mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Replace warmup with lr scheduler.
This commit is contained in:
parent
0be42bef69
commit
02e409b6ce
File diff suppressed because it is too large
Load Diff
@ -17,8 +17,7 @@ import torch.nn as nn
|
||||
from conformer import Conformer
|
||||
from lhotse.utils import fix_random_seed
|
||||
|
||||
# from transformer import Noam
|
||||
from madam_no_warmup import Moam
|
||||
from madam import Madam
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
@ -37,6 +36,29 @@ from icefall.utils import (
|
||||
)
|
||||
|
||||
|
||||
def create_madam(
|
||||
params,
|
||||
model_size: int = 256,
|
||||
factor: float = 2.0,
|
||||
warm_step: int = 25000,
|
||||
min_target_rms: float = 0.05,
|
||||
limit_grad_factor: float = float("inf"),
|
||||
l2_period: int = 1,
|
||||
):
|
||||
initial_lr = warm_step ** (-0.5)
|
||||
optimizer = Madam(
|
||||
params,
|
||||
lr=initial_lr,
|
||||
betas=(0.9, 0.98),
|
||||
eps=1e-9,
|
||||
min_target_rms=min_target_rms,
|
||||
limit_grad_factor=limit_grad_factor,
|
||||
l2_period=l2_period,
|
||||
)
|
||||
|
||||
return optimizer
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
@ -86,8 +108,6 @@ def get_params() -> AttributeDict:
|
||||
- lang_dir: It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
|
||||
- lr: It specifies the initial learning rate
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
@ -155,6 +175,7 @@ def get_params() -> AttributeDict:
|
||||
"mmi_loss": False,
|
||||
"use_feat_batchnorm": False,
|
||||
"lr_factor": 2.0,
|
||||
"warm_step": 30000,
|
||||
}
|
||||
)
|
||||
|
||||
@ -697,14 +718,15 @@ def run(rank, world_size, args):
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
optimizer = Moam(
|
||||
optimizer = create_madam(
|
||||
model.parameters(),
|
||||
model_size=params.attention_dim,
|
||||
factor=params.lr_factor,
|
||||
warm_step=params.warm_step,
|
||||
)
|
||||
|
||||
scheduler = torch.optim.lr_scheduler.LambdaLR(
|
||||
optimizer, lambda ep: 1.0 if ep < 3 else 0.7 ** (ep - 2)
|
||||
optimizer, lambda ep: 1.0 if ep < 3 else 0.75 ** (ep - 2)
|
||||
)
|
||||
|
||||
if checkpoints and checkpoints["optimizer"]:
|
||||
@ -720,8 +742,6 @@ def run(rank, world_size, args):
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
# LR scheduler can hold multiple learning rates for multiple parameter groups;
|
||||
# For now we report just the first LR which we assume concerns most of the parameters.
|
||||
cur_lr = scheduler.get_last_lr()[0]
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
|
Loading…
x
Reference in New Issue
Block a user