From 128c9db545edf1d90acf39dd0448878603cef82d Mon Sep 17 00:00:00 2001 From: Fangjun Kuang Date: Fri, 1 Apr 2022 21:58:40 +0800 Subject: [PATCH] Add RNN-T Emformer for Aishell. --- .../ASR/transducer_emformer/asr_datamodule.py | 1 + .../ASR/transducer_emformer/decoder.py | 1 + .../ASR/transducer_emformer/emformer.py | 182 ++++ .../transducer_emformer/encoder_interface.py | 1 + egs/aishell/ASR/transducer_emformer/joiner.py | 1 + egs/aishell/ASR/transducer_emformer/model.py | 1 + egs/aishell/ASR/transducer_emformer/noam.py | 1 + .../ASR/transducer_emformer/test_emformer.py | 76 ++ egs/aishell/ASR/transducer_emformer/train.py | 851 ++++++++++++++++++ .../ASR/transducer_emformer/train.py | 2 +- 10 files changed, 1116 insertions(+), 1 deletion(-) create mode 120000 egs/aishell/ASR/transducer_emformer/asr_datamodule.py create mode 120000 egs/aishell/ASR/transducer_emformer/decoder.py create mode 100644 egs/aishell/ASR/transducer_emformer/emformer.py create mode 120000 egs/aishell/ASR/transducer_emformer/encoder_interface.py create mode 120000 egs/aishell/ASR/transducer_emformer/joiner.py create mode 120000 egs/aishell/ASR/transducer_emformer/model.py create mode 120000 egs/aishell/ASR/transducer_emformer/noam.py create mode 100755 egs/aishell/ASR/transducer_emformer/test_emformer.py create mode 100755 egs/aishell/ASR/transducer_emformer/train.py diff --git a/egs/aishell/ASR/transducer_emformer/asr_datamodule.py b/egs/aishell/ASR/transducer_emformer/asr_datamodule.py new file mode 120000 index 000000000..49b2ee483 --- /dev/null +++ b/egs/aishell/ASR/transducer_emformer/asr_datamodule.py @@ -0,0 +1 @@ +../transducer_stateless/asr_datamodule.py \ No newline at end of file diff --git a/egs/aishell/ASR/transducer_emformer/decoder.py b/egs/aishell/ASR/transducer_emformer/decoder.py new file mode 120000 index 000000000..7f07b1a81 --- /dev/null +++ b/egs/aishell/ASR/transducer_emformer/decoder.py @@ -0,0 +1 @@ +../../../librispeech/ASR/transducer_emformer/decoder.py \ No newline at end of file diff --git a/egs/aishell/ASR/transducer_emformer/emformer.py b/egs/aishell/ASR/transducer_emformer/emformer.py new file mode 100644 index 000000000..7e663ca32 --- /dev/null +++ b/egs/aishell/ASR/transducer_emformer/emformer.py @@ -0,0 +1,182 @@ +# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import List, Optional, Tuple + +import torch +import torch.nn as nn +from encoder_interface import EncoderInterface +from torchaudio.models import Emformer as _Emformer +from torchaudio.models.rnnt import _TimeReduction + +LOG_EPSILON = math.log(1e-10) + + +class Emformer(EncoderInterface): + """This is just a simple wrapper around torchaudio.models.Emformer. + We may replace it with our own implementation some time later. + """ + + def __init__( + self, + num_features: int, + output_dim: int, + d_model: int, + nhead: int, + dim_feedforward: int, + num_encoder_layers: int, + segment_length: int, + left_context_length: int, + right_context_length: int, + max_memory_size: int = 0, + dropout: float = 0.1, + subsampling_factor: int = 4, + vgg_frontend: bool = False, + ) -> None: + """ + Args: + num_features: + The input dimension of the model. + output_dim: + The output dimension of the model. + d_model: + Attention dimension. + nhead: + Number of heads in multi-head attention. + dim_feedforward: + The output dimension of the feedforward layers in encoder. + num_encoder_layers: + Number of encoder layers. + segment_length: + Number of frames per segment. + left_context_length: + Number of frames in the left context. + right_context_length: + Number of frames in the right context. + max_memory_size: + TODO. + dropout: + Dropout in encoder. + subsampling_factor: + Number of output frames is num_in_frames // subsampling_factor. + vgg_frontend: + True to use vgg style frontend for subsampling. + """ + super().__init__() + + self.subsampling_factor = subsampling_factor + + self.time_reduction = _TimeReduction(stride=subsampling_factor) + self.in_linear = nn.Linear(num_features * subsampling_factor, d_model) + + self.right_context_length = right_context_length + + assert right_context_length % subsampling_factor == 0 + assert segment_length % subsampling_factor == 0 + assert left_context_length % subsampling_factor == 0 + + left_context_length = left_context_length // subsampling_factor + right_context_length = right_context_length // subsampling_factor + segment_length = segment_length // subsampling_factor + + self.model = _Emformer( + input_dim=d_model, + num_heads=nhead, + ffn_dim=dim_feedforward, + num_layers=num_encoder_layers, + segment_length=segment_length, + dropout=dropout, + activation="relu", + left_context_length=left_context_length, + right_context_length=right_context_length, + max_memory_size=max_memory_size, + weight_init_scale_strategy="depthwise", + tanh_on_mem=False, + negative_inf=-1e8, + ) + + self.encoder_output_layer = nn.Sequential( + nn.Dropout(p=dropout), nn.Linear(d_model, output_dim) + ) + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Args: + x: + Input features of shape (N, T, C). + x_lens: + A int32 tensor of shape (N,) containing valid frames in `x` before + padding. We have `x.size(1) == x_lens.max()` + Returns: + Return a tuple containing two tensors: + + - encoder_out, a tensor of shape (N, T', C) + - encoder_out_lens, a int32 tensor of shape (N,) containing the + valid frames in `encoder_out` before padding + """ + x = nn.functional.pad( + x, + # (left, right, top, bottom) + # left/right are for the channel dimension, i.e., axis 2 + # top/bottom are for the time dimension, i.e., axis 1 + (0, 0, 0, self.right_context_length), + value=LOG_EPSILON, + ) # (N, T, C) -> (N, T+right_context_length, C) + + x, x_lens = self.time_reduction(x, x_lens) + x = self.in_linear(x) + + emformer_out, emformer_out_lens = self.model(x, x_lens) + logits = self.encoder_output_layer(emformer_out) + + return logits, emformer_out_lens + + def streaming_forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + states: Optional[List[List[torch.Tensor]]] = None, + ): + """ + Args: + x: + A 3-D tensor of shape (N, T, C). + x_lens: + A 2-D tensor of shap containing the number of valid frames for each + element in `x` before padding. + states: + Internal states of the model. + Returns: + Return a tuple containing 3 tensors: + - encoder_out, a 3-D tensor of shape (N, T, C) + - encoder_out_lens: a 1-D tensor of shape (N,) + - next_state, internal model states for the next chunk + """ + x, x_lens = self.time_reduction(x, x_lens) + x = self.in_linear(x) + + emformer_out, emformer_out_lens, states = self.model.infer( + x, x_lens, states + ) + + logits = self.encoder_output_layer(emformer_out) + + return logits, emformer_out_lens, states diff --git a/egs/aishell/ASR/transducer_emformer/encoder_interface.py b/egs/aishell/ASR/transducer_emformer/encoder_interface.py new file mode 120000 index 000000000..2b42f3999 --- /dev/null +++ b/egs/aishell/ASR/transducer_emformer/encoder_interface.py @@ -0,0 +1 @@ +../../../librispeech/ASR/transducer_emformer/encoder_interface.py \ No newline at end of file diff --git a/egs/aishell/ASR/transducer_emformer/joiner.py b/egs/aishell/ASR/transducer_emformer/joiner.py new file mode 120000 index 000000000..8cdb445b6 --- /dev/null +++ b/egs/aishell/ASR/transducer_emformer/joiner.py @@ -0,0 +1 @@ +../../../librispeech/ASR/transducer_emformer/joiner.py \ No newline at end of file diff --git a/egs/aishell/ASR/transducer_emformer/model.py b/egs/aishell/ASR/transducer_emformer/model.py new file mode 120000 index 000000000..fbee6726a --- /dev/null +++ b/egs/aishell/ASR/transducer_emformer/model.py @@ -0,0 +1 @@ +../../../librispeech/ASR/transducer_emformer/model.py \ No newline at end of file diff --git a/egs/aishell/ASR/transducer_emformer/noam.py b/egs/aishell/ASR/transducer_emformer/noam.py new file mode 120000 index 000000000..fd71f811e --- /dev/null +++ b/egs/aishell/ASR/transducer_emformer/noam.py @@ -0,0 +1 @@ +../../../librispeech/ASR/transducer_emformer/noam.py \ No newline at end of file diff --git a/egs/aishell/ASR/transducer_emformer/test_emformer.py b/egs/aishell/ASR/transducer_emformer/test_emformer.py new file mode 100755 index 000000000..57a1a9427 --- /dev/null +++ b/egs/aishell/ASR/transducer_emformer/test_emformer.py @@ -0,0 +1,76 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +To run this file, do: + + cd icefall/egs/librispeech/ASR + python ./transducer_emformer/test_emformer.py +""" + +import warnings + +import torch +from emformer import Emformer + + +def test_emformer(): + N = 3 + T = 300 + C = 80 + + subsampling_factor = 4 + + output_dim = 500 + + encoder = Emformer( + num_features=C, + output_dim=output_dim, + d_model=512, + nhead=8, + dim_feedforward=2048, + num_encoder_layers=20, + segment_length=16, + left_context_length=120, + right_context_length=4, + subsampling_factor=4, + ) + + x = torch.rand(N, T, C) + x_lens = torch.randint(100, T, (N,)) + x_lens[0] = T + + y, y_lens = encoder(x, x_lens) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + assert (y_lens == x_lens // subsampling_factor).all() + assert x.size(0) == x.size(0) + assert y.size(1) == max(y_lens) + assert y.size(2) == output_dim + + num_param = sum([p.numel() for p in encoder.parameters()]) + print(f"Number of encoder parameters: {num_param}") + + +def main(): + test_emformer() + + +if __name__ == "__main__": + torch.manual_seed(20220329) + main() diff --git a/egs/aishell/ASR/transducer_emformer/train.py b/egs/aishell/ASR/transducer_emformer/train.py new file mode 100755 index 000000000..8893336df --- /dev/null +++ b/egs/aishell/ASR/transducer_emformer/train.py @@ -0,0 +1,851 @@ +#!