mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-08 08:34:19 +00:00
add support for fbank feature
This commit is contained in:
parent
c56af2edc3
commit
01bae96151
@ -68,7 +68,7 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--otc-token", type=str, default="▁<star>", help="OTC token",
|
"--otc-token", type=str, default="<star>", help="OTC token",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -184,7 +184,7 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lang-dir", type=str, default="data/lang_bpe_500", help="The lang dir",
|
"--lang-dir", type=str, default="data/lang_bpe_200", help="The lang dir",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
162
egs/librispeech/WSASR/local/compute_fbank_librispeech.py
Executable file
162
egs/librispeech/WSASR/local/compute_fbank_librispeech.py
Executable file
@ -0,0 +1,162 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the LibriSpeech dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from filter_cuts import filter_cuts
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor, str2bool
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to the bpe.model. If not None, we will remove short and
|
||||||
|
long utterances before extracting features""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dataset",
|
||||||
|
type=str,
|
||||||
|
help="""Dataset parts to compute fbank. If None, we will use all""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--perturb-speed",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_librispeech(
|
||||||
|
bpe_model: Optional[str] = None,
|
||||||
|
dataset: Optional[str] = None,
|
||||||
|
perturb_speed: Optional[bool] = True,
|
||||||
|
):
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
num_mel_bins = 80
|
||||||
|
|
||||||
|
if bpe_model:
|
||||||
|
logging.info(f"Loading {bpe_model}")
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(bpe_model)
|
||||||
|
|
||||||
|
if dataset is None:
|
||||||
|
dataset_parts = (
|
||||||
|
"dev-clean",
|
||||||
|
"dev-other",
|
||||||
|
"test-clean",
|
||||||
|
"test-other",
|
||||||
|
"train-clean-100",
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
dataset_parts = dataset.split(" ", -1)
|
||||||
|
|
||||||
|
prefix = "librispeech"
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix=prefix,
|
||||||
|
suffix=suffix,
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
assert len(manifests) == len(dataset_parts), (
|
||||||
|
len(manifests),
|
||||||
|
len(dataset_parts),
|
||||||
|
list(manifests.keys()),
|
||||||
|
dataset_parts,
|
||||||
|
)
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
|
||||||
|
if (output_dir / cuts_filename).is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping.")
|
||||||
|
continue
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"],
|
||||||
|
supervisions=m["supervisions"],
|
||||||
|
)
|
||||||
|
|
||||||
|
if "train" in partition:
|
||||||
|
if bpe_model:
|
||||||
|
cut_set = filter_cuts(cut_set, sp)
|
||||||
|
if perturb_speed:
|
||||||
|
logging.info(f"Doing speed perturb")
|
||||||
|
cut_set = (
|
||||||
|
cut_set
|
||||||
|
+ cut_set.perturb_speed(0.9)
|
||||||
|
+ cut_set.perturb_speed(1.1)
|
||||||
|
)
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
||||||
|
# when an executor is specified, make more partitions
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
cut_set.to_file(output_dir / cuts_filename)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
args = get_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
compute_fbank_librispeech(
|
||||||
|
bpe_model=args.bpe_model,
|
||||||
|
dataset=args.dataset,
|
||||||
|
perturb_speed=args.perturb_speed,
|
||||||
|
)
|
160
egs/librispeech/WSASR/local/filter_cuts.py
Normal file
160
egs/librispeech/WSASR/local/filter_cuts.py
Normal file
@ -0,0 +1,160 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This script removes short and long utterances from a cutset.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
You may need to tune the thresholds for your own dataset.
|
||||||
|
|
||||||
|
Usage example:
|
||||||
|
|
||||||
|
python3 ./local/filter_cuts.py \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--in-cuts data/fbank/librispeech_cuts_test-clean.jsonl.gz \
|
||||||
|
--out-cuts data/fbank-filtered/librispeech_cuts_test-clean.jsonl.gz
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
from lhotse import CutSet, load_manifest_lazy
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=Path,
|
||||||
|
help="Path to the bpe.model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--in-cuts",
|
||||||
|
type=Path,
|
||||||
|
help="Path to the input cutset",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--out-cuts",
|
||||||
|
type=Path,
|
||||||
|
help="Path to the output cutset",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def filter_cuts(cut_set: CutSet, sp: spm.SentencePieceProcessor):
|
||||||
|
total = 0 # number of total utterances before removal
|
||||||
|
