|
|
||||||
samples.shape[1] / sampling_rate, self.frame_shift, sampling_rate
|
|
||||||
)
|
|
||||||
|
|
||||||
if mel.shape[0] > num_frames:
|
|
||||||
mel = mel[:num_frames]
|
|
||||||
elif mel.shape[0] < num_frames:
|
|
||||||
mel = mel.unsqueeze(0)
|
|
||||||
mel = torch.nn.functional.pad(
|
|
||||||
mel, (0, 0, 0, num_frames - mel.shape[1]), mode="replicate"
|
|
||||||
).squeeze(0)
|
|
||||||
|
|
||||||
return mel.numpy()
|
|
||||||
|
|
||||||
@property
|
|
||||||
def frame_shift(self) -> Seconds:
|
|
||||||
return self.config.hop_length / self.config.sampling_rate
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
@ -149,7 +64,7 @@ def compute_fbank_ljspeech(num_jobs: int):
|
|||||||
logging.info(f"num_jobs: {num_jobs}")
|
logging.info(f"num_jobs: {num_jobs}")
|
||||||
logging.info(f"src_dir: {src_dir}")
|
logging.info(f"src_dir: {src_dir}")
|
||||||
logging.info(f"output_dir: {output_dir}")
|
logging.info(f"output_dir: {output_dir}")
|
||||||
config = MyFbankConfig(
|
config = MatchaFbankConfig(
|
||||||
n_fft=1024,
|
n_fft=1024,
|
||||||
n_mels=80,
|
n_mels=80,
|
||||||
sampling_rate=22050,
|
sampling_rate=22050,
|
||||||
@ -170,7 +85,7 @@ def compute_fbank_ljspeech(num_jobs: int):
|
|||||||
src_dir / f"{prefix}_supervisions_{partition}.{suffix}", SupervisionSet
|
src_dir / f"{prefix}_supervisions_{partition}.{suffix}", SupervisionSet
|
||||||
)
|
)
|
||||||
|
|
||||||
extractor = MyFbank(config)
|
extractor = MatchaFbank(config)
|
||||||
|
|
||||||
with get_executor() as ex: # Initialize the executor only once.
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
|
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
|
||||||
|
1
egs/ljspeech/TTS/local/fbank.py
Symbolic link
1
egs/ljspeech/TTS/local/fbank.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../matcha/fbank.py
|
@ -1 +0,0 @@
|
|||||||
../local/compute_fbank_ljspeech.py
|
|
@ -7,7 +7,7 @@ from typing import Any, Dict
|
|||||||
|
|
||||||
import onnx
|
import onnx
|
||||||
import torch
|
import torch
|
||||||
from inference import load_vocoder
|
from infer import load_vocoder
|
||||||
|
|
||||||
|
|
||||||
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
|
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
|
||||||
|
88
egs/ljspeech/TTS/matcha/fbank.py
Normal file
88
egs/ljspeech/TTS/matcha/fbank.py
Normal file
@ -0,0 +1,88 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from audio import mel_spectrogram
|
||||||
|
from lhotse.features.base import FeatureExtractor, register_extractor
|
||||||
|
from lhotse.utils import Seconds, compute_num_frames
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class MatchaFbankConfig:
|
||||||
|
n_fft: int
|
||||||
|
n_mels: int
|
||||||
|
sampling_rate: int
|
||||||
|
hop_length: int
|
||||||
|
win_length: int
|
||||||
|
f_min: float
|
||||||
|
f_max: float
|
||||||
|
|
||||||
|
|
||||||
|
@register_extractor
|
||||||
|
class MatchaFbank(FeatureExtractor):
|
||||||
|
|
||||||
|
name = "MatchaFbank"
|
||||||
|
config_type = MatchaFbankConfig
|
||||||
|
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__(config=config)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def device(self) -> Union[str, torch.device]:
|
||||||
|
return self.config.device
|
||||||
|
|
||||||
|
def feature_dim(self, sampling_rate: int) -> int:
