mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
Replace warmup with lr scheduler.
This commit is contained in:
parent
21292066ec
commit
0be42bef69
1072
egs/librispeech/ASR/conformer_ctc_madam_no_warmup/madam_no_warmup.py
Normal file
1072
egs/librispeech/ASR/conformer_ctc_madam_no_warmup/madam_no_warmup.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -18,7 +18,7 @@ from conformer import Conformer
|
||||
from lhotse.utils import fix_random_seed
|
||||
|
||||
# from transformer import Noam
|
||||
from madam import Moam
|
||||
from madam_no_warmup import Moam
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
@ -155,7 +155,6 @@ def get_params() -> AttributeDict:
|
||||
"mmi_loss": False,
|
||||
"use_feat_batchnorm": False,
|
||||
"lr_factor": 2.0,
|
||||
"warm_step": 30000,
|
||||
}
|
||||
)
|
||||
|
||||
@ -702,12 +701,18 @@ def run(rank, world_size, args):
|
||||
model.parameters(),
|
||||
model_size=params.attention_dim,
|
||||
factor=params.lr_factor,
|
||||
warm_step=params.warm_step,
|
||||
)
|
||||
|
||||
if checkpoints:
|
||||
scheduler = torch.optim.lr_scheduler.LambdaLR(
|
||||
optimizer, lambda ep: 1.0 if ep < 3 else 0.7 ** (ep - 2)
|
||||
)
|
||||
|
||||
if checkpoints and checkpoints["optimizer"]:
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
if checkpoints and checkpoints["scheduler"]:
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
train_dl = librispeech.train_dataloaders()
|
||||
valid_dl = librispeech.valid_dataloaders()
|
||||
@ -715,7 +720,9 @@ def run(rank, world_size, args):
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
cur_lr = optimizer._rate
|
||||
# LR scheduler can hold multiple learning rates for multiple parameter groups;
|
||||
# For now we report just the first LR which we assume concerns most of the parameters.
|
||||
cur_lr = scheduler.get_last_lr()[0]
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||
@ -738,10 +745,13 @@ def run(rank, world_size, args):
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
scheduler.step()
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user