mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-03 06:04:18 +00:00
Add RNN-T Emformer for Aishell.
This commit is contained in:
parent
3479af0e6e
commit
128c9db545
1
egs/aishell/ASR/transducer_emformer/asr_datamodule.py
Symbolic link
1
egs/aishell/ASR/transducer_emformer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../transducer_stateless/asr_datamodule.py
|
1
egs/aishell/ASR/transducer_emformer/decoder.py
Symbolic link
1
egs/aishell/ASR/transducer_emformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_emformer/decoder.py
|
182
egs/aishell/ASR/transducer_emformer/emformer.py
Normal file
182
egs/aishell/ASR/transducer_emformer/emformer.py
Normal file
@ -0,0 +1,182 @@
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from encoder_interface import EncoderInterface
|
||||
from torchaudio.models import Emformer as _Emformer
|
||||
from torchaudio.models.rnnt import _TimeReduction
|
||||
|
||||
LOG_EPSILON = math.log(1e-10)
|
||||
|
||||
|
||||
class Emformer(EncoderInterface):
|
||||
"""This is just a simple wrapper around torchaudio.models.Emformer.
|
||||
We may replace it with our own implementation some time later.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_features: int,
|
||||
output_dim: int,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int,
|
||||
num_encoder_layers: int,
|
||||
segment_length: int,
|
||||
left_context_length: int,
|
||||
right_context_length: int,
|
||||
max_memory_size: int = 0,
|
||||
dropout: float = 0.1,
|
||||
subsampling_factor: int = 4,
|
||||
vgg_frontend: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
num_features:
|
||||
The input dimension of the model.
|
||||
output_dim:
|
||||
The output dimension of the model.
|
||||
d_model:
|
||||
Attention dimension.
|
||||
nhead:
|
||||
Number of heads in multi-head attention.
|
||||
dim_feedforward:
|
||||
The output dimension of the feedforward layers in encoder.
|
||||
num_encoder_layers:
|
||||
Number of encoder layers.
|
||||
segment_length:
|
||||
Number of frames per segment.
|
||||
left_context_length:
|
||||
Number of frames in the left context.
|
||||
right_context_length:
|
||||
Number of frames in the right context.
|
||||
max_memory_size:
|
||||
TODO.
|
||||
dropout:
|
||||
Dropout in encoder.
|
||||
subsampling_factor:
|
||||
Number of output frames is num_in_frames // subsampling_factor.
|
||||
vgg_frontend:
|
||||
True to use vgg style frontend for subsampling.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.subsampling_factor = subsampling_factor
|
||||
|
||||
self.time_reduction = _TimeReduction(stride=subsampling_factor)
|
||||
self.in_linear = nn.Linear(num_features * subsampling_factor, d_model)
|
||||
|
||||
self.right_context_length = right_context_length
|
||||
|
||||
assert right_context_length % subsampling_factor == 0
|
||||
assert segment_length % subsampling_factor == 0
|
||||
assert left_context_length % subsampling_factor == 0
|
||||
|
||||
left_context_length = left_context_length // subsampling_factor
|
||||
right_context_length = right_context_length // subsampling_factor
|
||||
segment_length = segment_length // subsampling_factor
|
||||
|
||||
self.model = _Emformer(
|
||||
input_dim=d_model,
|
||||
num_heads=nhead,
|
||||
ffn_dim=dim_feedforward,
|
||||
num_layers=num_encoder_layers,
|
||||
segment_length=segment_length,
|
||||
dropout=dropout,
|
||||
activation="relu",
|
||||
left_context_length=left_context_length,
|
||||
right_context_length=right_context_length,
|
||||
max_memory_size=max_memory_size,
|
||||
weight_init_scale_strategy="depthwise",
|
||||
tanh_on_mem=False,
|
||||
negative_inf=-1e8,
|
||||
)
|
||||
|
||||
self.encoder_output_layer = nn.Sequential(
|
||||
nn.Dropout(p=dropout), nn.Linear(d_model, output_dim)
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
Input features of shape (N, T, C).
|
||||
x_lens:
|
||||
A int32 tensor of shape (N,) containing valid frames in `x` before
|
||||
padding. We have `x.size(1) == x_lens.max()`
|
||||
Returns:
|
||||
Return a tuple containing two tensors:
|
||||
|
||||
- encoder_out, a tensor of shape (N, T', C)
|
||||
- encoder_out_lens, a int32 tensor of shape (N,) containing the
|
||||
valid frames in `encoder_out` before padding
|
||||
"""
|
||||
x = nn.functional.pad(
|
||||
x,
|
||||
# (left, right, top, bottom)
|
||||
# left/right are for the channel dimension, i.e., axis 2
|
||||
# top/bottom are for the time dimension, i.e., axis 1
|
||||
(0, 0, 0, self.right_context_length),
|
||||
value=LOG_EPSILON,
|
||||
) # (N, T, C) -> (N, T+right_context_length, C)
|
||||
|
||||
x, x_lens = self.time_reduction(x, x_lens)
|
||||
x = self.in_linear(x)
|
||||
|
||||
emformer_out, emformer_out_lens = self.model(x, x_lens)
|
||||
logits = self.encoder_output_layer(emformer_out)
|
||||
|
||||
return logits, emformer_out_lens
|
||||
|
||||
def streaming_forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
states: Optional[List[List[torch.Tensor]]] = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C).