|
||||||
|
return self.config.n_mels
|
||||||
|
|
||||||
|
def extract(
|
||||||
|
self,
|
||||||
|
samples: np.ndarray,
|
||||||
|
sampling_rate: int,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
# Check for sampling rate compatibility.
|
||||||
|
expected_sr = self.config.sampling_rate
|
||||||
|
assert sampling_rate == expected_sr, (
|
||||||
|
f"Mismatched sampling rate: extractor expects {expected_sr}, "
|
||||||
|
f"got {sampling_rate}"
|
||||||
|
)
|
||||||
|
samples = torch.from_numpy(samples)
|
||||||
|
assert samples.ndim == 2, samples.shape
|
||||||
|
assert samples.shape[0] == 1, samples.shape
|
||||||
|
|
||||||
|
mel = (
|
||||||
|
mel_spectrogram(
|
||||||
|
samples,
|
||||||
|
self.config.n_fft,
|
||||||
|
self.config.n_mels,
|
||||||
|
self.config.sampling_rate,
|
||||||
|
self.config.hop_length,
|
||||||
|
self.config.win_length,
|
||||||
|
self.config.f_min,
|
||||||
|
self.config.f_max,
|
||||||
|
center=False,
|
||||||
|
)
|
||||||
|
.squeeze()
|
||||||
|
.t()
|
||||||
|
)
|
||||||
|
|
||||||
|
assert mel.ndim == 2, mel.shape
|
||||||
|
assert mel.shape[1] == self.config.n_mels, mel.shape
|
||||||
|
|
||||||
|
num_frames = compute_num_frames(
|
||||||
|
samples.shape[1] / sampling_rate, self.frame_shift, sampling_rate
|
||||||
|
)
|
||||||
|
|
||||||
|
if mel.shape[0] > num_frames:
|
||||||
|
mel = mel[:num_frames]
|
||||||
|
elif mel.shape[0] < num_frames:
|
||||||
|
mel = mel.unsqueeze(0)
|
||||||
|
mel = torch.nn.functional.pad(
|
||||||
|
mel, (0, 0, 0, num_frames - mel.shape[1]), mode="replicate"
|
||||||
|
).squeeze(0)
|
||||||
|
|
||||||
|
return mel.numpy()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def frame_shift(self) -> Seconds:
|
||||||
|
return self.config.hop_length / self.config.sampling_rate
|
328
egs/ljspeech/TTS/matcha/infer.py
Executable file
328
egs/ljspeech/TTS/matcha/infer.py
Executable file
@ -0,0 +1,328 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import datetime as dt
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import soundfile as sf
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from hifigan.config import v1, v2, v3
|
||||||
|
from hifigan.denoiser import Denoiser
|
||||||
|
from hifigan.models import Generator as HiFiGAN
|
||||||
|
from tokenizer import Tokenizer
|
||||||
|
from train import get_model, get_params
|
||||||
|
from tts_datamodule import LJSpeechTtsDataModule
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.utils import AttributeDict, setup_logger
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=4000,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=Path,
|
||||||
|
default="matcha/exp",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocoder",
|
||||||
|
type=Path,
|
||||||
|
default="./generator_v1",
|
||||||
|
help="Path to the vocoder",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=Path,
|
||||||
|
default="data/tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--cmvn",
|
||||||
|
type=str,
|
||||||
|
default="data/fbank/cmvn.json",
|
||||||
|
help="""Path to vocabulary.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
# The following arguments are used for inference on single text
|
||||||
|
parser.add_argument(
|
||||||
|
"--input-text",
|
||||||
|
type=str,
|
||||||
|
required=False,
|
||||||
|
help="The text to generate speech for",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--output-wav",
|
||||||
|
type=str,
|
||||||
|
required=False,
|
||||||
|
help="The filename of the wave to save the generated speech",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sampling-rate",
|
||||||
|
type=int,
|
||||||
|
default=22050,
|
||||||
|
help="The sampling rate of the generated speech (default: 22050 for LJSpeech)",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def load_vocoder(checkpoint_path: Path) -> nn.Module:
|
||||||
|
checkpoint_path = str(checkpoint_path)
|
||||||
|
if checkpoint_path.endswith("v1"):
|
||||||
|
h = AttributeDict(v1)
|
||||||
|
elif checkpoint_path.endswith("v2"):
|
||||||
|
h = AttributeDict(v2)
|
||||||
|
elif checkpoint_path.endswith("v3"):
|
||||||
|
h = AttributeDict(v3)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"supports only v1, v2, and v3, given {checkpoint_path}")
|
||||||
|
|
||||||
|
hifigan = HiFiGAN(h).to("cpu")
|
||||||
|
hifigan.load_state_dict(
|
||||||
|
torch.load(checkpoint_path, map_location="cpu")["generator"]