/usr/bin/env python3 +# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang +# Mingshuang Luo) +# Copyright 2021 (Pingfeng Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2" + +./transducer_emformer/train.py \ + --world-size 3 \ + --num-epochs 65 \ + --start-epoch 0 \ + --exp-dir transducer_emformer/exp \ + --max-duration 250 \ + --lr-factor 2.0 \ + --context-size 2 \ + --modified-transducer-prob 0.25 +""" + + +import argparse +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Optional, Tuple + +import k2 +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import AishellAsrDataModule +from decoder import Decoder +from emformer import Emformer +from joiner import Joiner +from lhotse.cut import Cut +from lhotse.utils import fix_random_seed +from model import Transducer +from noam import Noam +from torch import Tensor +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.nn.utils import clip_grad_norm_ +from torch.utils.tensorboard import SummaryWriter + +from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler +from icefall.checkpoint import load_checkpoint +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.lexicon import Lexicon +from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--attention-dim", + type=int, + default=512, + help="Attention dim for the Emformer", + ) + + parser.add_argument( + "--nhead", + type=int, + default=8, + help="Number of attention heads for the Emformer", + ) + + parser.add_argument( + "--dim-feedforward", + type=int, + default=2048, + help="Feed-forward dimension for the Emformer", + ) + + parser.add_argument( + "--num-encoder-layers", + type=int, + default=12, + help="Number of encoder layers for the Emformer", + ) + + parser.add_argument( + "--left-context-length", + type=int, + default=120, + help="Number of frames for the left context in the Emformer", + ) + + parser.add_argument( + "--segment-length", + type=int, + default=16, + help="Number of frames for each segment in the Emformer", + ) + + parser.add_argument( + "--right-context-length", + type=int, + default=4, + help="Number of frames for right context in the Emformer", + ) + + parser.add_argument( + "--memory-size", + type=int, + default=0, + help="Number of entries in the memory for the Emformer", + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=0, + help="""Resume training from from this epoch. + If it is positive, it will load checkpoint from + transducer_emformer/exp/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="transducer_emformer/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--lang-dir", + type=str, + default="data/lang_char", + help="""The lang dir + It contains language related input files such as + "lexicon.txt" + """, + ) + + parser.add_argument( + "--lr-factor", + type=float, + default=5.0, + help="The lr_factor for Noam optimizer", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " + "2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network)" + "part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - attention_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warm_step for Noam optimizer. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 800, + # parameters for conformer + "feature_dim": 80, + "subsampling_factor": 4, + # parameters for decoder + "embedding_dim": 512, + # parameters for Noam + "warm_step": 30000, + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + encoder = Emformer( + num_features=params.feature_dim, + output_dim=params.vocab_size, + subsampling_factor=params.subsampling_factor, + d_model=params.attention_dim, + nhead=params.nhead, + dim_feedforward=params.dim_feedforward, + num_encoder_layers=params.num_encoder_layers, + left_context_length=params.left_context_length, + segment_length=params.segment_length, + right_context_length=params.right_context_length, + max_memory_size=params.memory_size, + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + embedding_dim=params.embedding_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + input_dim=params.vocab_size, + inner_dim=params.embedding_dim, + output_dim=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, +) -> None: + """Load checkpoint from file. + + If params.start_epoch is positive, it will load the checkpoint from + `params.start_epoch - 1`. Otherwise, this function does nothing. + + Apart from loading state dict for `model`, `optimizer` and `scheduler`, + it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + optimizer: + The optimizer that we are using. + scheduler: + The learning rate scheduler we are using. + Returns: + Return None. + """ + if params.start_epoch <= 0: + return + + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + saved_params = load_checkpoint( + filename, + model=model, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: nn.Module, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + params=params, + optimizer=optimizer, + scheduler=scheduler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: nn.Module, + graph_compiler: CharCtcTrainingGraphCompiler, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute CTC loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Conformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + """ + device = model.device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + texts = batch["supervisions"]["text"] + y = graph_compiler.texts_to_ids(texts) + y = k2.RaggedTensor(y).