mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 13:34:20 +00:00
Add fast_beam_search_nbest.
This commit is contained in:
parent
53f38c01d2
commit
1bf2e17437
@ -75,6 +75,86 @@ def fast_beam_search_one_best(
|
||||
return hyps
|
||||
|
||||
|
||||
def fast_beam_search_nbest(
|
||||
model: Transducer,
|
||||
decoding_graph: k2.Fsa,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
beam: float,
|
||||
max_states: int,
|
||||
max_contexts: int,
|
||||
num_paths: int,
|
||||
nbest_scale: float = 0.5,
|
||||
use_double_scores: bool = True,
|
||||
) -> List[List[int]]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
The process to get the results is:
|
||||
- (1) Use fast beam search to get a lattice
|
||||
- (2) Select `num_paths` paths from the lattice using k2.random_paths()
|
||||
- (3) Unique the selected paths
|
||||
- (4) Intersect the selected paths with the lattice and compute the
|
||||
shortest path from the intersection result
|
||||
- (5) The path with the largest score is used as the decoding output.
|
||||
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
decoding_graph:
|
||||
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C) from the encoder.
|
||||
encoder_out_lens:
|
||||
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
||||
before padding.
|
||||
beam:
|
||||
Beam value, similar to the beam used in Kaldi..
|
||||
max_states:
|
||||
Max states per stream per frame.
|
||||
max_contexts:
|
||||
Max contexts pre stream per frame.
|
||||
num_paths:
|
||||
Number of paths to extract from the decoded lattice.
|
||||
nbest_scale:
|
||||
It's the scale applied to the lattice.scores. A smaller value
|
||||
yields more unique paths.
|
||||
use_double_scores:
|
||||
True to use double precision for computation. False to use
|
||||
single precision.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
"""
|
||||
lattice = fast_beam_search(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=beam,
|
||||
max_states=max_states,
|
||||
max_contexts=max_contexts,
|
||||
)
|
||||
|
||||
nbest = Nbest.from_lattice(
|
||||
lattice=lattice,
|
||||
num_paths=num_paths,
|
||||
use_double_scores=use_double_scores,
|
||||
nbest_scale=nbest_scale,
|
||||
)
|
||||
|
||||
# at this point, nbest.fsa.scores are all zeros.
|
||||
|
||||
nbest = nbest.intersect(lattice)
|
||||
# Now nbest.fsa.scores contains acoustic scores
|
||||
|
||||
max_indexes = nbest.tot_scores().argmax()
|
||||
|
||||
best_path = k2.index_fsa(nbest.fsa, max_indexes)
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
def fast_beam_search_nbest_oracle(
|
||||
model: Transducer,
|
||||
decoding_graph: k2.Fsa,
|
||||
|
@ -82,6 +82,7 @@ import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
@ -250,6 +251,26 @@ def get_parser():
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search and
|
||||
--use-LG is True.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is fast_beam_search and
|
||||
--use-LG is True.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -307,21 +328,32 @@ def decode_one_batch(
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
if params.use_LG:
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append([word_table[i] for i in hyp])
|
||||
else:
|
||||
if not params.use_LG:
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
hyp_tokens = fast_beam_search_nbest(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append([word_table[i] for i in hyp])
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
|
@ -37,7 +37,7 @@ def fast_beam_search_one_best(
|
||||
) -> List[List[int]]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
A lattice is first obtained using modified beam search, and then
|
||||
A lattice is first obtained using fast beam search, and then
|
||||
the shortest path within the lattice is used as the final output.
|
||||
|
||||
Args:
|
||||
@ -74,6 +74,86 @@ def fast_beam_search_one_best(
|
||||
return hyps
|
||||
|
||||
|
||||
def fast_beam_search_nbest(
|
||||
model: Transducer,
|
||||
decoding_graph: k2.Fsa,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
beam: float,
|
||||
max_states: int,
|
||||
max_contexts: int,
|
||||
num_paths: int,
|
||||
nbest_scale: float = 0.5,
|
||||
use_double_scores: bool = True,
|
||||
) -> List[List[int]]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
The process to get the results is:
|
||||
- (1) Use fast beam search to get a lattice
|
||||
- (2) Select `num_paths` paths from the lattice using k2.random_paths()
|
||||
- (3) Unique the selected paths
|
||||
- (4) Intersect the selected paths with the lattice and compute the
|
||||
shortest path from the intersection result
|
||||
- (5) The path with the largest score is used as the decoding output.
|
||||
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
decoding_graph:
|
||||
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C) from the encoder.
|
||||
encoder_out_lens:
|
||||
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
||||
before padding.
|
||||
beam:
|
||||
Beam value, similar to the beam used in Kaldi..
|
||||
max_states:
|
||||
Max states per stream per frame.
|
||||
max_contexts:
|
||||
Max contexts pre stream per frame.
|
||||
num_paths:
|
||||
Number of paths to extract from the decoded lattice.
|
||||
nbest_scale:
|
||||
It's the scale applied to the lattice.scores. A smaller value
|
||||
yields more unique paths.