|
||||||
|
)
|
||||||
|
_ = hifigan.eval()
|
||||||
|
hifigan.remove_weight_norm()
|
||||||
|
return hifigan
|
||||||
|
|
||||||
|
|
||||||
|
def to_waveform(
|
||||||
|
mel: torch.Tensor, vocoder: nn.Module, denoiser: nn.Module
|
||||||
|
) -> torch.Tensor:
|
||||||
|
audio = vocoder(mel).clamp(-1, 1)
|
||||||
|
audio = denoiser(audio.squeeze(0), strength=0.00025).cpu().squeeze()
|
||||||
|
return audio.squeeze()
|
||||||
|
|
||||||
|
|
||||||
|
def process_text(text: str, tokenizer: Tokenizer, device: str = "cpu") -> dict:
|
||||||
|
x = tokenizer.texts_to_token_ids([text], add_sos=True, add_eos=True)
|
||||||
|
x = torch.tensor(x, dtype=torch.long, device=device)
|
||||||
|
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
|
||||||
|
return {"x_orig": text, "x": x, "x_lengths": x_lengths}
|
||||||
|
|
||||||
|
|
||||||
|
def synthesize(
|
||||||
|
model: nn.Module,
|
||||||
|
tokenizer: Tokenizer,
|
||||||
|
n_timesteps: int,
|
||||||
|
text: str,
|
||||||
|
length_scale: float,
|
||||||
|
temperature: float,
|
||||||
|
device: str = "cpu",
|
||||||
|
spks=None,
|
||||||
|
) -> dict:
|
||||||
|
text_processed = process_text(text=text, tokenizer=tokenizer, device=device)
|
||||||
|
start_t = dt.datetime.now()
|
||||||
|
output = model.synthesise(
|
||||||
|
text_processed["x"],
|
||||||
|
text_processed["x_lengths"],
|
||||||
|
n_timesteps=n_timesteps,
|
||||||
|
temperature=temperature,
|
||||||
|
spks=spks,
|
||||||
|
length_scale=length_scale,
|
||||||
|
)
|
||||||
|
# merge everything to one dict
|
||||||
|
output.update({"start_t": start_t, **text_processed})
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def infer_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
vocoder: nn.Module,
|
||||||
|
denoiser: nn.Module,
|
||||||
|
tokenizer: Tokenizer,
|
||||||
|
) -> None:
|
||||||
|
"""Decode dataset.
|
||||||
|
The ground-truth and generated audio pairs will be saved to `params.save_wav_dir`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
tokenizer:
|
||||||
|
Used to convert text to phonemes.
|
||||||
|
"""
|
||||||
|
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
num_cuts = 0
|
||||||
|
log_interval = 5
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
batch_size = len(batch["tokens"])
|
||||||
|
|
||||||
|
texts = [c.supervisions[0].normalized_text for c in batch["cut"]]
|
||||||
|
|
||||||
|
audio = batch["audio"]
|
||||||
|
audio_lens = batch["audio_lens"].tolist()
|
||||||
|
cut_ids = [cut.id for cut in batch["cut"]]
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
output = synthesize(
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
n_timesteps=params.n_timesteps,
|
||||||
|
text=texts[i],
|
||||||
|
length_scale=params.length_scale,
|
||||||
|
temperature=params.temperature,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
||||||
|
|
||||||
|
sf.write(
|
||||||
|
file=params.save_wav_dir / f"{cut_ids[i]}_pred.wav",
|
||||||
|
data=output["waveform"],
|
||||||
|
samplerate=params.data_args.sampling_rate,
|
||||||
|
subtype="PCM_16",
|
||||||
|
)
|
||||||
|
sf.write(
|
||||||
|
file=params.save_wav_dir / f"{cut_ids[i]}_gt.wav",
|
||||||
|
data=audio[i].numpy(),
|
||||||
|
samplerate=params.data_args.sampling_rate,
|
||||||
|
subtype="PCM_16",
|
||||||
|
)
|
||||||
|
|
||||||
|
num_cuts += batch_size
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LJSpeechTtsDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
params.suffix = f"epoch-{params.epoch}"
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / "infer" / params.suffix
|
||||||
|
params.save_wav_dir = params.res_dir / "wav"
|
||||||
|
params.save_wav_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-infer-{params.suffix}")
|
||||||
|
logging.info("Infer started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
tokenizer = Tokenizer(params.tokens)
|
||||||
|
params.blank_id = tokenizer.pad_id
|
||||||
|
params.vocab_size = tokenizer.vocab_size
|
||||||
|
params.model_args.n_vocab = params.vocab_size
|
||||||
|
|
||||||
|
with open(params.cmvn) as f:
|
||||||
|
stats = json.load(f)
|
||||||
|
params.data_args.data_statistics.mel_mean = stats["fbank_mean"]
|
||||||
|
params.data_args.data_statistics.mel_std = stats["fbank_std"]
|
||||||
|
|
||||||
|
params.model_args.data_statistics.mel_mean = stats["fbank_mean"]
|
||||||
|
params.model_args.data_statistics.mel_std = stats["fbank_std"]