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + ) + loss = params.simple_loss_scale * simple_loss + pruned_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = ( + (feature_lens // params.subsampling_factor).sum().item() + ) + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: nn.Module, + graph_compiler: CharCtcTrainingGraphCompiler, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + graph_compiler: CharCtcTrainingGraphCompiler, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + """ + model.train() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + loss, loss_info = compute_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + + optimizer.zero_grad() + loss.backward() + clip_grad_norm_(model.parameters(), 5.0, 2.0) + optimizer.step() + + if batch_idx % params.log_interval == 0: + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}" + ) + + if batch_idx % params.log_interval == 0: + + if tb_writer is not None: + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary( + tb_writer, "train/tot_", params.batch_idx_train + ) + + if batch_idx > 0 and batch_idx % params.valid_interval == 0: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + lexicon = Lexicon(params.lang_dir) + graph_compiler = CharCtcTrainingGraphCompiler( + lexicon=lexicon, + device=device, + oov="", + ) + + params.blank_id = 0 + params.vocab_size = max(lexicon.tokens) + 1 + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoints = load_checkpoint_if_available(params=params, model=model) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank]) + model.device = device + + optimizer = Noam( + model.parameters(), + model_size=params.attention_dim, + factor=params.lr_factor, + warm_step=params.warm_step, + ) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + aishell = AishellAsrDataModule(args) + train_cuts = aishell.train_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 12 seconds + return 1.0 <= c.duration <= 12.0 + + num_in_total = len(train_cuts) + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + num_left = len(train_cuts) + num_removed = num_in_total - num_left + removed_percent = num_removed / num_in_total * 100 + + logging.info(f"Before removing short and long utterances: {num_in_total}") + logging.info(f"After removing short and long utterances: {num_left}") + logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)") + + train_dl = aishell.train_dataloaders(train_cuts) + valid_dl = aishell.valid_dataloaders(aishell.valid_cuts()) + + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + graph_compiler=graph_compiler, + params=params, + ) + + for epoch in range(params.start_epoch, params.num_epochs): + fix_random_seed(params.seed + epoch) + train_dl.sampler.set_epoch(epoch) + + cur_lr = optimizer._rate + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + if rank == 0: + logging.info("epoch {}, learning rate {}".format(epoch, cur_lr)) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + optimizer=optimizer, + graph_compiler=graph_compiler, + train_dl=train_dl, + valid_dl=valid_dl, + tb_writer=tb_writer, + world_size=world_size, + ) + + save_checkpoint( + params=params, + model=model, + optimizer=optimizer, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def scan_pessimistic_batches_for_oom( + model: nn.Module, + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + graph_compiler: CharCtcTrainingGraphCompiler, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 0 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + optimizer.zero_grad() + loss, _ = compute_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + batch=batch, + is_training=True, + ) + loss.backward() + clip_grad_norm_(model.parameters(), 5.0, 2.0) + optimizer.step() + except RuntimeError as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + raise + + +def main(): + parser = get_parser() + AishellAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + args.lang_dir = Path(args.lang_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/transducer_emformer/train.py b/egs/librispeech/ASR/transducer_emformer/train.py index a0fd11efe..9798fe5e6 100755 --- a/egs/librispeech/ASR/transducer_emformer/train.py +++ b/egs/librispeech/ASR/transducer_emformer/train.py @@ -520,7 +520,7 @@ def compute_loss( params: Parameters for training. See :func:`get_params`. model: - The model for training. It is an instance of Conformer in our case. + The model for training. It is an instance of Emformer in our case. batch: A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` for the content in it.