|
||||
x_lens:
|
||||
A 2-D tensor of shap containing the number of valid frames for each
|
||||
element in `x` before padding.
|
||||
states:
|
||||
Internal states of the model.
|
||||
Returns:
|
||||
Return a tuple containing 3 tensors:
|
||||
- encoder_out, a 3-D tensor of shape (N, T, C)
|
||||
- encoder_out_lens: a 1-D tensor of shape (N,)
|
||||
- next_state, internal model states for the next chunk
|
||||
"""
|
||||
x, x_lens = self.time_reduction(x, x_lens)
|
||||
x = self.in_linear(x)
|
||||
|
||||
emformer_out, emformer_out_lens, states = self.model.infer(
|
||||
x, x_lens, states
|
||||
)
|
||||
|
||||
logits = self.encoder_output_layer(emformer_out)
|
||||
|
||||
return logits, emformer_out_lens, states
|
1
egs/aishell/ASR/transducer_emformer/encoder_interface.py
Symbolic link
1
egs/aishell/ASR/transducer_emformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_emformer/encoder_interface.py
|
1
egs/aishell/ASR/transducer_emformer/joiner.py
Symbolic link
1
egs/aishell/ASR/transducer_emformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_emformer/joiner.py
|
1
egs/aishell/ASR/transducer_emformer/model.py
Symbolic link
1
egs/aishell/ASR/transducer_emformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_emformer/model.py
|
1
egs/aishell/ASR/transducer_emformer/noam.py
Symbolic link
1
egs/aishell/ASR/transducer_emformer/noam.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_emformer/noam.py
|
76
egs/aishell/ASR/transducer_emformer/test_emformer.py
Executable file
76
egs/aishell/ASR/transducer_emformer/test_emformer.py
Executable file
@ -0,0 +1,76 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./transducer_emformer/test_emformer.py
|
||||
"""
|
||||
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
from emformer import Emformer
|
||||
|
||||
|
||||
def test_emformer():
|
||||
N = 3
|
||||
T = 300
|
||||
C = 80
|
||||
|
||||
subsampling_factor = 4
|
||||
|
||||
output_dim = 500
|
||||
|
||||
encoder = Emformer(
|
||||
num_features=C,
|
||||
output_dim=output_dim,
|
||||
d_model=512,
|
||||
nhead=8,
|
||||
dim_feedforward=2048,
|
||||
num_encoder_layers=20,
|
||||
segment_length=16,
|
||||
left_context_length=120,
|
||||
right_context_length=4,
|
||||
subsampling_factor=4,
|
||||
)
|
||||
|
||||
x = torch.rand(N, T, C)
|
||||
x_lens = torch.randint(100, T, (N,))
|
||||
x_lens[0] = T
|
||||
|
||||
y, y_lens = encoder(x, x_lens)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
assert (y_lens == x_lens // subsampling_factor).all()
|
||||
assert x.size(0) == x.size(0)
|
||||
assert y.size(1) == max(y_lens)
|
||||
assert y.size(2) == output_dim
|
||||
|
||||
num_param = sum([p.numel() for p in encoder.parameters()])
|
||||
print(f"Number of encoder parameters: {num_param}")
|
||||
|
||||
|
||||
def main():
|
||||
test_emformer()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20220329)
|
||||
main()
|
851
egs/aishell/ASR/transducer_emformer/train.py
Executable file
851
egs/aishell/ASR/transducer_emformer/train.py
Executable file
@ -0,0 +1,851 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang
|
||||
# Mingshuang Luo)
|
||||
# Copyright 2021 (Pingfeng Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2"
|
||||
|
||||
./transducer_emformer/train.py \
|
||||
--world-size 3 \
|
||||
--num-epochs 65 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir transducer_emformer/exp \
|
||||
--max-duration 250 \
|
||||
--lr-factor 2.0 \
|
||||
--context-size 2 \
|
||||
--modified-transducer-prob 0.25
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
from decoder import Decoder
|
||||
from emformer import Emformer
|
||||
from joiner import Joiner
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import Transducer
|
||||
from noam import Noam
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||
|
||||
|
||||
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||
parser.add_argument(
|
||||
"--attention-dim",
|
||||
type=int,
|
||||
default=512,
|
||||
help="Attention dim for the Emformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nhead",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of attention heads for the Emformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--dim-feedforward",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Feed-forward dimension for the Emformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-encoder-layers",
|
||||
type=int,
|
||||
default=12,
|
||||
help="Number of encoder layers for the Emformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--left-context-length",
|
||||
type=int,
|
||||
default=120,
|
||||
help="Number of frames for the left context in the Emformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--segment-length",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of frames for each segment in the Emformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--right-context-length",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of frames for right context in the Emformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--memory-size",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of entries in the memory for the Emformer",
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
transducer_emformer/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_emformer/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_char",
|
||||
help="""The lang dir
|
||||
It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-factor",
|
||||
type=float,
|
||||
default=5.0,
|
||||
help="The lr_factor for Noam optimizer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--prune-range",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The prune range for rnnt loss, it means how many symbols(context)"
|
||||
"we are using to compute the loss",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-scale",
|
||||
type=float,
|
||||
default=0.25,
|
||||
help="The scale to smooth the loss with lm "
|
||||
"(output of prediction network) part.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--am-scale",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="The scale to smooth the loss with am (output of encoder network)"
|
||||
"part.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--simple-loss-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="To get pruning ranges, we will calculate a simple version"
|
||||
"loss(joiner is just addition), this simple loss also uses for"
|
||||
"training (as a regularization item). We will scale the simple loss"
|
||||
"with this parameter before adding to the final loss.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- attention_dim: Hidden dim for multi-head attention model.