|
||||||
|
|
||||||
|
# Number of ODE Solver steps
|
||||||
|
params.n_timesteps = 2
|
||||||
|
|
||||||
|
# Changes to the speaking rate
|
||||||
|
params.length_scale = 1.0
|
||||||
|
|
||||||
|
# Sampling temperature
|
||||||
|
params.temperature = 0.667
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
# we need cut ids to organize tts results.
|
||||||
|
args.return_cuts = True
|
||||||
|
ljspeech = LJSpeechTtsDataModule(args)
|
||||||
|
|
||||||
|
test_cuts = ljspeech.test_cuts()
|
||||||
|
test_dl = ljspeech.test_dataloaders(test_cuts)
|
||||||
|
|
||||||
|
if not Path(params.vocoder).is_file():
|
||||||
|
raise ValueError(f"{params.vocoder} does not exist")
|
||||||
|
|
||||||
|
vocoder = load_vocoder(params.vocoder)
|
||||||
|
vocoder.to(device)
|
||||||
|
|
||||||
|
denoiser = Denoiser(vocoder, mode="zeros")
|
||||||
|
denoiser.to(device)
|
||||||
|
|
||||||
|
if params.input_text is not None and params.output_wav is not None:
|
||||||
|
logging.info("Synthesizing a single text")
|
||||||
|
output = synthesize(
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
n_timesteps=params.n_timesteps,
|
||||||
|
text=params.input_text,
|
||||||
|
length_scale=params.length_scale,
|
||||||
|
temperature=params.temperature,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
||||||
|
|
||||||
|
sf.write(
|
||||||
|
file=params.output_wav,
|
||||||
|
data=output["waveform"],
|
||||||
|
samplerate=params.sampling_rate,
|
||||||
|
subtype="PCM_16",
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Decoding the test set")
|
||||||
|
infer_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
vocoder=vocoder,
|
||||||
|
denoiser=denoiser,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -1,199 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import datetime as dt
|
|
||||||
import json
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import soundfile as sf
|
|
||||||
import torch
|
|
||||||
from matcha.hifigan.config import v1, v2, v3
|
|
||||||
from matcha.hifigan.denoiser import Denoiser
|
|
||||||
from matcha.hifigan.models import Generator as HiFiGAN
|
|
||||||
from tokenizer import Tokenizer
|
|
||||||
from train import get_model, get_params
|
|
||||||
|
|
||||||
from icefall.checkpoint import load_checkpoint
|
|
||||||
from icefall.utils import AttributeDict
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--epoch",
|
|
||||||
type=int,
|
|
||||||
default=4000,
|
|
||||||
help="""It specifies the checkpoint to use for decoding.
|
|
||||||
Note: Epoch counts from 1.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=Path,
|
|
||||||
default="matcha/exp-new-3",
|
|
||||||
help="""The experiment dir.