removed = 0 # number of removed utterances
|
||||||
|
|
||||||
|
def remove_short_and_long_utterances(c: Cut):
|
||||||
|
"""Return False to exclude the input cut"""
|
||||||
|
nonlocal removed, total
|
||||||
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
#
|
||||||
|
# Caution: There is a reason to select 20.0 here. Please see
|
||||||
|
# ./display_manifest_statistics.py
|
||||||
|
#
|
||||||
|
# You should use ./display_manifest_statistics.py to get
|
||||||
|
# an utterance duration distribution for your dataset to select
|
||||||
|
# the threshold
|
||||||
|
total += 1
|
||||||
|
if c.duration < 1.0 or c.duration > 20.0:
|
||||||
|
logging.warning(
|
||||||
|
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||||
|
)
|
||||||
|
removed += 1
|
||||||
|
return False
|
||||||
|
|
||||||
|
# In pruned RNN-T, we require that T >= S
|
||||||
|
# where T is the number of feature frames after subsampling
|
||||||
|
# and S is the number of tokens in the utterance
|
||||||
|
|
||||||
|
# In ./pruned_transducer_stateless2/conformer.py, the
|
||||||
|
# conv module uses the following expression
|
||||||
|
# for subsampling
|
||||||
|
if c.num_frames is None:
|
||||||
|
num_frames = c.duration * 100 # approximate
|
||||||
|
else:
|
||||||
|
num_frames = c.num_frames
|
||||||
|
|
||||||
|
T = ((num_frames - 1) // 2 - 1) // 2
|
||||||
|
# Note: for ./lstm_transducer_stateless/lstm.py, the formula is
|
||||||
|
# T = ((num_frames - 3) // 2 - 1) // 2
|
||||||
|
|
||||||
|
# Note: for ./pruned_transducer_stateless7/zipformer.py, the formula is
|
||||||
|
# T = ((num_frames - 7) // 2 + 1) // 2
|
||||||
|
|
||||||
|
tokens = sp.encode(c.supervisions[0].text, out_type=str)
|
||||||
|
|
||||||
|
if T < len(tokens):
|
||||||
|
logging.warning(
|
||||||
|
f"Exclude cut with ID {c.id} from training. "
|
||||||
|
f"Number of frames (before subsampling): {c.num_frames}. "
|
||||||
|
f"Number of frames (after subsampling): {T}. "
|
||||||
|
f"Text: {c.supervisions[0].text}. "
|
||||||
|
f"Tokens: {tokens}. "
|
||||||
|
f"Number of tokens: {len(tokens)}"
|
||||||
|
)
|
||||||
|
removed += 1
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
# We use to_eager() here so that we can print out the value of total
|
||||||
|
# and removed below.
|
||||||
|
ans = cut_set.filter(remove_short_and_long_utterances).to_eager()
|
||||||
|
ratio = removed / total * 100
|
||||||
|
logging.info(
|
||||||
|
f"Removed {removed} cuts from {total} cuts. {ratio:.3f}% data is removed."
|
||||||
|
)
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
if args.out_cuts.is_file():
|
||||||
|
logging.info(f"{args.out_cuts} already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
assert args.in_cuts.is_file(), f"{args.in_cuts} does not exist"
|
||||||
|
assert args.bpe_model.is_file(), f"{args.bpe_model} does not exist"
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(str(args.bpe_model))
|
||||||
|
|
||||||
|
cut_set = load_manifest_lazy(args.in_cuts)
|
||||||
|
assert isinstance(cut_set, CutSet)
|
||||||
|
|
||||||
|
cut_set = filter_cuts(cut_set, sp)
|
||||||
|
logging.info(f"Saving to {args.out_cuts}")
|
||||||
|
args.out_cuts.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
cut_set.to_file(args.out_cuts)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
main()
|
@ -30,13 +30,18 @@ stop_stage=100
|
|||||||
# - librispeech-lm-norm.txt.gz
|
# - librispeech-lm-norm.txt.gz
|
||||||
#
|
#
|
||||||
otc_token="<star>"
|
otc_token="<star>"
|
||||||
|
feature_type="ssl"
|
||||||
|
|
||||||
dl_dir=$PWD/download
|
dl_dir=$PWD/download
|
||||||
manifests_dir="data/manifests"
|
manifests_dir="data/manifests"
|
||||||
feature_dir="data/ssl"
|
feature_dir="data/${feature_type}"
|
||||||
lang_dir="data/lang"
|
lang_dir="data/lang"
|
||||||
lm_dir="data/lm"
|
lm_dir="data/lm"
|
||||||
|
|
||||||
|
perturb_speed=false
|
||||||
|
|
||||||
|
# ssl or fbank
|
||||||
|
|
||||||
. ./cmd.sh
|
. ./cmd.sh
|
||||||
. shared/parse_options.sh || exit 1
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
@ -98,10 +103,17 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
log "Stage 2: Compute SSL feature for librispeech (train-clean-100)"
|
log "Stage 2: Compute ${feature_type} feature for librispeech (train-clean-100)"
|
||||||
mkdir -p "${feature_dir}"
|
mkdir -p "${feature_dir}"
|
||||||
if [ ! -e "${feature_dir}/.librispeech.done" ]; then
|
if [ ! -e "${feature_dir}/.librispeech.done" ]; then
|
||||||
python local/compute_ssl_librispeech.py
|
if [ "${feature_type}" = ssl ]; then
|
||||||
|
./local/compute_ssl_librispeech.py
|
||||||
|
elif [ "${feature_type}" = fbank ]; then
|
||||||
|
./local/compute_fbank_librispeech.py --perturb-speed ${perturb_speed}
|
||||||
|
else
|
||||||
|
log "Error: not supported --feature-type '${feature_type}'"
|
||||||
|
exit 2
|
||||||
|
fi
|
||||||
|
|
||||||
touch "${feature_dir}.librispeech.done"
|
touch "${feature_dir}.librispeech.done"
|
||||||
fi
|
fi
|
||||||
|
Loading…
x
Reference in New Issue
Block a user