|
||||
use_double_scores:
|
||||
True to use double precision for computation. False to use
|
||||
single precision.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
"""
|
||||
lattice = fast_beam_search(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=beam,
|
||||
max_states=max_states,
|
||||
max_contexts=max_contexts,
|
||||
)
|
||||
|
||||
nbest = Nbest.from_lattice(
|
||||
lattice=lattice,
|
||||
num_paths=num_paths,
|
||||
use_double_scores=use_double_scores,
|
||||
nbest_scale=nbest_scale,
|
||||
)
|
||||
|
||||
# at this point, nbest.fsa.scores are all zeros.
|
||||
|
||||
nbest = nbest.intersect(lattice)
|
||||
# Now nbest.fsa.scores contains acoustic scores
|
||||
|
||||
max_indexes = nbest.tot_scores().argmax()
|
||||
|
||||
best_path = k2.index_fsa(nbest.fsa, max_indexes)
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
def fast_beam_search_nbest_oracle(
|
||||
model: Transducer,
|
||||
decoding_graph: k2.Fsa,
|
||||
@ -89,7 +169,7 @@ def fast_beam_search_nbest_oracle(
|
||||
) -> List[List[int]]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
A lattice is first obtained using modified beam search, and then
|
||||
A lattice is first obtained using fast beam search, and then
|
||||
we select `num_paths` linear paths from the lattice. The path
|
||||
that has the minimum edit distance with the given reference transcript
|
||||
is used as the output.
|
||||
|
@ -43,7 +43,7 @@ Usage:
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
(4) fast beam search (one best)
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
@ -53,6 +53,32 @@ Usage:
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
|
||||
(5) fast beam search (nbest)
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
|
||||
(6) fast beam search (nbest oracle WER)
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
"""
|
||||
|
||||
|
||||
@ -69,6 +95,8 @@ import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
@ -145,6 +173,8 @@ def get_parser():
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
@ -164,7 +194,9 @@ def get_parser():
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -172,7 +204,8 @@ def get_parser():
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -180,7 +213,8 @@ def get_parser():
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -198,6 +232,26 @@ def get_parser():
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest or
|
||||
fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is fast_beam_search_nbest or
|
||||
fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -231,7 +285,8 @@ def decode_one_batch(
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
only when --decoding_method is fast_beam_search,
|
||||
fast_beam_search_nbest, or fast_beam_search_nbest_oracle.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
@ -263,6 +318,35 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest":
|
||||
hyp_tokens = fast_beam_search_nbest(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=sp.encode(supervisions["text"]),
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
@ -318,6 +402,16 @@ def decode_one_batch(
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
elif "fast_beam_search_nbest" in params.decoding_method:
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}_"
|
||||
f"num_paths_{params.num_paths}_"
|
||||
f"nbest_scale_{params.nbest_scale}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
@ -342,7 +436,8 @@ def decode_dataset(
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
only when --decoding_method is fast_beam_search,
|
||||
fast_beam_search_nbest, or fast_beam_search_nbest_oracle.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
@ -360,7 +455,7 @@ def decode_dataset(
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 10
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
@ -452,6 +547,8 @@ def main():
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_nbest",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
@ -461,10 +558,16 @@ def main():
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "fast_beam_search_nbest" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
params.suffix += f"-num-paths-{params.num_paths}"
|
||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
@ -528,7 +631,7 @@ def main():
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
@ -19,40 +19,66 @@
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search (not recommended)
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
(4) fast beam search (one best)
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
|
||||
(5) fast beam search (nbest)
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
|
||||
(6) fast beam search (nbest oracle WER)
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
"""
|
||||
|
||||
|
||||
@ -69,6 +95,7 @@ import torch.nn as nn
|
||||
from asr_datamodule import AsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
@ -147,6 +174,7 @@ def get_parser():
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
@ -168,7 +196,8 @@ def get_parser():
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is
|
||||
fast_beam_search or fast_beam_search_nbest_oracle""",
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -176,7 +205,8 @@ def get_parser():
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search or fast_beam_search_nbest_oracle""",
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -184,7 +214,8 @@ def get_parser():
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search or fast_beam_search_nbest_oracle""",
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -205,9 +236,10 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=100,
|
||||
help="""Number of paths for computed nbest oracle WER
|
||||
when the decoding method is fast_beam_search_nbest_oracle.
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest or
|
||||
fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
@ -216,9 +248,11 @@ def get_parser():
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding_method is fast_beam_search_nbest_oracle.
|
||||
Used only when the decoding method is fast_beam_search_nbest or
|
||||
fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -252,8 +286,8 @@ def decode_one_batch(
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is
|
||||
fast_beam_search or fast_beam_search_nbest_oracle.