|
|
||||||
It specifies the directory where all training related
|
|
||||||
files, e.g., checkpoints, log, etc, are saved
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--vocoder",
|
|
||||||
type=Path,
|
|
||||||
default="./generator_v1",
|
|
||||||
help="Path to the vocoder",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--tokens",
|
|
||||||
type=Path,
|
|
||||||
default="data/tokens.txt",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--cmvn",
|
|
||||||
type=str,
|
|
||||||
default="data/fbank/cmvn.json",
|
|
||||||
help="""Path to vocabulary.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--input-text",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="The text to generate speech for",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--output-wav",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="The filename of the wave to save the generated speech",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def load_vocoder(checkpoint_path):
|
|
||||||
checkpoint_path = str(checkpoint_path)
|
|
||||||
if checkpoint_path.endswith("v1"):
|
|
||||||
h = AttributeDict(v1)
|
|
||||||
elif checkpoint_path.endswith("v2"):
|
|
||||||
h = AttributeDict(v2)
|
|
||||||
elif checkpoint_path.endswith("v3"):
|
|
||||||
h = AttributeDict(v3)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"supports only v1, v2, and v3, given {checkpoint_path}")
|
|
||||||
|
|
||||||
hifigan = HiFiGAN(h).to("cpu")
|
|
||||||
hifigan.load_state_dict(
|
|
||||||
torch.load(checkpoint_path, map_location="cpu")["generator"]
|
|
||||||
)
|
|
||||||
_ = hifigan.eval()
|
|
||||||
hifigan.remove_weight_norm()
|
|
||||||
return hifigan
|
|
||||||
|
|
||||||
|
|
||||||
def to_waveform(mel, vocoder, denoiser):
|
|
||||||
audio = vocoder(mel).clamp(-1, 1)
|
|
||||||
audio = denoiser(audio.squeeze(0), strength=0.00025).cpu().squeeze()
|
|
||||||
return audio.cpu().squeeze()
|
|
||||||
|
|
||||||
|
|
||||||
def process_text(text: str, tokenizer):
|
|
||||||
x = tokenizer.texts_to_token_ids([text], add_sos=True, add_eos=True)
|
|
||||||
x = torch.tensor(x, dtype=torch.long)
|
|
||||||
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device="cpu")
|
|
||||||
return {"x_orig": text, "x": x, "x_lengths": x_lengths}
|
|
||||||
|
|
||||||
|
|
||||||
def synthesise(
|
|
||||||
model, tokenizer, n_timesteps, text, length_scale, temperature, spks=None
|
|
||||||
):
|
|
||||||
text_processed = process_text(text, tokenizer)
|
|
||||||
start_t = dt.datetime.now()
|
|
||||||
output = model.synthesise(
|
|
||||||
text_processed["x"],
|
|
||||||
text_processed["x_lengths"],
|
|
||||||
n_timesteps=n_timesteps,
|
|
||||||
temperature=temperature,
|
|
||||||
spks=spks,
|
|
||||||
length_scale=length_scale,
|
|
||||||
)
|
|
||||||
# merge everything to one dict
|
|
||||||
output.update({"start_t": start_t, **text_processed})
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
args = parser.parse_args()
|
|
||||||
params = get_params()
|
|
||||||
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
tokenizer = Tokenizer(params.tokens)
|
|
||||||
params.blank_id = tokenizer.pad_id
|
|
||||||
params.vocab_size = tokenizer.vocab_size
|
|
||||||
params.model_args.n_vocab = params.vocab_size
|
|
||||||
|
|
||||||
with open(params.cmvn) as f:
|
|
||||||
stats = json.load(f)
|
|
||||||
params.data_args.data_statistics.mel_mean = stats["fbank_mean"]
|
|
||||||
params.data_args.data_statistics.mel_std = stats["fbank_std"]
|
|
||||||
|
|
||||||
params.model_args.data_statistics.mel_mean = stats["fbank_mean"]
|
|
||||||
params.model_args.data_statistics.mel_std = stats["fbank_std"]
|
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
|
||||||
model = get_model(params)
|
|
||||||
|
|
||||||
if not Path(f"{params.exp_dir}/epoch-{params.epoch}.pt").is_file():
|
|
||||||
raise ValueError("{params.exp_dir}/epoch-{params.epoch}.pt does not exist")
|
|
||||||
|
|
||||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
if not Path(params.vocoder).is_file():
|
|
||||||
raise ValueError(f"{params.vocoder} does not exist")
|
|
||||||
|
|
||||||
vocoder = load_vocoder(params.vocoder)
|
|
||||||
denoiser = Denoiser(vocoder, mode="zeros")
|
|
||||||
|
|
||||||
# Number of ODE Solver steps
|
|
||||||
n_timesteps = 2
|
|
||||||
|
|
||||||
# Changes to the speaking rate
|