|
||||
|
||||
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||
|
||||
- warm_step: The warm_step for Noam optimizer.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 800,
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 4,
|
||||
# parameters for decoder
|
||||
"embedding_dim": 512,
|
||||
# parameters for Noam
|
||||
"warm_step": 30000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = Emformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.vocab_size,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
left_context_length=params.left_context_length,
|
||||
segment_length=params.segment_length,
|
||||
right_context_length=params.right_context_length,
|
||||
max_memory_size=params.memory_size,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
joiner = Joiner(
|
||||
input_dim=params.vocab_size,
|
||||
inner_dim=params.embedding_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
batch: dict,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of Conformer in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is (N, T, C)
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
texts = batch["supervisions"]["text"]
|
||||
y = graph_compiler.texts_to_ids(texts)
|
||||
y = k2.RaggedTensor(y).to(device)
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
simple_loss, pruned_loss = model(
|
||||
x=feature,
|
||||
x_lens=feature_lens,
|
||||
y=y,
|
||||
prune_range=params.prune_range,
|
||||
am_scale=params.am_scale,
|
||||
lm_scale=params.lm_scale,
|
||||
)
|
||||
loss = params.simple_loss_scale * simple_loss + pruned_loss
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
info["frames"] = (
|
||||
(feature_lens // params.subsampling_factor).sum().item()
|
||||
)
|
||||
|
||||
# Note: We use reduction=sum while computing the loss.
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
info["simple_loss"] = simple_loss.detach().cpu().item()
|
||||
info["pruned_loss"] = pruned_loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
batch=batch,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||
lexicon=lexicon,
|
||||
device=device,
|
||||
oov="<unk>",
|
||||
)
|
||||
|
||||
params.blank_id = 0
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
logging.info("Using DDP")
|
||||
model = DDP(model, device_ids=[rank])
|
||||
model.device = device
|
||||
|
||||
optimizer = Noam(
|
||||
model.parameters(),
|
||||
model_size=params.attention_dim,
|
||||
factor=params.lr_factor,
|
||||
warm_step=params.warm_step,
|
||||
)
|
||||
|
||||
if checkpoints and "optimizer" in checkpoints:
|
||||
logging.info("Loading optimizer state dict")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
aishell = AishellAsrDataModule(args)
|
||||
train_cuts = aishell.train_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 12 seconds
|
||||
return 1.0 <= c.duration <= 12.0
|
||||
|
||||
num_in_total = len(train_cuts)
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
num_left = len(train_cuts)
|
||||
num_removed = num_in_total - num_left
|
||||
removed_percent = num_removed / num_in_total * 100
|
||||
|
||||
logging.info(f"Before removing short and long utterances: {num_in_total}")
|
||||
logging.info(f"After removing short and long utterances: {num_left}")
|
||||
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
|
||||
|
||||
train_dl = aishell.train_dataloaders(train_cuts)
|
||||
valid_dl = aishell.valid_dataloaders(aishell.valid_cuts())
|
||||
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=train_dl,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
params=params,
|
||||
)
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
fix_random_seed(params.seed + epoch)
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
cur_lr = optimizer._rate
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||
)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
if rank == 0:
|
||||
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def scan_pessimistic_batches_for_oom(
|
||||
model: nn.Module,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
params: AttributeDict,
|
||||
):
|
||||
from lhotse.dataset import find_pessimistic_batches
|
||||
|
||||
logging.info(
|
||||
"Sanity check -- see if any of the batches in epoch 0 would cause OOM."
|
||||
)
|
||||
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
||||
for criterion, cuts in batches.items():
|
||||
batch = train_dl.dataset[cuts]
|
||||
try:
|
||||
optimizer.zero_grad()
|
||||
loss, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
except RuntimeError as e:
|
||||
if "CUDA out of memory" in str(e):
|
||||
logging.error(
|
||||
"Your GPU ran out of memory with the current "
|
||||
"max_duration setting. We recommend decreasing "
|
||||
"max_duration and trying again.\n"
|
||||
f"Failing criterion: {criterion} "
|
||||
f"(={crit_values[criterion]}) ..."
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -520,7 +520,7 @@ def compute_loss(
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of Conformer in our case.
|
||||
The model for training. It is an instance of Emformer in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
|
Loading…
x
Reference in New Issue
Block a user