use symlinks for attention.py and export.py

This commit is contained in:
Dongji Gao 2023-09-19 14:30:54 -04:00
parent 8c5c23ebe7
commit c56af2edc3
2 changed files with 2 additions and 522 deletions

View File

@ -1,243 +0,0 @@
# Copyright 2022 Xiaomi Corp. (author: Quandong Wang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import torch
import torch.nn as nn
from scaling import ScaledLinear
from torch import Tensor
from torch.nn.init import xavier_normal_
class MultiheadAttention(nn.Module):
r"""Allows the model to jointly attend to information
from different representation subspaces.
See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
Args:
embed_dim: Total dimension of the model.
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
Default: ``False``.
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
Examples::
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
"""
__constants__ = ["batch_first"]
bias_k: Optional[torch.Tensor]
bias_v: Optional[torch.Tensor]
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
kdim=None,
vdim=None,
batch_first=False,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
if self._qkv_same_embed_dim is False:
self.q_proj_weight = ScaledLinear(embed_dim, embed_dim, bias=bias)
self.k_proj_weight = ScaledLinear(self.kdim, embed_dim, bias=bias)
self.v_proj_weight = ScaledLinear(self.vdim, embed_dim, bias=bias)
self.register_parameter("in_proj_weight", None)
else:
self.in_proj_weight = ScaledLinear(embed_dim, 3 * embed_dim, bias=bias)
self.register_parameter("q_proj_weight", None)
self.register_parameter("k_proj_weight", None)
self.register_parameter("v_proj_weight", None)
if not bias:
self.register_parameter("in_proj_bias", None)
self.out_proj = ScaledLinear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = nn.Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
self.bias_v = nn.Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self._reset_parameters()
def _reset_parameters(self):
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def __setstate__(self, state):
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
if "_qkv_same_embed_dim" not in state:
state["_qkv_same_embed_dim"] = True
super(MultiheadAttention, self).__setstate__(state)
def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
r"""
Args:
query: Query embeddings of shape :math:`(L, N, E_q)` when ``batch_first=False`` or :math:`(N, L, E_q)`
when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size,
and :math:`E_q` is the query embedding dimension ``embed_dim``. Queries are compared against
key-value pairs to produce the output. See "Attention Is All You Need" for more details.
key: Key embeddings of shape :math:`(S, N, E_k)` when ``batch_first=False`` or :math:`(N, S, E_k)` when
``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and
:math:`E_k` is the key embedding dimension ``kdim``. See "Attention Is All You Need" for more details.
value: Value embeddings of shape :math:`(S, N, E_v)` when ``batch_first=False`` or :math:`(N, S, E_v)` when
``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and
:math:`E_v` is the value embedding dimension ``vdim``. See "Attention Is All You Need" for more details.
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
to ignore for the purpose of attention (i.e. treat as "padding"). Binary and byte masks are supported.
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
the purpose of attention. For a byte mask, a non-zero value indicates that the corresponding ``key``
value will be ignored.
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
Default: ``True``.
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
the attention weight.
Outputs:
- **attn_output** - Attention outputs of shape :math:`(L, N, E)` when ``batch_first=False`` or
:math:`(N, L, E)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is
the batch size, and :math:`E` is the embedding dimension ``embed_dim``.
- **attn_output_weights** - Attention output weights of shape :math:`(N, L, S)`, where :math:`N` is the batch
size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. Only returned
when ``need_weights=True``.
"""
if self.batch_first:
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
if not self._qkv_same_embed_dim:
q_proj_weight = (
self.q_proj_weight.get_weight()
if self.q_proj_weight is not None
else None
)
k_proj_weight = (
self.k_proj_weight.get_weight()
if self.k_proj_weight is not None
else None
)
v_proj_weight = (
self.v_proj_weight.get_weight()
if self.v_proj_weight is not None
else None
)
(
attn_output,
attn_output_weights,
) = nn.functional.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight.get_weight(),
self.in_proj_weight.get_bias(),
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.get_weight(),
self.out_proj.get_bias(),
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
use_separate_proj_weight=True,
q_proj_weight=q_proj_weight,
k_proj_weight=k_proj_weight,
v_proj_weight=v_proj_weight,
)
else:
(
attn_output,
attn_output_weights,
) = nn.functional.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight.get_weight(),
self.in_proj_weight.get_bias(),
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.get_weight(),
self.out_proj.get_bias(),
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
)
if self.batch_first:
return attn_output.transpose(1, 0), attn_output_weights
else:
return attn_output, attn_output_weights

View File

@ -0,0 +1 @@
../../ASR/conformer_ctc2/attention.py

View File

@ -1,279 +0,0 @@
#!/usr/bin/env python3
#
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang,
# Quandong Wang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
./conformer_ctc2/export.py \
--exp-dir ./conformer_ctc2/exp \
--tokens ./data/lang_bpe_500/tokens.txt \
--epoch 20 \
--avg 10
It will generate a file exp_dir/pretrained.pt
To use the generated file with `conformer_ctc2/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/librispeech/ASR
./conformer_ctc2/decode.py \
--exp-dir ./conformer_ctc2/exp \
--epoch 9999 \
--avg 1 \
--max-duration 100
"""
import argparse
import logging
from pathlib import Path
import k2
import torch
from conformer import Conformer
from decode import get_params
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import num_tokens, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 0.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--num-decoder-layers",
type=int,
default=6,
help="""Number of decoder layer of transformer decoder.
Setting this to 0 will not create the decoder at all (pure CTC model)
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="conformer_ctc2/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--tokens",
type=str,
required=True,
help="Path to the tokens.txt.",
)
parser.add_argument(
"--jit",
type=str2bool,
default=True,
help="""True to save a model after applying torch.jit.script.
""",
)
return parser
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
num_classes = num_tokens(token_table) + 1 # +1 for the blank
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
logging.info(params)
logging.info("About to create model")
model = Conformer(
num_features=params.feature_dim,
nhead=params.nhead,
d_model=params.encoder_dim,
num_classes=num_classes,
subsampling_factor=params.subsampling_factor,
num_encoder_layers=params.num_encoder_layers,
num_decoder_layers=params.num_decoder_layers,
)
model.to(device)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.eval()
model.to("cpu")
model.eval()
if params.jit:
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"
model.save(str(filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torch.jit.script")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../ASR/conformer_ctc2/export.py