|
||||||
length_scale = 1.0
|
|
||||||
|
|
||||||
# Sampling temperature
|
|
||||||
temperature = 0.667
|
|
||||||
|
|
||||||
output = synthesise(
|
|
||||||
model=model,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
n_timesteps=n_timesteps,
|
|
||||||
text=params.input_text,
|
|
||||||
length_scale=length_scale,
|
|
||||||
temperature=temperature,
|
|
||||||
)
|
|
||||||
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
|
||||||
|
|
||||||
sf.write(params.output_wav, output["waveform"], 22050, "PCM_16")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
torch.set_num_threads(1)
|
|
||||||
torch.set_num_interop_threads(1)
|
|
||||||
main()
|
|
@ -7,7 +7,7 @@ import torch.nn.functional as F
|
|||||||
from conformer import ConformerBlock
|
from conformer import ConformerBlock
|
||||||
from diffusers.models.activations import get_activation
|
from diffusers.models.activations import get_activation
|
||||||
from einops import pack, rearrange, repeat
|
from einops import pack, rearrange, repeat
|
||||||
from matcha.models.components.transformer import BasicTransformerBlock
|
from models.components.transformer import BasicTransformerBlock
|
||||||
|
|
||||||
|
|
||||||
class SinusoidalPosEmb(torch.nn.Module):
|
class SinusoidalPosEmb(torch.nn.Module):
|
||||||
|
@ -2,7 +2,7 @@ from abc import ABC
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from matcha.models.components.decoder import Decoder
|
from models.components.decoder import Decoder
|
||||||
|
|
||||||
|
|
||||||
class BASECFM(torch.nn.Module, ABC):
|
class BASECFM(torch.nn.Module, ABC):
|
||||||
|
@ -5,7 +5,7 @@ import math
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
from matcha.model import sequence_mask
|
from model import sequence_mask
|
||||||
|
|
||||||
|
|
||||||
class LayerNorm(nn.Module):
|
class LayerNorm(nn.Module):
|
||||||
|
@ -2,17 +2,17 @@ import datetime as dt
|
|||||||
import math
|
import math
|
||||||
import random
|
import random
|
||||||
|
|
||||||
import matcha.monotonic_align as monotonic_align
|
import monotonic_align as monotonic_align
|
||||||
import torch
|
import torch
|
||||||
from matcha.model import (
|
from model import (
|
||||||
denormalize,
|
denormalize,
|
||||||
duration_loss,
|
duration_loss,
|
||||||
fix_len_compatibility,
|
fix_len_compatibility,
|
||||||
generate_path,
|
generate_path,
|
||||||
sequence_mask,
|
sequence_mask,
|
||||||
)
|
)
|
||||||
from matcha.models.components.flow_matching import CFM
|
from models.components.flow_matching import CFM
|
||||||
from matcha.models.components.text_encoder import TextEncoder
|
from models.components.text_encoder import TextEncoder
|
||||||
|
|
||||||
|
|
||||||
class MatchaTTS(torch.nn.Module): # 🍵
|
class MatchaTTS(torch.nn.Module): # 🍵
|
||||||
|
@ -1,3 +1,3 @@
|
|||||||
build
|
build
|
||||||
core.c
|
core.c
|
||||||
*.so
|
*.so
|
@ -1,8 +1,7 @@
|
|||||||
# Copied from
|
|
||||||
# https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/utils/monotonic_align/__init__.py
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from matcha.monotonic_align.core import maximum_path_c
|
|
||||||
|
from .core import maximum_path_c
|
||||||
|
|
||||||
|
|
||||||
def maximum_path(value, mask):
|
def maximum_path(value, mask):
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
# Copied from
|
|
||||||
# https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/utils/monotonic_align/core.pyx
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
cimport cython
|
cimport cython
|
||||||
|
@ -1,12 +1,30 @@
|
|||||||
# Copied from
|
# Modified from
|
||||||
# https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/utils/monotonic_align/setup.py
|
# https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/utils/monotonic_align/setup.py
|
||||||
from distutils.core import setup
|
|
||||||
|
|
||||||
import numpy
|
|
||||||
from Cython.Build import cythonize
|
from Cython.Build import cythonize
|
||||||
|
from setuptools import Extension, setup
|
||||||
|
from setuptools.command.build_ext import build_ext as _build_ext
|
||||||
|
|
||||||
|
|
||||||
|
class build_ext(_build_ext):
|
||||||
|
"""Overwrite build_ext."""
|
||||||
|
|
||||||
|
def finalize_options(self):
|
||||||
|
"""Prevent numpy from thinking it is still in its setup process."""