|
||||
only when --decoding_method is fast_beam_search,
|
||||
fast_beam_search_nbest, or fast_beam_search_nbest_oracle.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
@ -285,6 +319,20 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest":
|
||||
hyp_tokens = fast_beam_search_nbest(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
@ -355,7 +403,7 @@ def decode_one_batch(
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
elif "fast_beam_search_nbest" in params.decoding_method:
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
@ -389,7 +437,8 @@ def decode_dataset(
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
only when --decoding_method is fast_beam_search,
|
||||
fast_beam_search_nbest, or fast_beam_search_nbest_oracle.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
@ -407,7 +456,7 @@ def decode_dataset(
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 10
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
@ -499,6 +548,7 @@ def main():
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_nbest",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
)
|
||||
@ -513,7 +563,7 @@ def main():
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
elif "fast_beam_search_nbest" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
@ -539,9 +589,9 @@ def main():
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.unk_id()
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
@ -583,10 +633,7 @@ def main():
|
||||
model.device = device
|
||||
model.unk_id = params.unk_id
|
||||
|
||||
if params.decoding_method in (
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
):
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
@ -44,7 +44,7 @@ Usage:
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
(4) fast beam search (one best)
|
||||
./pruned_transducer_stateless4/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
@ -54,6 +54,32 @@ Usage:
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
|
||||
(5) fast beam search (nbest)
|
||||
./pruned_transducer_stateless4/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
|
||||
(6) fast beam search (nbest oracle WER)
|
||||
./pruned_transducer_stateless4/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless4/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
"""
|
||||
|
||||
|
||||
@ -70,6 +96,8 @@ import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
@ -159,6 +187,8 @@ def get_parser():
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
@ -178,7 +208,9 @@ def get_parser():
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -186,7 +218,8 @@ def get_parser():
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -194,7 +227,8 @@ def get_parser():
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -212,6 +246,26 @@ def get_parser():
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest or
|
||||
fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is fast_beam_search_nbest or
|
||||
fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -277,6 +331,35 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest":
|
||||
hyp_tokens = fast_beam_search_nbest(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=sp.encode(supervisions["text"]),
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
@ -332,6 +415,16 @@ def decode_one_batch(
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
elif "fast_beam_search_nbest" in params.decoding_method:
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}_"
|
||||
f"num_paths_{params.num_paths}_"
|
||||
f"nbest_scale_{params.nbest_scale}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
@ -356,7 +449,8 @@ def decode_dataset(
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
only when --decoding_method is fast_beam_search,
|
||||
fast_beam_search_nbest, or fast_beam_search_nbest_oracle.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
@ -374,7 +468,7 @@ def decode_dataset(
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 10
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
@ -466,6 +560,8 @@ def main():
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_nbest",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
@ -475,10 +571,16 @@ def main():
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "fast_beam_search_nbest" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
params.suffix += f"-num-paths-{params.num_paths}"
|
||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
@ -592,7 +694,7 @@ def main():
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
@ -44,7 +44,7 @@ Usage:
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
(4) fast beam search (one best)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
@ -54,6 +54,32 @@ Usage:
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
|
||||
(5) fast beam search (nbest)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
|
||||
(6) fast beam search (nbest oracle WER)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
"""
|
||||
|
||||
|
||||
@ -70,6 +96,8 @@ import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
@ -128,7 +156,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
@ -159,6 +187,8 @@ def get_parser():
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
@ -178,7 +208,9 @@ def get_parser():
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -186,7 +218,8 @@ def get_parser():
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -194,7 +227,8 @@ def get_parser():
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
fast_beam_search, fast_beam_search_nbest, or
|
||||
fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -212,6 +246,26 @@ def get_parser():
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest or
|
||||
fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is fast_beam_search_nbest or
|
||||
fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
@ -279,6 +333,35 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest":
|
||||
hyp_tokens = fast_beam_search_nbest(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=sp.encode(supervisions["text"]),
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
@ -334,6 +417,16 @@ def decode_one_batch(
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
elif "fast_beam_search_nbest" in params.decoding_method:
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}_"
|
||||
f"num_paths_{params.num_paths}_"
|
||||
f"nbest_scale_{params.nbest_scale}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
@ -358,7 +451,8 @@ def decode_dataset(
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
only when --decoding_method is fast_beam_search,
|
||||
fast_beam_search_nbest, or fast_beam_search_nbest_oracle.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
@ -468,6 +562,8 @@ def main():
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_nbest",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
@ -477,10 +573,16 @@ def main():
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "fast_beam_search_nbest" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
params.suffix += f"-num-paths-{params.num_paths}"
|
||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
@ -594,7 +696,7 @@ def main():
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
@ -308,9 +308,7 @@ class Nbest(object):
|
||||
del word_fsa.aux_labels
|
||||
|
||||
word_fsa.scores.zero_()
|
||||
word_fsa_with_epsilon_loops = k2.remove_epsilon_and_add_self_loops(
|
||||
word_fsa
|
||||
)
|
||||
word_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(word_fsa)
|
||||
|
||||
path_to_utt_map = self.shape.row_ids(1)
|
||||
|
||||
@ -609,7 +607,7 @@ def rescore_with_n_best_list(
|
||||
num_paths:
|
||||
Size of nbest list.
|
||||
lm_scale_list:
|
||||
A list of float representing LM score scales.
|
||||
A list of floats representing LM score scales.
|
||||
nbest_scale:
|
||||
Scale to be applied to ``lattice.score`` when sampling paths
|
||||
using ``k2.random_paths``.
|
||||
|
Loading…
x
Reference in New Issue
Block a user