mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
200 lines
5.3 KiB
Python
Executable File
200 lines
5.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
|
|
import argparse
|
|
import datetime as dt
|
|
import json
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import soundfile as sf
|
|
import torch
|
|
from matcha.hifigan.config import v1, v2, v3
|
|
from matcha.hifigan.denoiser import Denoiser
|
|
from matcha.hifigan.models import Generator as HiFiGAN
|
|
from tokenizer import Tokenizer
|
|
from train import get_model, get_params
|
|
|
|
from icefall.checkpoint import load_checkpoint
|
|
from icefall.utils import AttributeDict
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=4000,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=Path,
|
|
default="matcha/exp-new-3",
|
|
help="""The experiment dir.
|
|
It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--vocoder",
|
|
type=Path,
|
|
default="./generator_v1",
|
|
help="Path to the vocoder",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tokens",
|
|
type=Path,
|
|
default="data/tokens.txt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--cmvn",
|
|
type=str,
|
|
default="data/fbank/cmvn.json",
|
|
help="""Path to vocabulary.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--input-text",
|
|
type=str,
|
|
required=True,
|
|
help="The text to generate speech for",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--output-wav",
|
|
type=str,
|
|
required=True,
|
|
help="The filename of the wave to save the generated speech",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def load_vocoder(checkpoint_path):
|
|
checkpoint_path = str(checkpoint_path)
|
|
if checkpoint_path.endswith("v1"):
|
|
h = AttributeDict(v1)
|
|
elif checkpoint_path.endswith("v2"):
|
|
h = AttributeDict(v2)
|
|
elif checkpoint_path.endswith("v3"):
|
|
h = AttributeDict(v3)
|
|
else:
|
|
raise ValueError(f"supports only v1, v2, and v3, given {checkpoint_path}")
|
|
|
|
hifigan = HiFiGAN(h).to("cpu")
|
|
hifigan.load_state_dict(
|
|
torch.load(checkpoint_path, map_location="cpu")["generator"]
|
|
)
|
|
_ = hifigan.eval()
|
|
hifigan.remove_weight_norm()
|
|
return hifigan
|
|
|
|
|
|
def to_waveform(mel, vocoder, denoiser):
|
|
audio = vocoder(mel).clamp(-1, 1)
|
|
audio = denoiser(audio.squeeze(0), strength=0.00025).cpu().squeeze()
|
|
return audio.cpu().squeeze()
|
|
|
|
|
|
def process_text(text: str, tokenizer):
|
|
x = tokenizer.texts_to_token_ids([text], add_sos=True, add_eos=True)
|
|
x = torch.tensor(x, dtype=torch.long)
|
|
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device="cpu")
|
|
return {"x_orig": text, "x": x, "x_lengths": x_lengths}
|
|
|
|
|
|
def synthesise(
|
|
model, tokenizer, n_timesteps, text, length_scale, temperature, spks=None
|
|
):
|
|
text_processed = process_text(text, tokenizer)
|
|
start_t = dt.datetime.now()
|
|
output = model.synthesise(
|
|
text_processed["x"],
|
|
text_processed["x_lengths"],
|
|
n_timesteps=n_timesteps,
|
|
temperature=temperature,
|
|
spks=spks,
|
|
length_scale=length_scale,
|
|
)
|
|
# merge everything to one dict
|
|
output.update({"start_t": start_t, **text_processed})
|
|
return output
|
|
|
|
|
|
@torch.inference_mode()
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
params = get_params()
|
|
|
|
params.update(vars(args))
|
|
|
|
tokenizer = Tokenizer(params.tokens)
|
|
params.blank_id = tokenizer.pad_id
|
|
params.vocab_size = tokenizer.vocab_size
|
|
params.model_args.n_vocab = params.vocab_size
|
|
|
|
with open(params.cmvn) as f:
|
|
stats = json.load(f)
|
|
params.data_args.data_statistics.mel_mean = stats["fbank_mean"]
|
|
params.data_args.data_statistics.mel_std = stats["fbank_std"]
|
|
|
|
params.model_args.data_statistics.mel_mean = stats["fbank_mean"]
|
|
params.model_args.data_statistics.mel_std = stats["fbank_std"]
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
|
|
if not Path(f"{params.exp_dir}/epoch-{params.epoch}.pt").is_file():
|
|
raise ValueError("{params.exp_dir}/epoch-{params.epoch}.pt does not exist")
|
|
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
model.eval()
|
|
|
|
if not Path(params.vocoder).is_file():
|
|
raise ValueError(f"{params.vocoder} does not exist")
|
|
|
|
vocoder = load_vocoder(params.vocoder)
|
|
denoiser = Denoiser(vocoder, mode="zeros")
|
|
|
|
# Number of ODE Solver steps
|
|
n_timesteps = 2
|
|
|
|
# Changes to the speaking rate
|
|
length_scale = 1.0
|
|
|
|
# Sampling temperature
|
|
temperature = 0.667
|
|
|
|
output = synthesise(
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
n_timesteps=n_timesteps,
|
|
text=params.input_text,
|
|
length_scale=length_scale,
|
|
temperature=temperature,
|
|
)
|
|
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
|
|
|
sf.write(params.output_wav, output["waveform"], 22050, "PCM_16")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
main()
|