|
||||||
|
_build_ext.finalize_options(self)
|
||||||
|
__builtins__.__NUMPY_SETUP__ = False
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
self.include_dirs.append(numpy.get_include())
|
||||||
|
|
||||||
|
|
||||||
|
exts = [
|
||||||
|
Extension(
|
||||||
|
name="core",
|
||||||
|
sources=["core.pyx"],
|
||||||
|
)
|
||||||
|
]
|
||||||
setup(
|
setup(
|
||||||
name="monotonic_align",
|
name="monotonic_align",
|
||||||
ext_modules=cythonize("core.pyx"),
|
ext_modules=cythonize(exts, language_level=3),
|
||||||
include_dirs=[numpy.get_include()],
|
cmdclass={"build_ext": build_ext},
|
||||||
)
|
)
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
conformer==0.3.2
|
conformer==0.3.2
|
||||||
diffusers # developed using version ==0.25.0
|
diffusers # developed using version ==0.25.0
|
||||||
librosa
|
librosa
|
||||||
|
einops
|
@ -14,9 +14,9 @@ import torch
|
|||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from lhotse.utils import fix_random_seed
|
from lhotse.utils import fix_random_seed
|
||||||
from matcha.model import fix_len_compatibility
|
from model import fix_len_compatibility
|
||||||
from matcha.models.matcha_tts import MatchaTTS
|
from models.matcha_tts import MatchaTTS
|
||||||
from matcha.tokenizer import Tokenizer
|
from tokenizer import Tokenizer
|
||||||
from torch.cuda.amp import GradScaler, autocast
|
from torch.cuda.amp import GradScaler, autocast
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
from torch.optim import Optimizer
|
from torch.optim import Optimizer
|
||||||
@ -150,7 +150,7 @@ def _get_data_params() -> AttributeDict:
|
|||||||
"n_spks": 1,
|
"n_spks": 1,
|
||||||
"n_fft": 1024,
|
"n_fft": 1024,
|
||||||
"n_feats": 80,
|
"n_feats": 80,
|
||||||
"sample_rate": 22050,
|
"sampling_rate": 22050,
|
||||||
"hop_length": 256,
|
"hop_length": 256,
|
||||||
"win_length": 1024,
|
"win_length": 1024,
|
||||||
"f_min": 0,
|
"f_min": 0,
|
||||||
@ -445,11 +445,6 @@ def train_one_epoch(
|
|||||||
|
|
||||||
saved_bad_model = False
|
saved_bad_model = False
|
||||||
|
|
||||||
# used to track the stats over iterations in one epoch
|
|
||||||
tot_loss = MetricsTracker()
|
|
||||||
|
|
||||||
saved_bad_model = False
|
|
||||||
|
|
||||||
def save_bad_model(suffix: str = ""):
|
def save_bad_model(suffix: str = ""):
|
||||||
save_checkpoint(
|
save_checkpoint(
|
||||||
filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
|
filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
|
||||||
|
@ -24,7 +24,7 @@ from pathlib import Path
|
|||||||
from typing import Any, Dict, Optional
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from compute_fbank_ljspeech import MyFbank, MyFbankConfig
|
from fbank import MatchaFbank, MatchaFbankConfig
|
||||||
from lhotse import CutSet, load_manifest_lazy
|
from lhotse import CutSet, load_manifest_lazy
|
||||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||||
CutConcatenate,
|
CutConcatenate,
|
||||||
@ -32,7 +32,6 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SimpleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
|
||||||
SpeechSynthesisDataset,
|
SpeechSynthesisDataset,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
@ -177,7 +176,7 @@ class LJSpeechTtsDataModule:
|
|||||||
|
|
||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
sampling_rate = 22050
|
sampling_rate = 22050
|
||||||
config = MyFbankConfig(
|
config = MatchaFbankConfig(
|
||||||
n_fft=1024,
|
n_fft=1024,
|
||||||
n_mels=80,
|
n_mels=80,
|
||||||
sampling_rate=sampling_rate,
|
sampling_rate=sampling_rate,
|
||||||
@ -189,7 +188,7 @@ class LJSpeechTtsDataModule:
|
|||||||
train = SpeechSynthesisDataset(
|
train = SpeechSynthesisDataset(
|
||||||
return_text=False,
|
return_text=False,
|
||||||
return_tokens=True,
|
return_tokens=True,
|
||||||
feature_input_strategy=OnTheFlyFeatures(MyFbank(config)),
|
feature_input_strategy=OnTheFlyFeatures(MatchaFbank(config)),
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -238,7 +237,7 @@ class LJSpeechTtsDataModule:
|
|||||||
logging.info("About to create dev dataset")
|
logging.info("About to create dev dataset")
|
||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
sampling_rate = 22050
|
sampling_rate = 22050
|
||||||
config = MyFbankConfig(
|
config = MatchaFbankConfig(
|
||||||
n_fft=1024,
|
n_fft=1024,
|
||||||
n_mels=80,
|
n_mels=80,
|
||||||
sampling_rate=sampling_rate,
|
sampling_rate=sampling_rate,
|
||||||
@ -250,7 +249,7 @@ class LJSpeechTtsDataModule:
|
|||||||
validate = SpeechSynthesisDataset(
|
validate = SpeechSynthesisDataset(
|
||||||
return_text=False,
|
return_text=False,
|
||||||
return_tokens=True,
|
return_tokens=True,
|
||||||
feature_input_strategy=OnTheFlyFeatures(MyFbank(config)),
|
feature_input_strategy=OnTheFlyFeatures(MatchaFbank(config)),
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
@ -282,7 +281,7 @@ class LJSpeechTtsDataModule:
|
|||||||
logging.info("About to create test dataset")
|
logging.info("About to create test dataset")
|
||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
sampling_rate = 22050
|
sampling_rate = 22050
|
||||||
config = MyFbankConfig(
|
config = MatchaFbankConfig(
|
||||||
n_fft=1024,
|
n_fft=1024,
|
||||||
n_mels=80,
|
n_mels=80,
|
||||||
sampling_rate=sampling_rate,
|
sampling_rate=sampling_rate,
|
||||||
@ -294,7 +293,7 @@ class LJSpeechTtsDataModule:
|
|||||||
test = SpeechSynthesisDataset(
|
test = SpeechSynthesisDataset(
|
||||||
return_text=False,
|
return_text=False,
|
||||||
return_tokens=True,
|
return_tokens=True,
|
||||||
feature_input_strategy=OnTheFlyFeatures(MyFbank(config)),
|
feature_input_strategy=OnTheFlyFeatures(MatchaFbank(config)),
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
@ -25,26 +25,16 @@ log() {
|
|||||||
log "dl_dir: $dl_dir"
|
log "dl_dir: $dl_dir"
|
||||||
|
|
||||||
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||||
log "Stage -1: build monotonic_align lib"
|
log "Stage -1: build monotonic_align lib (used by vits and matcha recipes)"
|
||||||
if [ ! -d vits/monotonic_align/build ]; then
|
for recipe in vits matcha; do
|
||||||
cd vits/monotonic_align
|
if [ ! -d $recipe/monotonic_align/build ]; then
|
||||||
python3 setup.py build_ext --inplace
|
cd $recipe/monotonic_align
|
||||||
cd ../../
|
python3 setup.py build_ext --inplace
|
||||||
else
|
cd ../../
|
||||||
log "monotonic_align lib for vits already built"
|
else
|
||||||
fi
|
log "monotonic_align lib for $recipe already built"
|
||||||
|
fi
|
||||||
if [ ! -f ./matcha/monotonic_align/core.cpython-38-x86_64-linux-gnu.so ]; then
|
done
|
||||||
pushd matcha/monotonic_align
|
|
||||||
python3 setup.py build
|
|
||||||
mv -v build/lib.*/matcha/monotonic_align/core.*.so .
|
|
||||||
rm -rf build
|
|
||||||
rm core.c
|
|
||||||
ls -lh
|
|
||||||
popd
|
|
||||||
else
|
|
||||||
log "monotonic_align lib for matcha-tts already built"
|
|
||||||
fi
|
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
|
@ -234,7 +234,7 @@ def main():
|
|||||||
logging.info(f"Number of parameters in discriminator: {num_param_d}")
|
logging.info(f"Number of parameters in discriminator: {num_param_d}")
|
||||||
logging.info(f"Total number of parameters: {num_param_g + num_param_d}")
|
logging.info(f"Total number of parameters: {num_param_g + num_param_d}")
|
||||||
|
|
||||||
# we need cut ids to display recognition results.
|
# we need cut ids to organize tts results.
|
||||||
args.return_cuts = True
|
args.return_cuts = True
|
||||||
ljspeech = LJSpeechTtsDataModule(args)
|
ljspeech = LJSpeechTtsDataModule(args)
|
||||||
|
|
||||||
|
3
egs/ljspeech/TTS/vits/monotonic_align/.gitignore
vendored
Normal file
3
egs/ljspeech/TTS/vits/monotonic_align/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
build
|
||||||
|
core.c
|
||||||
|
*.so
|
@ -18,7 +18,6 @@
|
|||||||
|
|
||||||
from tokenizer import Tokenizer
|
from tokenizer import Tokenizer
|
||||||
from train import get_model, get_params
|
from train import get_model, get_params
|
||||||
from vits import VITS
|
|
||||||
|
|
||||||
|
|
||||||
def test_model_type(model_type):
|
def test_model_type(model_type):
|
||||||
|
Loading…
x
Reference in New Issue
Block a user